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Abstract

In this paper, we present a new information-processing model
of math problem solving in which representation change the-
ory can be implemented. Specifically, we divided the problem
representation process into two. One is to straightforwardly
translate problem texts into formulas in a conservative exten-
sion of Zermelo-Fraenkel's set theory, and the other is to in-
terpret the translated formulas in local mathematical theories.
A ZF formula has several interpretations, and representation
change is thus implementable as a choice of an appropriate in-
terpretation. Adopting the theory of real closed fields as an ex-
ample of local theory and its quantifier elimination algorithms
as an approximate process of searching for solutions, we de-
velop a prototype system. We use more than 400 problems
from three sources as benchmarks: exercise books, univer-
sity entrance examination, and the International Mathematical
Olympiad problems. Our experimental results suggest that our

formalized as proof search in ZF. However, we cannot expect
the search to be terminated in a realistic time since the search
space of ZF is too vast. On the other hand, the representation
change account also has some downsides. It does not provide
any process model, and the analysis remains qualitative but
not quantitative (MacGregor et al., 2001).

In this paper, we present a new information-processing
model that enables us to include the representation change
account. On the basis of the flow chart of insight problem
solving Ollinger et al., 2014), we first specify the perceptual
process as translation of a given problem into a formula in ZF.
We extend the language of ZF so that the translation is kept
as straightforward as possible. In other words, we assume

model can serve as a basis of a quantitative study on represen- that the perceptual process requires no insight but rather cor-
tation change in the sense that the performance of our proto- responds to natural language and image processing. This is

type system reflects difficulties of the problems quite precisely. worth mentioning since the inputs of the existing information-
iiﬁz%g\k/g_r(:gbrgrsc;br:teargosnoé\ﬂggéénformatlon-procesmng model;  nhrocessing account are usually not obtainable without insight
' regardless of the theories in which the problems are repre-
Introduction sented (Newell & Simon, 1972; Chou, 1988; Kerber & Pol-
o let, 2006). The obtained ZF formula is considered to be the
Some math problems are much more difficult than others @i ary problem representation. There are usually many pos-
solve even though they do not require higher levels of mathegjy e interpretations of the primary problem representation in
matical knowledge or techniques. Nine dot problem and Mugjierent mathematical local theories. For example, the mu-
tilated draughtboa_rq problem are examples of such problemg;5ieq draughtboard problem can be embedded to not only
Where does the difficulty come from? propositional logic but also Peano Arithmetic and Presburger

In classical information-processing models, the difficulty prithmetic. The possible interpretations of the primary rep-
of a given problem is explained by its computational com-,oqantation are callesbcondaryepresentation.
plexity: the cost of search (Kaplan & Simon, 1990; Mac-

Gregor, Ormerod, & Chronicle, 2001). In contrast, Gestalts Ve take the theory of real closed field (RCF) as an ex-
explain the phenomena by the teinsights (Isaak & Just, ample of local theories and implement an interpretation pro-

1995; Ohlsson, 1992). A problem is called iasight prob- cess fro_n_1 the primary to secondary_ representation. W(_a adopt

lemwhen solving it requires a key feature of the problem to@ duantifier elimination (QE) algorithm as an approximate

be recognized or restructured (representation change). ~ Process of searching for solutions (lwane, Yanami, & Anai,
One of the major criticisms of classical information- 2014) and develop a prototype system to solve geometry and

processing account is that it has no mechanism to implemerfitroductory calculus problems.

representation change since problem solving is understood We manually formalize more than 400 math problems
as a search within a well-defined problem spaDéiriger,  from three different sources in our extended ZF language
Jones, & Knoblich, 2014). If one tries to enlarge the frame-as a benchmark. The problems are translated so that they
work (theory) of the problem to implement representationcan be obtainable automatically from the problem text us-
change inside it, then search space explosion is almost alwaysg state-of-the-art natural language processing theories and
inevitable. For example, it is a well-known fact that almosttechniques (Kamp & Reyle, 1993; Steedman, 2001; Zettle-
all the mathematical activities can be formalized&ermelo- moyer & Collins, 2005). One source of the problems is exer-
Fraenkel's set theor{ZF), thus representation change can becise books, another is university entrance examinations, and
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the other is the International Mathematical Olympiad (IMO).
Though all the problems require mathematical knowledge
and techniques no higher than high-school level, they hav
different levels of difficulty. We naturally assume that more
insight problems can be found in the IMO than in the other
two because IMO problems are known to be solvable by only
a few mathematically talented students. The highlight of oul
paper is the experimental results on the benchmark. This i
the first paper to report the automated problem solving result
on not only a few problems or a set of artificial problems but
a large number of real high-school-level problems.
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Preliminaries

Let us first redefine what we mean by “mathematical problen
solving.” A math problem is usually expressed as a combina
tion of sentences, formulas, and figures. In principle, it can bt

expressed as a logical formula in a theory. A theory consist| [ Quantifier Elimination
! - 2
of a set of symbols called lnguageand a set ofixioms VXERCEH axt1>0)

A language consists afonstantsvariables relations func- ‘ Success —2<a<2
tions andlogical symbolsConstants and variables aesms ot
and alsof (t1,. .. ,t) is atermif f is ann-ary function symbol
and allt;s are termsR(ty, .. .,t,) is anatomic formulaf Ris
ann-ary relation symbol and af|s are terms. For example, Figure 2: End-to-end problem solving model
2x+ 1=y andx > y+ z are atomic formulas in arithmetic.
In the first-order mathematical logifgrmulasare defined re-
c_ursively_ from atomic formulas and I_ogical symbols. In CIaS'SpecificaIIy,
sical logic, we have seven connectives:(and), Vv (or), —
(not), — (implies),« (if and only if), ¥ (for all), and3 (there ) . ) )
exists). The last two connectiveg,and 3, are calledquan- A theory is calleddecidablewhen there is an algorlthm
tifiers. When a variable is quantified, it is calledbaund O determine whether any sentence is true or noadebs
variable For example, the variableis bound in the formula Incompleteness theorem shows that any theory containing
Ix(f(a) = x) thougha remainsfree (not bound). A formula P&ano Arithmetic is undecidable.
containing no free variable is calledsantence A formula Propositional logic, RCF, and Presburger Arithmetic are
containing no quantifier is calleguantifier-free The set of rare exceptions that are known to be decidable. However,
seven connectives are known to be complete in a sense thedmputational complexity of the decision procedures is quite
any mathematical assertion can be expressed as a first-ordsigh. The theoretical lower bound of the decision procedure
formula provided that an appropriate language and a set dbr propositional logic is superpolynomial to the size of in-
axioms are given. put formulas assuming thatANP, and those for RCF and

A mathematical problem isolvedwhen we find a formal Presburger Arithmetic are doubly exponential (Tarski, 1951;
procedure to show the problem is equivalent to a quantifieFischer & Rabin, 1974). These lower bounds reflect the phe-
free formula of the simplest form. Fig. 1 gives examples.nomena of search space explosion.

we say that a problempsovedwhen we show
that a given problem is equivalent to True.



An End-to-end Math Problem Solving Model those interpretable in a local theory, such as RCF and propo-

Fig. 2 presents an overview of our problem solving model.s't'onal logic. The former is usually a routine procedure for

It consists of three modules. The perception module trans® Person with the necessary math knowledge. The latter re-

lates a problem into a primary representation expressed jfjuires a target theory 1o be chosen beforehand. In the exper-
ZF by language processing. The formulation module transMents, we chose RCF as the target local theory and confirmed

forms the primary representation to another formula in ZFth‘]:Jlt maTytp(rje_—ugg:rs_llfﬁ_math pro?letwstcan be mechamcgllty
that is interpretable in a local theory such as RCF. Finally, th elormulated in - 1NiS Suggesis that, once an appropriate

search/reasoning module works on the secondary represen ggal_th_eory is chosen, the reformulaﬂo_n can be modeled as a
tion. Once a failure is detected in the reasoning, the proce euristic search that seeks a formula in the local theory that

backtracks to the formulation module and seeks another prOB§ equwa_lent t_o the primary representat_lon. .
{What is missing in our prototype implementation is a

lem representation that makes the reasoning easier. The res hani h ! local th H
of this section provides more details on the three modules. Mechanism to choose an appropriate local theory. Our hy-
pothesis is that it is the key ability in the representation

Perception Module change, which truly requires ‘insight” Our information-

. . . . . lprocessing model thus serves as a test beddorputational
The perception module is organized along a hierarchy in nat- I . L
models of insight problem solving by plugging-in a theory

ural language: words, sentences, and discourses (i.e., se- . . ? . .
guag ( ghmce model to it. The rest of this section summarizes the

quences of sentences). The lexical processing unit Identif‘nplementation of the two reformulation steps and elucidates

fies the parts-of-speech and other syntactic properties of tht%e contribution of the problem solving model
words and math formulas in a problem. Since math formulas '

have their own grammar, they are analyzed by a specialized

parser. Fig. 2 provides an example in which the same forHigher-order to first-order transformation ~ The primary
mulay = x2 has different syntactic roles, noun phrase (NP)representation often includes higher-order elements (
and embedded sentence (S), in accordance with its context.abstractions), which denotes functions (eAg.x?) and con-

The sentence processing unit translates each sentencedifions (€.g.Ay.(ly| < 1)). They are necessary to translate
the problem into a formal representation. We assume #he natural language expressions such as “The function that
grammar-driven translation model here, which composes thB1apsx € R to x> and “The absolute value of is less than
semantic representation of a sentence along its syntactie The same conditioalso applies tx.” We eliminate such
structure (Carpenter, 1997; Heim & Kratzer, 1998). Speciﬁ_higher—order elements to obtain a first-order formula. In the
cally, we developed a Japanese grammar in the formalism giurrent implementation, this is done by iteratively applying a
Combinatory Categorial Grammar (CCG) (Steedman, 2001)?_1andful of transformation rules such @seduction and vari-
Fig. 2 depicts the process of semantic composition with CCc@ble elimination by substitutiorik(x = a A @(x)) < @(a)).
for the sentenceABis a diagonal oR”

We need to detect omissions (zero pronouns) in the texReformulation in RCF  In the prototype implementation, a
before the semantic composition. Our current implementaprimary representation is rewritten into the language of RCF.
tion detects them using a list of words and their syntacticThe first-order language of RCF consists of polynomial equa-
arguments (i.e., case frames). Fig. 2 provides an examplgons and inequalities, logical connectives, and quantifiers.
where an omission (“of,” where ¢, a zero pronoun, stands We developed a set of axioms that define various math con-
for somethingis detected as the argument of ‘hypotenuse.” cepts in the (higher-order) language of RCF, such as:

The discourse processing unit combines the sentence-level
semantic representations into a single formula. We adopt VXV f (minimize(x, f) <> X (f(x) < f(X))).
the discourse representation theory (Kamp & Reyle, 1993)
as the basic mechanism of the inter-sentential compositionth€ primary representation is iteratively rewritten with these
F|g 2 depicts an example Where the Semantic representatioﬁg(ioms Until an equivalent formula iS found in the ﬁrst'order
of three sentences are combined into one with the two corlanguage of RCF. There is no theoretical guarantee that such a
nectivesA and—, and two universal quantificationsrfivn). formula will be eventually found even when it exists. We em-
The discourse processing unit also determines the antecedemigically examined how often it succeeds in the experiments.
of the anaphoric expressions including zero pronouns.

Where in the process doesightcome? The vocabulary

of a problem usually tells us in which theory it should be
The formulation module receives a primary problem repre-solved. However, this is not always the case. For instance,
sentation and transforms it into a secondary representatiaime wording in the mutilated draughtboard problem does not
that is amenable to reasoning. The process consists of twauggest it should be formulated in arithmetic but not in propo-
steps. One is the transformation of the higher-order formusitional logic. Human solvers thus usually start by searching
las produced by the perception module to first-order formulagor the solution in propositional logic, putting dominoes on
in ZF. The other is the transformation of the ZF formulas tothe board in trial-and-error manner. It is inevitable to change

Formulation Module



Table 1: Subject areas of the benchmark problems Table 2: Overall benchmark results

Ex Univ MO Solved Failed
Algebra 0 10 21 Problem [ Solved Time (Sec) FM TO  WR
Linear Algebra 14 62 0 Source | (%)  min/med/avg/max (%) (%) (%)
Geometry 81 65 94 Ex 75.2 17 472071069 79 139 3.0
Pre-calculus 0 75 0 Univ 65.3 1/ 7/38/1061 7.3 22.9 4.5
Calculus 6 33 0 IMO 26.1 2/10/56/ 513| 104 60.0 35
total 101 245 115

lem in a certain representation, which is a requirement for a
the representation of the problem to solve it in a realistic timequantitative study on representation change.
When and where does representation change happen in cogni-
tive process? The main contribution of our processing modeMaterial

lies in pinning it down to a specific step in the problem for- e collected more than 400 problems taken from three
mulation process, namely the theory choice. sources: exercise bookEX), Japanese university entrance
Our information-processing model helps discriminate be-exams Univ), and International Mathematical Olympiads
tween different kinds of ‘inSight, prOblemS. Nine-dot prOb- (|MO ) The Ex prob|ems were Samp]ed from a popu|a_r ex-
lem and mutilated draughtboard problem have been considycise book series. The problems in the books are marked
ered typical insight problems of the same kind. However, theyith one to five stars in accordance with their difficulty: one
reasons why people have difficulties are different in natureto three stars signify textbook exercise level and four and five
Failure in solving nine-dot problem is at least partially duestars signify university entrance exam level. We sampled ap-
to the ambiguity of the term “line (segment)”. Disambigua- proximately the same number of problems from those marked
tion of terms is a part of the perception process, but not ofyith one, two, and three stars. Thiaiv problems were taken
the formulation or representation change in our model. Ifrom the past entrance exams of seven top Japanese national
contrast, they fail to solve mutilated draughtboard problemyniversities. ThdMO problems were taken from the past
because they cannot choose an appropriate theory to solve|§iOs held from 1959 through 2014.
only from the superficial properties of the problem. We examined the problems and exhaustively selected those
that can be formulated (by humans) in the theory of RCF. The
distinction between RCF and non-RCF problems was made
In the current implementation, we adopt a QE algorithm forsglely on the basis of the essential mathematical content of
RCF (lwane et al., 2014) as an example for solution searchhe problems. The selected problems thus contain problems
Note that we do not argue the QE algorithm per se is then several subject areas as shown in Table 1.
model of human answer-deduction process. We utilize it to The problems were manually formalized in a higher-order
approximately measure the difficulty of mathematical reasonfanguage. Operators, who all majored in computer science
ing on a given problem representation. The computationand/or mathematics, were trained to translate the problems as
cost of the QE algorithm is quite sensitive to the problem rep1aithfully as possible to the original natural language state-
resentation; its time complexity is doubly exponential to thements following the design of the perception module.
number of the variables in the representation. We regard a

long running time of the algorithm as a sign of tinepasse Experimental Results

in the reasqning, which has been considered as a trigger qjhe prototype system was run on the benchmark problems
representation change (e.@linger etal., 2014)). In the ex- with a time limit of 3600s per problem. Table 2 shows

periments, we examined to what extent this failure detection)

mechanism correctly reflects the difficulty of the problems. the number of successfully solved proble_ms; minimum, me-
dian, average, and maximum (wallclock) time spent on solved

Solution Search/Reasoning

Experimental Procedure problems; number of failures in the reformulation of the pri-
] ] mary ZF representation in RCF (FM); number of failures due
Aim of the Experiment to timeout (TO); and wrong answers (WR). Wrong answers

We developed a prototype implementation of the model dewere due to bugs in the current implementation.

scribed in the previous section. The theory choice process and Overall, the performances on tie, Univ, andIMO prob-
representation change mechanism is not yet implementetems seem to well reflect the inherent differences in their dif-
The aim of the experiment is to test if we can use the modeficulty levels. We conducteg?-test on the difference in the
as a basis for developing a computational model of theoryates of success on them. The difference betwbEd and
choice and representation change. We thus need to verifyther sources were statistically significapt< 0.01) though

A) the model can solve manyon-insightproblems, which that betweerEx andUniv was not p = 0.09).

do not require representation change and B) the response of We further examined how well the system performance
the model correlates with the difficulty of the problems. B) correlates with the fine-grained difficulty level assessed by
means the model is usabledoantifythe difficulty of a prob-  human experts. Table 3 lists the performance figures for



Table 3: Results foEx problems by number of stars

Table 5: Accuracy of the solvability prediction

Succeeded Failed Source Precision Recall

ik Success % Time (sec) FM TO Ex % ( 677 7 % ( 6777

min/med/avg/max| (%) (%) Univ 73% (116/160) 78% (116/149)
1 82.4(28/34) 17 47 57 39 1138 5.9 IMO 57% ( 17/ 30) 47% ( 17/ 36)
2 735(25/34) 2/ 4/ 6/ 39 59 118 A 75% 78% 57
3 69.7 (23/33) 2/ 4/ 51/1069 6.1 24.2
4 63.2(24/38) 2/ 6/ 36/ 589 10.5 23.7
5 54.3(19/35) 3/10/198/324%5 2.9 429

Table 4: Syntactic profiles of the formalized problems

The analysis presented above revealed that certain types of
the difficulty are not captured by the superficial properties of
the problems including the problem size and the vocabulary.

Ex Univ_ MO This is a partial indication of the necessity of representation
zg;g g% gg g? change or other kinds of insight for solving the problems. A
#of A 13 21 01 future work is to examine such problems and clarify why they
io}t Felat{_ons %g ég.g %i.g are difficult and what kinds of theory choice appear in human
# gf buonucng?/zriables 88 134 9.1 solutions of such problems.
# of free variables 3.0 3.1 1.8

Discussions

A first-order theory consists of a language and axioms. A for-
the Ex problems (one to three stars) and additional problemsnal theory is expressed in propositional logic, the first-order
sampled from those marked with four and five stars in thepredicate logic, or higher-order predicate logic (typed lambda
same exercise books. The overall correlation between thealculus). In our model, we set the primary representation
difficulty level and the system performance is clear althoughrexpressed in the first-order ZF. Thus, there are three kinds of
the difference in the success rates was statistically signifitheory changes: axiom change, language (and axiom) change,
cant only between the problems with one star and five starand change from propositional to predicate logic.

(p < 0.05, x2-test).
Axiom Change

Analysis of the Experimental Results There are infinitely-many possible representations for propo-

Can we estimate the difficulty of a problem just by seeing it?sitional logic. Among them we can find analytic tableaux
If we can, the difficulty of the problems shall be attributed (cut-free LK), resolution, and Frege system (LK). The former
more to its inherent search cost (e.g., the time complexity detwo are the major systems used as the basis for automated
termined by the number of variables) rather than the necessif§ieorem proving. Cut rule (axiom) allows one to introduce
of representation change. Table 4 presents several syntactiemmas” to prove theorems.
features of the benchmark problems. The figures are averagedThe pigeonhole principle is known to require exponen-
over the problems taken from each source. It reveals that thigal size proofs both in analytic tableau (Cook & Reckhow,
syntactic features of th&1O problems are not very different 1979) and resolution (Haken, 1985), but it has polynomial-
from the exercise problems x except for the distribution size proofs in Frege system (Buss, 1987). This is because
of variable bindersY(, 3, A). we can introduce concepts of “addition”, “subtraction” and
In addition to the basic features listed in Table 4, we may‘counting”, and manipulate them to do some “restricted arith-
be able to estimate the difficulty of a problem by the vocab-metic” in Frege system. However, search-cost for appropriate
ulary (i.e., distribution of function/relation symbols). To see cut-formulas is extravagant, and there is almost no hope that
this, we trained a binary classifier that predicts whether osomeone comes up with appropriate cut-formulas.
not a problem can be solved by the prototype system in one Another way to shorten proofs is to introduce a “symme-
hour. We used the features in Table 4 and the number of eadty rule” (Arai, 1996) as a new axiom. Propositional vari-
symbol in a problem as the input and trained the classifieable p; ; stands for “theit"-pigeon sitting in thejt"-hole”,
on the results of the benchmark test. Table 5 lists the preand “\/]_; py,;” for “the first pigeon sitting in some hole”
cision and the recall of the classification obtained by 5-foldwhen expressing the pigeonhole principle in propositional
cross-validation. The definitions of the precision and recallogic (Fig. 2). If we have to check all the possible pigeons’
are: precision ¥ P/(TP+FP) and recall =TP/(TP+FN),  positions, proofs blow up exponentially. Proofs will be short-
where TP (resp. FP) is the number of problems correctly ened if we, without loss of generality, assume that the first
(resp. wrongly) predicted ‘solvable’ arieN is the number of  pigeon sits in the first hole. In other words, “insight” real-
problems wrongly predicted ‘unsolvable.” The overall predic-izing that a given problem has the property of symmetric-
tion accuracy in Table 5 is way above the majority baseline ofty helps us to escape from an exhaustive search. There are
57% but the accuracy is not very high especiallybriv and  some heuristics known to detect symmetricity, and it is im-
IMO problems. plemented on computer (Arai & Masukawa, 2000).
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captures the difficulty of the problems and hence it can serve ics of search, impasse, and representational change provide
as a basis of a quantitative study on representation change.a coherent explanation of difficulty in the nine-dot problem.
Future work includes further analysis of the difficulty of math  psychological researcty8(2), 266—275.
problems in light of our information-processing account andSteedman, M. (2001)The syntactic proces$/IT Press.
development of computational models of theory choice.  Tarski, A. (1951).A decision method for elementary algebra
and geometryUniversity of California Press.
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