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Abstract: Thirty-six elements are categorized as essential but toxic in excess amount (EBTEs), non-
essential toxic (NETs), and Other in 29 different edible aquatic species dwelling in offshore pelagic, 
and coastal and estuarine (CE) ecosystems were investigated in Sri Lanka. Elements were ana-
lyzed using an energy-dispersive X-ray fluorescence (EDXRF) spectrometer, and an NIC 
MA-3000 Mercury Analyzer. EBTEs showed a negative relationship, whereas NETs showed a 
positive relationship between the concentration (mg/kg wet weight) and trophic levels in both eco-
systems. EBTEs showed trophic dilution, whereas NETs showed trophic magnification. Some ele-
ments in a few organisms exceeded the maximum allowable limit which is safe for human 
consumption. There was a positive relationship (R2 = 0.85) between the concentration of 
mercury and body weight of yellowfin tuna (YFT). For the widely consumed YFT, the calcu-
lated hazard index (HI) for the non-carcinogenic health and exposure daily intake of NETs for adults 
were 0.27 and 9.38 × 10−5 mg/kg bw/day, respectively. The estimated provisional tolerable weekly 
intake (PTWI) (μg/kg bw/w) was 0.47 for arsenic and 0.05 for antimony, cadmium, mercury, and 
lead. The HI and PTWI values were below the recommended limits; thus, consumption of YFT does 
not pose any health risk for Sri Lankan adults.  
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1. Introduction 
Fish and other aquatic species rich in proteins and other essential nutrients are con-

sidered as healthy human food; thus, they have been included in the daily diet of many 
of the world population [1]. Direct use of fish for human consumption has been increasing 
in the past decades, showing an average of slightly higher than 20.5 kg year−1 for each of 
the world’s inhabitants in 2018 [2]. It is nearly 16.6 kg year−1 for all sectors in Sri Lankans 
[3]. Fish consumption has been popular among the world’s human population, and there 
has been a significant rise in global fish production for direct human consumption during 
the last decades [2]. In the light of the increased demand for aquatic species as human 
food, the quality and safety of food products have been essential for many countries [4]. 
However, there is a growing consumer concern over the quality (e.g., nutritional value 
and freshness) and safety (e.g., contamination with hazardous and bioaccumulative 
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chemicals) of fish and fish products. Thus, the nutritional quality of the aquatic species is 
hindered by the safety deterioration of such hazardous elements, including some metals.  

The elements, including metals, are classified into several categories. Some of the el-
ements are essential but toxic in excess quantities (EBTEs) of such elements to humans 
and fish (e.g., tin (Sn), ferrous (Fe), copper (Cu), chromium (Cr), zinc (Zn), and selenium 
(Se)). Some of these toxic and essential elements have been reported in herbal medicinal 
products [5], in snacks [6], and aquatic organisms including fish [7,8]. A certain level of 
some elements that exceed the maximum allowable limit (MAL) in the intake are non-
essential and toxic (NETs) to humans (e.g., arsenic (As), antimony (Sb), cadmium (Cd), 
mercury (Hg), and lead (Pb)) [9,10]; however, there are several other elements, including 
some metals (Others), which their specific biological functions are not well known. In this 
study, we hypothesized that certain toxic elements might be accumulated in larger quan-
tities in the tissues of aquatic organisms at higher trophic levels (TLs). There are various 
routes of entering these elements into organisms’ bodies. Anthropogenic interventions, 
such as industrial inputs [11], agricultural waste [12], and natural origins, such as under-
water volcanic eruptions [13], can permit toxic elements to enter aquatic ecosystems that 
make a route to enter into the body of the aquatic animals, ultimately accumulating them 
in their consumers, such as humans. 

Fishes play an essential role in the aquatic food web that represents several TLs [14]. 
They are also useful in monitoring the contamination of heavy metals in aquatic ecosys-
tems as a biological indicator [15]. Several chronic and negative health effects on humans 
from consuming contaminated fish with toxic metals have been reported [16]. The uptake 
rates of elements by a fish are governed by the chemical and physical state of the elements, 
as well as the environmental and species-specific biological factors [17]. Thus, the analysis 
of elements in different aquatic species living in different environments, such as the off-
shore pelagic (OP) ecosystem, which is away from the mainland, coastal, and estuarine 
ecosystem (CE), which is near to mainland, would provide an insightful understanding 
of the distribution of these elements in the tissues of edible aquatic species. Moreover, 
Canli & Atli [18] reported fish-specific and tissue-specific disparities in the accumulation 
of different elements in fish bodies. There are several previous studies, in particular, anal-
yses of mercury in fish in Sri Lanka (e.g., [9,19–25]). Temporal and spatial monitoring of 
such an element in the case of the concentrations in tissues is essential in identifying cur-
rent and future trends, especially for widely consumed aquatic species, such as yellowfin 
tuna (YFT) (Scientific name: Thunnus albacares) in Sri Lanka. Rathnasuriya et al. [16] re-
ported that coastal communities that consume a considerably higher quantity of fish 
mainly, including YFT, contain elevated concentrations of Hg in hair, directing the need 
for further assessment of human health risks of toxic elements.  

There are many analytical techniques used for quantitative analysis of elements. 
Some techniques include mass spectrometry techniques and X-ray microanalytical tech-
niques for analyzing metallic elements in biological samples [26]. The distribution of ele-
ments is also analyzed using the atomic absorption spectrophotometry [24,27,28], induc-
tively coupled plasma mass spectrometry [29], and EDXRF spectrometry [30]. Compara-
tively, the EDXRF rapidly quantifies elements and has accurate, low-cost results; there-
fore, in this study we used the EDXRF technique, with NIC MA 3000 mercury analyzer 
which is highly sensitive for detection of Hg.  

The objectives of this study are to (1) evaluate 35 elements giving special reference to 
toxic elements classified into EBTEs and NETs present in tissues of 29 edible aquatic spe-
cies, (2) compare the concentrations of elements between different TLs considering two 
different marine areas in Sri Lanka, (3) evaluate MALs of each EBTE and NET in different 
aquatic species, (4) compare the concentrations of elements between dark and white mus-
cles of two different tuna species (i.e., YFT and Skipjack tuna (SJT) (Scientific name: 
Katsuwonus pelamis), and (5) evaluate bioaccumulate potential of Hg in YFT and human 
health risk of ingestion of Hg by consuming YFT. Our primary objective is to analyze the 



Toxics 2022, 10, 585 3 of 20 
 

 

maximum number of elements, including toxic metals, in a broad range of species repre-
senting different TLs. Therefore, we used one specimen from large individuals or several 
individuals for small organisms pooled into one homogenized sample. Fish are consid-
ered as a potentially accessible and comparatively cheap source for obtaining protein that 
is needed for humans, so there is a contemporary trend of consuming a variety of fish. 
Therefore, the amount of EBTEs and NETS stored in such a diet should be studied for the 
preparation of dietary guidelines for safe consumption of fish. To the best of our 
knowledge, this is the first report that presents TLs-associated accumulation patterns of 
elements in wide-ranging aquatic edible species, especially in Sri Lanka, which gives im-
portant data for preparing dietary guidelines. 

2. Materials and Methods 
2.1. Sample Collection 

Eighty individual organisms representing 36 different fresh samples from 29 differ-
ent species were collected from the local fish market in Sri Lanka, representing edible 
aquatic organisms dwelling in the OP and CE ecosystems around Sri Lanka (Table S1). 
They were the most consumed aquatic organisms by Sri Lankans. There were 18 species 
of finfishes (15 species of bony fishes, one species of ray, and one species of shark), shell-
fishes (one species of squid) in OP, and 11 species (ten species of finfishes and one species 
of shrimp) in CE. The TLs of the organisms were assumed by their different feeding habits 
(Table S1), and some of them were previously analyzed for halogenated polycyclic aro-
matic hydrocarbons (HPAHs) (e.g., [14,31]). In the OP samples, there were two different 
kinds of tuna species: YFT (n = 7) and SJT (n = 3). They were selected to determine species-
specific and muscle-specific (i.e., white muscle versus red muscles) concentration varia-
tions of target compounds. Moreover, YFT with different body masses, including small, 
medium, and large individuals, were used to analyze the bioaccumulation of target ele-
ments. One sample from one specimen was randomly selected for large organisms, 
whereas several replicates of tuna samples were analyzed, and several individuals from 
small-sized organisms were pooled to prepare homogenized samples. This strategy was 
implemented to cover a wide range of biota representing many species [14]. Sri Lankans 
consume comparatively large quantities of aquatic organisms to obtain their protein re-
quirements, and the selected species were the most popular edible species in their diets. 
The feeding habitat and living environmental conditions of the studied fauna are given in 
Supplementary Table S1. Here the fork lengths and somatic body weights were also rec-
orded if the entire specimens were available. Samples were preserved in ice after washing 
them with distilled water before being transported to the laboratory. The head, fins, and 
viscera were removed from small to medium-sized specimens, and approximately 200 g 
of muscle sample was taken from large fishes from the anterior dorsal region near the 
pectorals. These samples were stored in a freezer below −40 °C until sample preparation 
for analysis. 

2.2. Toxic and Other Elements  
This study considered three types of elements based on toxicity, as stipulated by 

Bosch et al. [10]. Toxic elements were grouped into two categories: EBTEs and NETs. The 
remaining elements were included in the third group: 3) Other. The elements that in-
cluded some metals in EBTEs were Sn, Fe, Cu, Cr, and Zn; NETs were As, Sb, Cd, Hg, and 
Pb; Others were nickel (Ni), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus 
(P), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), titanium (Ti), manganese (Mn), 
cobalt (Co), selenium (Se), bromine (Br), rubidium (Rb), strontium (Sr), tellurium (Te), io-
dine (I), hafnium (Hf), tantalum (Ta), platinum (Pt), gold (Au), gallium (Ga), germanium 
(Ge), and yttrium (Y). However, none of these samples detected Ga, Ge, and Y, and they 
were excluded from the discussion. Wet weight (ww) base concentrations (mg/kg) of the 
elements in fish samples were calculated.  
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2.3. Sample Preparation and Analysis 
All samples were freeze-dried to a constant weight, while white and dark muscles 

were separated from each transverse section of YFT and SJT. All the samples were homog-
enized to a fine powder. Nearly 2 g of the sample and 400 mg of the binder (Spectro Blend, 
Chemplex Industries, INC, U.S.A, 44-μm powder; blending, grinding, and brightening 
additive; chemical composition: 81% C, 13.5% H, 2.9% O, and 2.6% N) precisely weighted 
and mixed with a natural stone mortar and pestle. The mortar and pestle were cleaned 
with methanol three times before use. The mixed sample was loaded to the pellet machine, 
where 800 pa load pressure was applied for 1 min to prepare the pellet. The created pellet 
was covered with tinfoil and stored in a freezer for analysis. The pelleted samples were 
analyzed using Rigaku EDXL-300 energy-dispersive X-ray fluorescence (EDXRF) spec-
trometer, Japan. The equipment was calibrated using the reference samples before use. 
The detection limit of the EDXRF is 1.0 mg/kg for all compounds, so half of the detection 
limit (0.5 mg/kg) was used for analysis by considering the maximum risk for all concen-
tration values of elements that were below the detection limit (<1.0 mg/kg dry weight). 
Additionally, mercury was analyzed separately using NIC MA-3000 Mercury Analyzer, 
Japan. Approximately 5 mg of each homogenized sample was accurately measured with 
an analytical balance. The measured samples were placed in ceramic-coated bath contain-
ers and then kept in trays. The equipment was calibrated before use, and two replicates 
from one sample were analyzed.  

2.4. Stable Isotope Analysis 
Stable isotope analysis was performed using delipidated samples [14]. Organic sol-

vents were used to remove lipids from samples. Then, pellets were prepared for each sam-
ple using 0.45 to 0.55 mg of homogenized delipidated samples placed in tin capsules. 
Three pellets were made from one sample, and all the samples were analyzed using a 
continuous-flow isotope ratio mass spectrometer (ANCA-GSL and Hydra 20–20, Sercon 
Ltd., Cheshire., UK) at the stable isotope facility of Meijo University, Japan. The mean 
stable isotopic value for the three replicates of samples was obtained as ratios, and they 
were expressed in δ notation as parts per thousand (‰) deviation from the Pee Dee Bel-
emnite for 13C and atmospheric N2 for 15N [32]. 

δX = [(Rsample/Rstandard) − 1] × 1000 (1)

Here, X is 13C or 15N, and R is the isotopic value (13C/12C or 15N/14N). A consumer 
in one TL shows, on average, a 3.4% increase in δ15N relative to the prey they consumed 
in the immediately lower TL and, the primary carbon source of the food in different TLs 
are determined by the δ13C, which shows a 1% increase with each TL [32].  

Different environmental conditions in different aquatic ecosystems permit different 
stable isotopic signatures among organisms. Nitrogen can be readily enriched in a CE near 
land by an anthropogenic source (e.g., agricultural waste, fertilizers, and sewage) and 
river run-off consisting of inorganic nutrients; thus, causing the 15N enrichment of par-
ticulate organic matter [33] and showing comparatively higher δ15N values in the tissue 
samples of aquatic animals living in the ecosystem [34]. Some of the physical parameters, 
such as temperature and salinity fluctuations, are more pronounced in CE than that in 
such parameters in an offshore environment, and these changes are influenced by chang-
ing δ15N [14,35]. Wickrama-Arachchige et al. [14] found different δ15N and δ13C signa-
tures between the aquatic organisms sampled in OP and CE. As there was spatial varia-
bility in δ15N and δ13C values [14,35], we separately evaluated the stable isotope signa-
tures in these edible aquatic organisms sampled in the OP and the CE in this study.  
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2.5. Statistical Analysis 
The total concentration of the three types of elements (EBTEs, NETs, and other) was 

evaluated between TLs of the samples collected at OP and CE using one-way ANOVA. 
The concentrations of the target compounds between white and dark muscles of YFT and 
SJT were tested using the two-sample t-test. Linear regression was separately executed to 
evaluate any significant relationship between the concentrations of toxic elements (EBTEs 
and NETs) and body weight of YFT by considering very large, medium, and small body 
weights. Normal distribution and homogeneity of variance were investigated before the 
parametric analysis to maintain the level of significance as p < 0.05. All the statistical anal-
yses were performed with MINITAB 19, and the graphs were prepared using Microsoft 
Excel 2019 and MINITAB 19 statistical software.  

2.6. Health Risk Assessment 
2.6.1. Estimated Daily Intake (EDI) of T. albacares (YFT) 

The estimated daily intake (EDI) of T. albacares by Sri Lankans is calculated using the 
following equation [9]. 

EDI = [NET] × ൤
DFC𝑦𝑓𝑡 − sl

BW
൨  (2)

 Here, [NET] is the mean Hg concentration in YFT muscle in wet weight (mg/kg ww); 
DFCyft-sl denotes the daily per capita fish consumption of YFT in Sri Lanka (g/day), and 
it was 3.8 g/day (0.0038 kg/day) for both genders assuming that the eating patterns are 
similar between males and females [9]; BW (kg) represents the average body weight, and 
average adults’ BW was 60 kg [36]. 

Mean values of each NET were calculated from YFT to obtain the total concentration 
of [NET]. Human health risk assessment of Hg exposure was performed assuming all the 
Hg in YFT are present in methyl mercury (M-Hg) [9]. Some studies reported that the total 
Hg level in fish was identical to the M-Hg level [37]; however, Razavi et al. [38] and 
Strandberg et al. [39] reported that M-Hg in fish muscles is about 90% of the total Hg. 
Jinadasa et al. [9] also assumed that ratio followed the same method for better compari-
sons in this study.  

2.6.2. Target Hazard Quotient (THQ) of Consuming T. albacares (YFT) 
The non-carcinogenic health of YFT fish consumers was estimated by calculating tar-

get hazard quotient (THQ) values given in Equation (3) [9,40,41]. The USEPA Region III 
risk-based concentration table was referred to obtain the oral reference dose (RfD). 

THQ௜ =
EF × ED × FIR × [NET௜]

BW × ATn × RfD௜
× 10ିଷ (3)

Here, THQi = target hazard quotient of ith NETs; EF = exposure frequency is 365 
days/year; ED = exposure duration is 70 years for non-cancer risk as used by USEPA [42]; 
FIR = fish ingestion rate is DFCyft-sl, which is (3.8 g/day); [NETi] = concentration of ith non-
essential toxic element in fish muscles (mg/kg); BW = average body weight (kg); ATn = 
average exposure time for non-carcinogens (EF × ED), as used by Keshavarzi et al.[40] in 
characterizing non-cancer risk. RfD = reference dose of ith toxic element (3.0 × 10−4, 3.5 × 
10−4, 1.0 × 10−3, and 4.0 × 10−3 for Hg, As, Sb, Cd, and Pb, respectively) mg/kg/day. There 
will be a potential human health risk by consuming the contaminated food if THQ ≥ 1 [43]. 

2.6.3. Hazard Index (HI) 
The HI was employed to estimate the human health risk of multiple toxic elements 

[44] based on the assumption of additive effects from a mixture of toxic elements in YFT 
muscles using the following equation:  
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HI = ෍ 𝑇𝐻𝑄
௡

௜
 (4)

Here, the total number of considered NETs is denoted as ith to nth. There is a public 
health concern about consuming the particular aquatic species if the HI values exceed the 
limits, which is the overall exposure above 1 calculated using THQs is likely to result in 
chronic risk, causing adverse health effects to lifetime exposure of human, and the HI be-
low 1 is normally be considered as acceptable [43,45].  

2.6.4. Provisional Tolerable Weekly Intake (PTWI) for T. albacares (YFT) 
The PTWI of individual NETs by consuming YFT was estimated using Equation (5) 

[46]. 

PTWI௜ =
[NET௜] × DFC𝑦𝑓𝑡 − sl × 7

BW
 (5)

Here, PTWIi is the provisional tolerable weekly intake of the “ith” element, and NETi 
is the concentration of “ith” non-essential toxic element. There are different reference PTWI 
values for Hg and As set by different international organizations. For Hg, they were 5 
μg/kg body weight per week (bw/w) for Hg [47] and 0.0033 mg/kg of body weight for M-
Hg [48], and 1 mg/kg (M-Hg) is an action level for methylmercury used by the US Food 
and Drug Administration [49]. The PTWI values for total As were 3000 μg/kg bw/w [47,50] 
and 15 μg/kg bw/w for inorganic As [48]. The PTWI values for Cd and Pb were 7 μg/kg 
bw/w [50,51] and 25 μg/kg bw/w [47,50], respectively. The tolerable daily intake for Sb 
was 360 μg/d [52,53]. 

3. Results 
3.1. Concentrations and TLs vise Accumulation of Elements 

For the OP organisms, the concentration of EBTEs was Cr < Se < Cu < Sn < Zn < Fe, 
while that of NETs was Pb < Sb < Cd < Hg < As, and that of the most abundant other 
elements was Sr < Br < Si < Al < Mg < Ca < P < Cl < S < K (Table S2). For the CE organisms, 
the concentration of EBTEs was Cr < Se < Cu < Sn < Fe < Zn, while that of NETs was Cd < 
Hg < Pb < Sb < As, and that of the other elements was Br < Sr < Si < Al < Mg < Ca < Cl < P 
< S < K (Table S3). The stable isotope analysis revealed that there were three possible 
trophic levels: lower TL (LTL), middle TL (MTL), and higher TL (HTL) (Figure S1). The 
most abundant elements in every TL were K, S, Cl, P, Ca, and Mg (Figure 1). However, in 
each TL, some organisms showed elevated levels of total element concentrations (Figure 
2). Composition showed that the level of Ca diminished from lower to higher TLs; how-
ever, the distribution of other elements appears to be the same between TLs (Figure 1B). 
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(A) (B) 

Figure 1. Mean total concentrations + standard deviation (SD) of elements (mg/kg ww) (A) and per-
centage compositions of each element between trophic levels (B) of the different edible aquatic or-
ganisms collected in offshore pelagic (OP) and coastal and estuarine (CE) ecosystems in Sri Lanka. 
OP: offshore pelagic, CE: coastal and estuarine; EBTEs: essential but toxic in excess amount (i), 
NETs: non-essential toxic (ii), and Other: other elements (iii). 

 
Figure 2. Concentrations of elements (mg/kg ww) are categorized into three groups: EBTEs: essential 
but toxic in excess quantities (i), NETs: non-essential toxic (ii), and Other (iii) among edible aquatic 
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organisms collected in offshore pelagic (A) and coastal and estuarine (B) ecosystems in Sri Lanka. L 
= lower trophic level, M = middle trophic level, and H = higher trophic level.  

TL associated analysis of the elements in the OP aquatic organisms showed possible 
biomagnification of NETs while there was possible biodilution of EBTEs and other ele-
ments (Figure S2A). The mean concentrations of total EBTEs were 31.6, 31.0, and 11.4 
mg/kg for LTL, MTL, and HTL, respectively, demonstrating the following magnitude or-
der: HTL < MTL < LTL (Figure 1Ai). There was a significant difference in the mean EBTEs 
in the OP between TLs (Kruskal–Wallis: H = 10.65, DF = 2, p = 0.005) (Figure S2Ai). Fur-
thermore, the concentration of EBTEs had a negative correlation (R2 = 0.037) with δ15N, 
showing that EBTE biodilute in the food web may be because these essential elements 
may be readily used as nutrients for building their bodies and maintaining their health in 
the higher TL organisms (Figure S2Ai). The mean concentrations of total NETs were 1.49, 
1.86, and 1.89 mg/kg for LTL, MTL, and HTL, respectively (Figure 1Aii). Although there 
were no significant differences in total NETs between TLs, the mean concentration of these 
elements showed a gradual increase in their concentrations with the increase in TLs in the 
OP (LTL < MTL < HTL) (Figure 1Aii). Moreover, there was a positive correlation (R2 = 0.03) 
between the concentration of NETs and δ15N values of the OP organisms, indicating pos-
sible biomagnification (Figure S2Aii). These results cope with our hypothesis that the tis-
sue concentration of several NETs increases with increasing TLs may be because of bioac-
cumulation. The mean concentrations of the other elements in the OP were 7610.2, 10012.3, 
and 6503.8 mg/kg for LTL, MTL, and HTL, respectively; however, the differences was sig-
nificant between TLs (Kruskal–Wallis: H = 6.66, DF = 2, p = 0.036), showing the concentra-
tion increment of HTL < LTL < MTL (Figure 1Aiii). There was a biodilution of other ele-
ments in the OP organisms, where there was a negative correlation (R2 = 0.009) between 
the concentrations of other elements and δ15N values (Figure S2Aiii). Relatively larger 
fishes grouped in the HTL need to consume lots of nutrients for their body maintenance 
so that they might use other elements effectively and efficiently. It may also be the reason 
for low concentrations of Other and EBTEs in the muscles of the animal belonging to HTL. 
The same kind of trend was shown by the CE organisms. 

The CE aquatic organisms also showed possible biomagnification of NETs and pos-
sible biodilution of EBTEs and Other elements (Figure S2B). The mean concentrations of 
total EBTEs were 23.6, 13.5, and 8.82 mg/kg for LTL, MTL, and HTL, respectively, showing 
the following magnitude order: HTL < MTL < LTL (Figure 1Ai). These differences were 
not statistically significant (p > 0.05). However, the concentration of EBTEs showed a neg-
ative correlation (R2 = 0.11) with δ15N values, suggesting that EBTEs biodilute in the CE 
food web (Figure S2Bi). The mean concentrations of NETs were 0.64, 1.99, and 0.84 mg/kg 
for LTL, MTL, and HTL, respectively, showing the following magnitude order: LTL< 
HTL< MTL (Figure 1Aii). Meanwhile, these differences were not significant (p > 0.05) and 
had a positive correlation (R2 = 0.12) with δ15N values (Figure S2Bii), showing the possible 
biomagnification. The mean concentrations of the other elements were 8457.1, 8052.8, and 
7296.3 mg/kg for LTL, MTL, and HTL, respectively, in the muscles of CE aquatic organ-
isms, showing the following magnitude order: HTL < MTL < LTL (Figure 1A). Meanwhile, 
there are no significant differences between TLs (p > 0.05), and there is a negative correla-
tion (R2 = 0.02) with δ15N values (Figure S2Biii), indicating that these elements are sub-
jected to biodilution. This may be because the aquatic organisms in HTL are mainly car-
nivores, and most of them maintain a comparatively large body and actively prey on other 
animals that need higher nutrients for active behaviors. They might use the Other and 
EBTEs actively and more effectively than NETs, which are bioaccumulative.  

The findings of this study on accumulations of elements at the TL were consistent 
with previous studies. Madgett et al. [8] examined Hg, Cu, Cd, Ni, and Zn in the muscles 
of some aquatic species collected from Scotland. They found that there was a significant 
relationship with TLs, and benthic invertebrates showed species-specific accumulation of 
Cu, Cd, Ni, and Zn due to biomagnification. Some studies have reported bioaccumulation 
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of non-essential hazardous heavy metals in fish tissues [7,54]. The analysis of elements 
(Cu, Pb, As, Se, Zn, Cr, Fe, Mn, Cd, and Hg) in the muscles of aquatic organisms, including 
L. nebulosus and Epinephelus spp., at the Red Sea [7] showed that all the elements were 
much higher than the recorded value in this study, except Zn, which showed a marked 
reduction. The concentrations of some elements (Cr, Mn, Co, Ni, Cd, and Pb) examined in 
S. indicus and P. monodon collected in Visakhapatnam, India [55] are much higher than our 
findings, except Fe and As in P. monodon and Zn in S. indicus; meanwhile, Cu was compa-
rable to our findings. These results indicated that the concentration of different elements 
shows different accumulation mechanisms among the same species in different locations, 
whereas the concentrations of elements between different species are dissimilar.  

3.2. Levels of Toxic and Other Elements in Aquatic Organisms 
Considering EBTEs and NETs in OP organisms, Mobula kuhlii, Loligo duvauceli, 

Katsuwonus pelamis, and Risoprionodon acutus comparatively showed elevated levels (Fig-
ure 2Ai,ii). For the CE organisms, the EBTE and NET content were higher in Penaeus mon-
odon, Lethrinus nebulosus, Lutjanus fulviflamma, Areus caelatus, and Lutjanus rivulatus than 
other organisms (Figure 2Bi,ii). Our previous study on HPAHs also revealed that some of 
these species (R. acutus, L. duvauceli, L. nebulosus, and A. caelatus) showed higher levels 
than other studied organisms [14]. The organisms whose muscle contained comparatively 
higher levels of bioaccumulative elements include some planktivorous large ray (e.g., 
small fish and crustaceans eating cephalopods) and piscivorous echinoderm, and mol-
lusks eating fishes included in different TLs (Table S1). These findings suggest that apart 
from TL transfer of heavy metals, there could be other infrequent opportunistic sources, 
including ingestion of the food item, which could be contaminated with the certain ele-
ments from the environment where accidental inputs have occurred.  

This study used the lowest MAL given to an element referring to the available liter-
ature (Table S4). Nine species studied exceeded the MAL at least for a single element. The 
EBTEs, such as Sn, Fe, Cu, and Zn, were below the MALs (Tables S2 and S3) for all the OP 
organisms, whereas the Cr levels exceeded the MAL (0.1 mg/kg) which is the Brazilian 
limit [56] for R. kanagurta, M. kuhlii, and A. thazard. There was no MAL for Cr set either by 
European Community (EC) regulations [57] or [58]; however, Copat et al. [57] has been 
used in the US EPA RfD to estimate Cr levels using Cr (III) (1.5 μg/g ww) and Cr (IV) (3 
μg/g ww) [57,59]. Our study considered the MAL of Cr was 0.1 mg/kg ww according to 
the available permissible limit of Brazilian regulatory limit [56,58]. Additionally, there 
was no previous evidence for estimating the MAL of Cr using the wet weight of fish tissue, 
though some studies discussed its concentration given in dry weights (e.g., [60,61]). There-
fore, the data obtained in this study cannot be compared. The concentrations of NETs, 
such as Sb and Hg, were below the MAL of all OP organisms. However, the concentration 
of As exceeded the MAL (3 mg/kg) [62] of M. kuhlii, K. pelamis (1.5 kg), and R. acutus and, 
Cd (MAL: 0.05 mg/kg) [63] for L. duvauceli, and Pb (MAL: 0.2 mg/kg) [63] for S. albella 
(Table S3). None of the elements of EBTEs detected in CE organisms exceeded the MALs. 
However, only As exceeded the MAL of NETs in L. nebulosus and L. rivulatus in the CE 
organisms, while other elements were within the given limits (Table S2 and S3).  

The principal component analysis (PCA) is an effective tool for identifying the ho-
mogeneous group of individual aquatic organisms. It is used to distinguish several possi-
ble groups accumulating each element category. The PCA of the total concentrations of 
element categories in the OP organisms resulted in the first two components showing 
83%-variance and component 1 responsible for 59.7%-variance. Component 1 in the PCA 
derived to OP was responsible for a large positive correlation with total EBTEs, NETs, and 
other elements (eigenvectors were 0.57, 0. 61, and 0.54, respectively). In contrast, Compo-
nent 2 had a negative correlation with total EBTEs and NETs, and a large positive corre-
lation with total other elements (eigenvectors were −0.61, −0.13, and 0.79, respectively). 
The ID numbers 15, 8, and 18 were K. pelamis, while 12, 14, and 19 were relatively body-
sized sized T. albacares (Table S1), and 7 was a squid (L. duvauceli) belonging to MTL, 
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together with the ID number 24, which was a shark (R. acutus) in HTL (Figure 3A), possi-
bly making one cluster those whose diets mostly include small fishes and crustaceans (Ta-
ble S1). The first principal component accounts for most of the variance, and the first ei-
genvector has all positive coordinates, meaning that all variables were positively corre-
lated with each other. The second principal component had a much smaller variance than 
the first component. The scores of the PCA in the OP were well clustered; thus, they re-
spond to the system quite uniformly, except some outsiders, such as M. kuhlii (ID: 6). A 
large manta ray, cartilaginous fish, and planktivorous feeding on small fish showed an 
isolated grouping from others. Moreover, the ID numbers 20, 21, and 25 represent large 
predatory fishes, such as A. solandri, C. sexfasciatus, and T. audax, respectively, in the HTL 
(Figure 3A) group.  

 
Figure 3. PCA biplot of elements (total EBTEs: essential but toxic in an excess amount, total NETs: 
non-essential toxic, and total Other) in muscle samples of offshore pelagic (A) and coastal and estu-
arine (B) organisms caught in Sri Lanka. Green: lower, blue: middle, and red: higher trophic level. 
1: S. commersonii, 2: G. minuta, 3: A. clupeoides, 4: R. kanagurta, 5: S. crumenophthalmus, 6: M. kuhlii, 7: 
L. duvauceli, (8, 15, 18): K. pelamis, 9: A. thazard, 10: D. russelli, 11: S. albella, (12, 14, 16, 17, 19, 23): T. 
albacares, 13: S. indicus, 20: A. solandri, 21: C. sexfasciatus, 22: I. platypterus, 24: R. acutus, 25: T. audax, 
26: S. javus, 27: P. monodon, 28: O. niloticus, 29: C. caerulaurea, 30: L. nebulosus, 31: A. caelatus, 32: L. 
fulviflamma, 33: L. rivulatus, 34: S. ghobban, 35: S. sihama, and 36: E. malabaricus (Table S1). 

In the PCA of the total concentrations of element categories in CE organisms, the first 
two components explained 93.5% of the variation in the data in which the first component 
was responsible for 59.2%-variance. The CE organisms had a positive correlation with the 
concentration of the total EBTEs, NETs, and other elements (eigenvectors were 0.63, 0.30, 
and 0.71, respectively) in component 1 and a negative correlation with the total NETs and 
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other elements in component 2 (eigenvectors: -0.89 and -0.02) and for the total EBTEs, it 
was 0.46. The eigenvector in the first component had all positive coordinates, implying 
that all variables were positively correlated with each other. The ID numbers 31 (A. caela-
tus) 35 (S. sihama) belonging to HTL, and 36 (E. malabaricus) belonging to MTL are preda-
tory fishes mostly feeding invertebrates and small fishes in the CE, grouped in one cluster, 
while the P. monodon (ID: 27), which is a shrimp in the LTL feeding on detritus, benthic 
amphipods, and polychaetes was separated from the grouping (Figure 3B). The ID num-
bers 30 (L. nebulosus), 32 (L. fulviflamma), and 33 (L. rivulatus) belong to MTL and primarily 
feed on crustaceans, mollusks, and small fishes. Furthermore, the ID number 26 (S. javus) 
feeds on encrusting algae, 28 (O. niloticus) is an omnivore that feeds primarily on algae 
and plant matter belong to LTL, and 34 (S. ghobban) feeds on benthic algae and corals 
belong to MTL made a separate group (Figure 3B). Some organisms belong to different 
TLs but showed almost similar feeding habits and were grouped into the same cluster in 
PCA. The reason may be the species-specific preference for a particular food item to show 
different δ13C and δ15N ratios in their foods; therefore, the concentrations of elements may 
be different in the prey species.  

3.3. Toxic Element Concentrations in Yellowfin and Skipjack Tuna Fish 
YFT and SJT belonging to the tuna fish category were the most dominant and fre-

quently found in fish catch in Sri Lanka [64], especially focused on these species to evalu-
ate EBTEs and NETs. There was a significantly different EBTEs content between fish and 
muscle types, but the NETs and other element contents did not significantly vary with 
fish or muscle types. The content of EBTEs between YFT and SJT showed significant dif-
ferences (Two-way ANOVA: MS = 2494.4, F = 23.68, DF = 1, p = 0.001,). They also showed 
significant differences between red and white muscles (Two-way ANOVA: MS = 3933.5, 
F = 37.34, DF = 1, p = 0.0001) (Figure 4-i). The EBTE content in the red muscles (76.6 ± 6.77) 
of SJT showed more than two and half the content of white muscles (29.8 ± 8.75) (Figure 
4-i). Similarly, the red muscles (37.1 ± 16.6) of YFT contained more than three times higher 
EBTEs than that of white muscles (11.5 ± 3.65) (Figure 4). The same trend was depicted by 
the NETs, where there were comparatively higher concentrations of elements (mg/kg) in 
the red muscle (SJT: 3.1 ± 2.18; YFT: 1.93 ± 0.65) than the white muscles (SJT: 2.45 ± 0.45; 
YFT: 1.4 ± 0.45) in both tuna species (Figure 4ii). The mean concentration of the other ele-
ments in the red muscles of YFT was 11809.7 ± 2122.6, which was comparatively higher 
than those element contents in the white muscles (10549.3 ± 2978.4), and the differences 
were not significant (p > 0.05). However, the other elements in the red muscle in SJT 
(10426.3 ± 556.0) showed marked reduction compared to its white muscle (11911.9 ± 3836), 
and the differences were not significant (p < 0.05) (Figure 4iii). Different fish species accu-
mulate elements at different levels and to different rates, while different muscle types, 
such as white and red muscles, absorb nutrients and pollutants differentially because they 
have different functions [10]. 
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Figure 4. Mean concentration + standard deviation (SD) (mg/kg ww) of the three element groups 
(EBTEs: essential but toxic in excess quantities (i), NETs: non-essential toxic (ii), and Other (iii)), 
and mercury (iv) in the white and red muscles of yellowfin tuna (T: T. albacares), and skipjack tuna 
(K: K. pelamis) collected from Sri Lanka. 

Bosch et al. (2016) [29] revealed that the red muscles of YFT accumulate more total 
and inorganic Hg than the white muscles. Vieira et al. (2017) [65] also examined that the 
red muscles of SJT had a comparatively higher concentration of Hg than the white muscle. 
In contrast, Karunarathna and Attygalle [66] reported a relatively higher content of Hg in 
white muscles than in red muscles of YFT and SJT. This study reported nearly equal con-
tent of Hg between red and white muscles of YFT, but a higher level of Hg in the white 
muscles of SJT than in red muscles (Figure 4iv). Overall, white muscles of YFT and SJT 
contained comparatively lower levels of EBTEs (Figure 4i) and NETs, including Hg (Fig-
ure 4ii), than in red muscle.  

3.4. Mercury Accumulation in Yellowfin Tuna 
The concentration of Hg previously did not show a positive correlation with the bod-

yweight of YFT [67]; however, others revealed a positive correlation [24]. This study found 
a significant relationship between the bodyweight of YFT (n = 7) and the concentration of 
Hg (ANOVA: MS = 0.126, F = 29.97. DF = 1, R2 = 85.7, p = 0.003), suggesting a biomagnifi-
cation in the tissues (Figure S3). The mean Hg level in YFT of 0.16 ± 0.16 mg/kg ww (rang-
ing from 0.02 to 0.43 mg/kg ww) in this study was lower than the previously reported 
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values in Sri Lanka by Jinadasa et al. [24] (Table 1). This could be because the Hg level 
could be associated with the capture locations of fish [68]. Thus, the YFT is probably asso-
ciated with areas that may be polluted with higher levels of Hg and ingested foods with 
elevated concentrations of Hg. Moreover, the recorded mean Hg levels in YFT in the Pa-
cific and Atlantic Oceans were higher than the Hg level recorded in this study (Table 1). 
According to fishery management perspectives on sustainable utilization of ocean re-
sources, and the quality and safety of seafood consumption, this study highlights that it 
is worthwhile to utilize larger and matured tuna fish that reproduced at least one time 
and helped to maintain tuna stocks in the oceans as there are consumer preferences and 
huge demand on big-sized tuna. However, the flesh amount must be determined by set-
ting proper dietary guidelines according to the amount of heavy metals and other bioac-
cumulative elements in that flesh. 

Table 1. Comparisons of the inorganic mercury concentrations in yellowfin tuna (T. albacares). 

Mean Hg  
Concentration 

(mg/kg) 
Range  

Mean Length 
(cm)/Weight 

(kg) 
Method Country Ocean  Reference 

0.16 ± 0.16 a 0.02–0.43 118/27 
Mercury analyzer (MA 

3000, USA) 
Sri Lanka Indian Ocean This study 

0.30 ± 0.18 a  
(0.021) to 

0.98 
mg/kg 

123.4/45.3 
Cold vapor system 

atomic absorption spec-
trophotometry 

Sri Lanka Indian Ocean [24] 

0.26 ± 0.29 c   
Atomic absorption 
spectrophotometry 

Sri Lanka Indian Ocean [19] 

0.51 ± 0.33 b. - 74.3 ± 11.4  
Atomic absorption 
spectrophotometry 

Baja California 
Sur, California 

Eastern Pacific 
Ocean 

[69] 

0.98 ± 0.69 - 92.2 ± 19.5 
Atomic absorption 
spectrophotometry 

Equatorial 
Zone 

Eastern Pacific 
Ocean 

[70] 

0.51 ± 0.32  - 22 kg/109 cm 
Advanced mercury an-

alyzer (combustion 
analyzer ALTEC 254) 

Mozambique 
channel 

Western Indian 
Ocean 

[71] 

0.70 ± 0.49  - 24 kg/104 cm 
Advanced mercury an-

alyzer (combustion 
analyzer ALTEC 254) 

Reunion Island 
Western Indian 

Ocean 
[71] 

0.77 a 

0.45 to 
1.52 

mg/kg 
wet 

weight 

29.0 to 50.8 kg 
Inductively coupled 

plasma 
mass spectrometry 

South Africa South Atlantic [29] 

2.75 ± 0.98 b,d 
1.51–4.49 
ng/g dry 

wt 

138.8 cm 
forked 

length/58.7 kg 
 

Cold vapor atomic 
absorption spectros-

copy 
West Africa 

north Atlantic 
Ocean 

[28] 

159 ± 79  

48 to 500 
ng·g−1 

wet 
weight 

92 ± 28 cm 
(forked 

length/16.8 ± 
13.3 kg 

Cold vapor atomic ab-
sorption spectrometry 

Brazil 
Equatorial At-
lantic Ocean 

[67] 

a: wet weight; b: dry weight; c: cooked; d: ng/g. 
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3.5. Human Health Risk Assessment of Consuming Yellowfin Tuna 
The human risk assessments for all NETs detected in YFT, a popular fish eaten by Sri 

Lankans, were evaluated using several replicate analyses. The estimated THQs for As, Sb, 
Cd, Hg, and Pb were 0.22 ± 0.07, 0.019 ± 0.003, 0.0067 ± 0.001, 0.024 ± 0.001, and 0.0016 ± 
0.0003, respectively (Figure 5). The calculated HI for the non-carcinogenic health was 0.27, 
less than 1, suggesting that the lifetime exposure to these elements may not result in 
chronic risk posing adverse health effects in Sri Lankan adults. Moreover, the EDI of NETs 
for Sri Lankan adults was 9.38 × 10−5 ± 1.58 × 10−5 mg/kg bw/day. The estimated PTWI 
(μg/kg bw/w) was 0.47 ± 0.13 for As, 0.05 ± 0.008 for Sb, Cd, and Pb, and 0.05 ± 0.02 for M-
Hg (Figure 5). The HI and PTWI values were below the recommended limits, indicating 
that the consumption of YFT is safe for Sri Lankan adults. 

 
Figure 5. Target hazard quotient (THQ) and provisional tolerable weekly intake (PTWI) μg/kg bw/w 
of consuming yellowfin tuna (YFT, T. albacares). NETs: Non-essential toxic elements. 

A previous study on non-carcinogenic health risks for adult Sri Lankans that esti-
mated THQs, HI, and PTWI for YFT of Cd and M-Hg [9] found that the THQ-Cd is seven 
times higher, and THQ-M-Hg is five times lower than their corresponding safe values, 
which were 0.001 and 0.1, respectively (Figure 5). Furthermore, the estimated HI consid-
ering only M-Hg and Cd was 0.102, which was lower than our estimation [9]. The reason 
for higher HI in this study was more NETs, including As, Sb, Cd, Hg, and Pb, were con-
sidered for the HI calculation. The PTWI (μg/kg bw/w) calculated for M-Hg in this study 
is nearly four times lower than the PTWI–M-Hg (0.19) and six times higher than the PTWI-
Cd (0.008) for Sri Lankan adults reported by Jinadasa et al. [9].  

As it is the highest contributor among elements to estimate THQs, it shows the fol-
lowing magnitude order: Pb < Cd < Sb < Hg < As (Figure 5). Since it is the highest contrib-
utor to total THQs examined in fresh and processed tuna (T. albacares and T. alalunga) in 
Galicia, Spain, these values for adults were As: 2.8 × 10−2, Cd: 2.4 × 10−3, Pb: 2.2 × 10−4[45]. 
Moreover, Saleh and Busaadia [72] revealed that the consumption of the studied four spe-
cies, including T. albacares, may pose arsenic-related health risks to the Yemen population, 
though the other elements (Zn, Cu, Cd, and Pb) were within the safety limit.  

NETs have negative health effects on humans. The inorganic form of As was the most 
toxic as it was stable and soluble and efficiently absorbed by the human body [10,53]. 
Additionally, the organic form of As, primarily found in fish and meat [73], was the main 
source of dietary intake in humans [74,75]and showed a rapid excretion, so it does not 
accumulate [10,53]. Up to 90% of As in the fish muscles was in the form of arsenobetaine, 
which is the non-toxic organic form [76]. The reported human poisoning of As includes 
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muscle weaknesses, abdominal pain, diarrhea, vomiting, skin flushing, and chronic expo-
sure results in skin defects and cancer [53]. Sb is a chalcophilic group V metalloid and 
shows similar toxicity and geochemical behaviors as As [77,78]. Cd in fish muscles binds 
with proteins, so it is bioaccumulative; Cd can enter the fish body through gills via passive 
diffusion and from the food chain [17]. It is highly toxic to humans, causing carcinogenic 
effects, neurological disorders, hypertension, cardiovascular function, skeletal weak-
nesses, and defects [79]. Fish is easily absorbed Pb and accumulates in tissues, gills, bones, 
liver, and scales; thus, passing them to humans through the diet [80]. The organic Pb is 
more toxic than inorganic form [81]. Pb poisoning includes hematological effects, hyper-
tension, neurological effects, renal failures, and cancer [81]. Human exposure to Hg is 
mainly due to the consumption of contaminated fish [50,82]. The organic form of Hg is 
considered to be more toxic and accumulates in fish tissue [83]. Inorganic forms of Hg are 
considered non-toxic; however, they can be converted to M-Hg, which is toxic [84]. The 
conversion can occur through a process catalyzed governed by bacteria in fish gills, gut, 
or photochemical reaction [83]. Once the M-Hg enters the human body, higher amount of 
them accumulates in the brain region [85], and the remaining parts accumulate in the liver, 
pituitary gland, and kidney [86]. Symptoms include headaches, movement difficulties, 
impaired vision and hearing, loss of coordination, tremors, ataxia, and paresthesia [87]. 
Therefore, evaluation of these NET elements in human food in temporal and spatial scales 
is very important. 

4. Conclusions 
This study investigated 36 elements, including toxic metals, where six elements were 

grouped as the EBTEs, five elements were grouped as the NETs, and the remaining 
twenty-five elements were grouped as Other in 26 of the commonly consuming aquatic 
organisms collected from OP and CE in Sri Lanka. The OP and CE dwelling organisms 
showed the same accumulation trend for the EBTEs between TLs, where the higher 
amount was detected at LTL (OP: 31.6; CE: 23.6) mg/kg, and a lower amount was found 
at HTL (OP: 11.4; CE: 8.82) mg/kg. In contrast, NETs were detected at higher levels at HTL 
for OP (1.89 mg/kg) and MTL for CE (1.99 mg/kg) organisms, indicating that essential 
elements are readily used by larger predators, while toxic elements are accumulating. The 
consumption of white muscles (EBTEs and NETs of YFT: [11.5 and 1.4] mg/kg and those 
for SJT were [29.8 and 2.45] mg/kg, respectively) of tuna appears to be safer than eating 
red muscles (EBTEs and NETs of YFT: [37.1 and 1.93] mg/kg and those for SJT were [76.6 
and 3.1]mg/kg, respectively). Hg was accumulated when YFT grows; however, the con-
centrations were still below (0.16 ± 0.16 mg/kg ww) the regulation limit. Human health 
risk assessments on ingestion of NETs by consuming YFT showed that HI and PTWI val-
ues are below the recommended limits; thus, there was no potential human health risk for 
Sri Lankan adults by consuming YFT. The main advantage of this study was the analysis 
of EBTEs, NETs, and other elements in the commonly consuming aquatic organisms, con-
sidering their trophic levels after analyzing δ15N and δ13C signatures and considering 
MALs giving the special emphasis on the most popular YFT, and SJT. Moreover, another 
advantage was carrying out a toxicological risk assessment. Though the applied EDXRF 
technique was comparatively low cost and has a high performance, it also has the disad-
vantage of detecting elements in low concentrations. Therefore, we used NIC MA 3000 
mercury analyzer to detect Hg in the samples. However, spatial and temporal scale mon-
itoring of toxic elements in aquatic foods are compulsory since these elements could in-
creasingly enter the aquatic environments due to anthropogenic and natural origins. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/toxics10100585/s1, Figure S1: Relationships between δ13C 
and δ15N (‰) in aquatic species collected from offshore pelagic (A) and coastal and estuarine eco-
systems (B) in Sri Lanka; Figure S2: δ15 N verses concentrations of EBTEs, NETs and Other elements 
between off-shore pelagic (A) and coastal and estuarine (B) aquatic organisms collected in Sri Lanka; 
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Figure S3: Relationship between the concentration of mercury (mg/ kg ww) and body weight of 
yellowfin tuna (T. albacares) collected in Sri Lanka; Table S1: Details of aquatic species and their 
information; Table S2: Concentration of toxic and other elements (mg/kg ww) in off-shore pelagic 
edible aquatic organisms collected in Sri Lanka; Table S3: Concentration of toxic and other elements 
(mg/kg ww) in coastal and estuarine edible aquatic organisms collected in Sri Lanka; Table S4: The 
maximum allowable limits of toxic elements and the regulatory bodies [88–93]. 
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