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Abstract

In this paper, we present a new information-processing model
of math problem solving in which representation change the-
ory can be implemented. Specifically, we divided the problem
representation process into two. One is to straightforwardly
translate problem texts into formulas in a conservative exten-
sion of Zermelo-Fraenkel’s set theory, and the other is to in-
terpret the translated formulas in local mathematical theories.
A ZF formula has several interpretations, and representation
change is thus implementable as a choice of an appropriate in-
terpretation. Adopting the theory of real closed fields as an ex-
ample of local theory and its quantifier elimination algorithms
as an approximate process of searching for solutions, we de-
velop a prototype system. We use more than 400 problems
from three sources as benchmarks: exercise books, univer-
sity entrance examination, and the International Mathematical
Olympiad problems. Our experimental results suggest that our
model can serve as a basis of a quantitative study on represen-
tation change in the sense that the performance of our proto-
type system reflects difficulties of the problems quite precisely.

Keywords: problem solving; information-processing model;
insight; representation change

Introduction
Some math problems are much more difficult than others to
solve even though they do not require higher levels of mathe-
matical knowledge or techniques. Nine dot problem and mu-
tilated draughtboard problem are examples of such problems.
Where does the difficulty come from?

In classical information-processing models, the difficulty
of a given problem is explained by its computational com-
plexity: the cost of search (Kaplan & Simon, 1990; Mac-
Gregor, Ormerod, & Chronicle, 2001). In contrast, Gestalts
explain the phenomena by the terminsights (Isaak & Just,
1995; Ohlsson, 1992). A problem is called aninsight prob-
lemwhen solving it requires a key feature of the problem to
be recognized or restructured (representation change).

One of the major criticisms of classical information-
processing account is that it has no mechanism to implement
representation change since problem solving is understood
as a search within a well-defined problem space (Öllinger,
Jones, & Knoblich, 2014). If one tries to enlarge the frame-
work (theory) of the problem to implement representation
change inside it, then search space explosion is almost always
inevitable. For example, it is a well-known fact that almost
all the mathematical activities can be formalized inZermelo-
Fraenkel’s set theory(ZF), thus representation change can be

formalized as proof search in ZF. However, we cannot expect
the search to be terminated in a realistic time since the search
space of ZF is too vast. On the other hand, the representation
change account also has some downsides. It does not provide
any process model, and the analysis remains qualitative but
not quantitative (MacGregor et al., 2001).

In this paper, we present a new information-processing
model that enables us to include the representation change
account. On the basis of the flow chart of insight problem
solving (Öllinger et al., 2014), we first specify the perceptual
process as translation of a given problem into a formula in ZF.
We extend the language of ZF so that the translation is kept
as straightforward as possible. In other words, we assume
that the perceptual process requires no insight but rather cor-
responds to natural language and image processing. This is
worth mentioning since the inputs of the existing information-
processing account are usually not obtainable without insight
regardless of the theories in which the problems are repre-
sented (Newell & Simon, 1972; Chou, 1988; Kerber & Pol-
let, 2006). The obtained ZF formula is considered to be the
primaryproblem representation. There are usually many pos-
sible interpretations of the primary problem representation in
different mathematical local theories. For example, the mu-
tilated draughtboard problem can be embedded to not only
propositional logic but also Peano Arithmetic and Presburger
Arithmetic. The possible interpretations of the primary rep-
resentation are calledsecondaryrepresentation.

We take the theory of real closed field (RCF) as an ex-
ample of local theories and implement an interpretation pro-
cess from the primary to secondary representation. We adopt
a quantifier elimination (QE) algorithm as an approximate
process of searching for solutions (Iwane, Yanami, & Anai,
2014) and develop a prototype system to solve geometry and
introductory calculus problems.

We manually formalize more than 400 math problems
from three different sources in our extended ZF language
as a benchmark. The problems are translated so that they
can be obtainable automatically from the problem text us-
ing state-of-the-art natural language processing theories and
techniques (Kamp & Reyle, 1993; Steedman, 2001; Zettle-
moyer & Collins, 2005). One source of the problems is exer-
cise books, another is university entrance examinations, and
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Suppose thatx andy are real numbers. Find the range ofa
satisfyingx2+ax+1> 0 for all x.

∀x∈ R(x2+ax+1> 0) ⇔ a2−4< 0
⇔ −2< a< 2

Suppose thatx andy are real numbers. Find the range ofa such
that there existsx satisfyingx2+ax+1< 0.

∃x∈ R(x2+ax+1< 0) ⇔ a2−4> 0
⇔ a<−2∨a> 2� �

Figure 1: Problem solving and quantifier-elimination

the other is the International Mathematical Olympiad (IMO).
Though all the problems require mathematical knowledge
and techniques no higher than high-school level, they have
different levels of difficulty. We naturally assume that more
insight problems can be found in the IMO than in the other
two because IMO problems are known to be solvable by only
a few mathematically talented students. The highlight of our
paper is the experimental results on the benchmark. This is
the first paper to report the automated problem solving results
on not only a few problems or a set of artificial problems but
a large number of real high-school-level problems.

Preliminaries

Let us first redefine what we mean by “mathematical problem
solving.” A math problem is usually expressed as a combina-
tion of sentences, formulas, and figures. In principle, it can be
expressed as a logical formula in a theory. A theory consists
of a set of symbols called alanguageand a set ofaxioms.
A language consists ofconstants, variables, relations, func-
tions, andlogical symbols. Constants and variables areterms,
and alsof (t1, . . . , tn) is atermif f is ann-ary function symbol
and alltis are terms.R(t1, . . . , tn) is anatomic formulaif R is
an n-ary relation symbol and alltis are terms. For example,
2x+ 1 = y andx > y+ z are atomic formulas in arithmetic.
In the first-order mathematical logic,formulasare defined re-
cursively from atomic formulas and logical symbols. In clas-
sical logic, we have seven connectives:∧ (and),∨ (or), ¬
(not),→ (implies),↔ (if and only if),∀ (for all), and∃ (there
exists). The last two connectives,∀ and∃, are calledquan-
tifiers. When a variable is quantified, it is called abound
variable. For example, the variablex is bound in the formula
∃x( f (a) = x) thougha remainsfree (not bound). A formula
containing no free variable is called asentence. A formula
containing no quantifier is calledquantifier-free. The set of
seven connectives are known to be complete in a sense that
any mathematical assertion can be expressed as a first-order
formula provided that an appropriate language and a set of
axioms are given.

A mathematical problem issolvedwhen we find a formal
procedure to show the problem is equivalent to a quantifier
free formula of the simplest form. Fig. 1 gives examples.
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𝐴𝐵𝐶 is a right triangle with ∠𝐴𝐵𝐶 = 90°.
The length of the hypotenuse (of 𝜙) is 3.

the graph of 𝑦 = 𝑥2 the graph of 𝜆𝑥. 𝑥2/NP
let 𝑦 = 𝑥2 let 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑦 = 𝑥2)/S

the perimeter of circle O
 the/DT perimeter/NN of/PP circle/NN O/PN

𝐴𝐵𝐶 is a right triangle with ∠𝐴𝐵𝐶 = 90°.

The length of the hypotenuse (of 𝜙) is 3.

Let𝑚, 𝑛 be natural numbers = 𝑚, 𝑛 ∈ 𝑁
Assume that𝑚 = 𝑛2 = 𝑚 = 𝑛2

Prove that (𝑚 − 𝑛) is even = 𝑒𝑣𝑒𝑛(𝑚 − 𝑛)
 ∀𝑚∀𝑛((𝑚, 𝑛 ∈ 𝑁 ∧ 𝑚 = 𝑛2) → 𝑒𝑣𝑒𝑛 𝑚 − 𝑛 )
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𝑁𝑃
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: 𝜆𝑥𝜆𝑦. (𝑦 = 𝑥)

𝑎
𝑇 ∖ ( Τ𝑇 𝑁𝑃)/𝑁

: 𝜆𝑁𝜆𝑃𝜆 റ𝑦. ∃𝑥(𝑁𝑥 ∧ 𝑃𝑥 റ𝑦)

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
𝑁/𝑃𝑃𝑜𝑓

: 𝜆𝑦𝜆𝑥. 𝑑𝑖𝑎𝑔(𝑥, 𝑦)

𝑜𝑓 𝑅
𝑃𝑃𝑜𝑓
: 𝑅

𝑁: 𝜆𝑥. 𝑑𝑖𝑎𝑔(𝑥, 𝑅)

𝑇 ∖ ( Τ𝑇 𝑁𝑃): 𝜆𝑃𝜆 റ𝑦. ∃𝑥(𝑑𝑖𝑎𝑔 𝑥, 𝑅 ∧ 𝑃𝑥 റ𝑦)

𝑆 ∖ 𝑁𝑃: 𝜆𝑦. ∃𝑥(𝑑𝑖𝑎𝑔 𝑥, 𝑅 ∧ 𝑦 = 𝑥)

S: ∃𝑥(𝑑𝑖𝑎𝑔 𝑥, 𝑅 ∧ 𝑠𝑒𝑔 𝐴, 𝐵 = 𝑥)
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(When 𝑛 pigeons sit in 𝑛－1 holes, some hole 
contains more than one pigeon)
𝑃 = 𝑛 ∧ 𝐻 = 𝑛−1 ∧ 𝑆 ⊂ 𝑃 × 𝐻 ∧ 𝜋1 𝑆 = 𝑃
→ ∃𝑥∃𝑦∃𝑧(𝑥 ≠ 𝑦 ∧ 𝑥, 𝑧 ∈ 𝑆 ∧ 𝑦, 𝑧 ∈ 𝑆)

 Propositional logic:

𝑖=1ٿ
𝑛 𝑗=1ڀ

𝑛−1𝑝𝑖𝑗 → 𝑗=1ڀ𝑖<𝑚≤𝑛≥1ڀ
𝑛−1𝑝𝑖𝑗 ∧ 𝑝𝑚𝑗

 Peano Arithmetic: 
∀𝑚 𝑚<𝑛 → 𝑓 𝑚 <𝑛

→ ∃𝑖∃𝑗 i < j ≤ 𝑛 ∧ 𝑓 𝑖 = 𝑓 𝑗
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∀𝑥 ∈ 𝑅 𝑥2 + 𝑎𝑥 + 1 > 0
↓

−2 < 𝑎 < 2

Secondary
Representation

Figure 2: End-to-end problem solving model

Specifically, we say that a problem isprovedwhen we show
that a given problem is equivalent to True.

A theory is calleddecidablewhen there is an algorithm
to determine whether any sentence is true or not. Gödel’s
incompleteness theorem shows that any theory containing
Peano Arithmetic is undecidable.

Propositional logic, RCF, and Presburger Arithmetic are
rare exceptions that are known to be decidable. However,
computational complexity of the decision procedures is quite
high. The theoretical lower bound of the decision procedure
for propositional logic is superpolynomial to the size of in-
put formulas assuming that P̸=NP, and those for RCF and
Presburger Arithmetic are doubly exponential (Tarski, 1951;
Fischer & Rabin, 1974). These lower bounds reflect the phe-
nomena of search space explosion.



An End-to-end Math Problem Solving Model
Fig. 2 presents an overview of our problem solving model.
It consists of three modules. The perception module trans-
lates a problem into a primary representation expressed in
ZF by language processing. The formulation module trans-
forms the primary representation to another formula in ZF
that is interpretable in a local theory such as RCF. Finally, the
search/reasoning module works on the secondary representa-
tion. Once a failure is detected in the reasoning, the process
backtracks to the formulation module and seeks another prob-
lem representation that makes the reasoning easier. The rest
of this section provides more details on the three modules.

Perception Module

The perception module is organized along a hierarchy in nat-
ural language: words, sentences, and discourses (i.e., se-
quences of sentences). The lexical processing unit identi-
fies the parts-of-speech and other syntactic properties of the
words and math formulas in a problem. Since math formulas
have their own grammar, they are analyzed by a specialized
parser. Fig. 2 provides an example in which the same for-
mula y = x2 has different syntactic roles, noun phrase (NP)
and embedded sentence (S), in accordance with its context.

The sentence processing unit translates each sentence in
the problem into a formal representation. We assume a
grammar-driven translation model here, which composes the
semantic representation of a sentence along its syntactic
structure (Carpenter, 1997; Heim & Kratzer, 1998). Specifi-
cally, we developed a Japanese grammar in the formalism of
Combinatory Categorial Grammar (CCG) (Steedman, 2001).
Fig. 2 depicts the process of semantic composition with CCG
for the sentence “AB is a diagonal ofR.”

We need to detect omissions (zero pronouns) in the text
before the semantic composition. Our current implementa-
tion detects them using a list of words and their syntactic
arguments (i.e., case frames). Fig. 2 provides an example
where an omission (“ofφ,” whereφ, a zero pronoun, stands
for something) is detected as the argument of ‘hypotenuse.’

The discourse processing unit combines the sentence-level
semantic representations into a single formula. We adopt
the discourse representation theory (Kamp & Reyle, 1993)
as the basic mechanism of the inter-sentential composition.
Fig. 2 depicts an example where the semantic representations
of three sentences are combined into one with the two con-
nectives∧ and→, and two universal quantifications (∀m∀n).
The discourse processing unit also determines the antecedents
of the anaphoric expressions including zero pronouns.

Formulation Module

The formulation module receives a primary problem repre-
sentation and transforms it into a secondary representation
that is amenable to reasoning. The process consists of two
steps. One is the transformation of the higher-order formu-
las produced by the perception module to first-order formulas
in ZF. The other is the transformation of the ZF formulas to

those interpretable in a local theory, such as RCF and propo-
sitional logic. The former is usually a routine procedure for
a person with the necessary math knowledge. The latter re-
quires a target theory to be chosen beforehand. In the experi-
ments, we chose RCF as the target local theory and confirmed
that many pre-university math problems can be mechanically
reformulated in RCF. This suggests that, once an appropriate
local theory is chosen, the reformulation can be modeled as a
heuristic search that seeks a formula in the local theory that
is equivalent to the primary representation.

What is missing in our prototype implementation is a
mechanism to choose an appropriate local theory. Our hy-
pothesis is that it is the key ability in the representation
change, which truly requires ‘insight.’ Our information-
processing model thus serves as a test bed forcomputational
models of insight problem solving by plugging-in a theory
choice model to it. The rest of this section summarizes the
implementation of the two reformulation steps and elucidates
the contribution of the problem solving model.

Higher-order to first-order transformation The primary
representation often includes higher-order elements (λ-
abstractions), which denotes functions (e.g.,λx.x2) and con-
ditions (e.g.,λy.(|y| < 1)). They are necessary to translate
the natural language expressions such as “The function that
mapsx ∈ R to x2” and “The absolute value ofy is less than
1. The same conditionalso applies tox.” We eliminate such
higher-order elements to obtain a first-order formula. In the
current implementation, this is done by iteratively applying a
handful of transformation rules such asβ-reduction and vari-
able elimination by substitution (∃x(x= α∧φ(x))⇔ φ(α)).

Reformulation in RCF In the prototype implementation, a
primary representation is rewritten into the language of RCF.
The first-order language of RCF consists of polynomial equa-
tions and inequalities, logical connectives, and quantifiers.
We developed a set of axioms that define various math con-
cepts in the (higher-order) language of RCF, such as:

∀x∀ f (minimize(x, f )↔∀x′( f (x)≤ f (x′))).

The primary representation is iteratively rewritten with these
axioms until an equivalent formula is found in the first-order
language of RCF. There is no theoretical guarantee that such a
formula will be eventually found even when it exists. We em-
pirically examined how often it succeeds in the experiments.

Where in the process doesinsightcome? The vocabulary
of a problem usually tells us in which theory it should be
solved. However, this is not always the case. For instance,
the wording in the mutilated draughtboard problem does not
suggest it should be formulated in arithmetic but not in propo-
sitional logic. Human solvers thus usually start by searching
for the solution in propositional logic, putting dominoes on
the board in trial-and-error manner. It is inevitable to change



Table 1: Subject areas of the benchmark problems
Ex Univ IMO

Algebra 0 10 21
Linear Algebra 14 62 0
Geometry 81 65 94
Pre-calculus 0 75 0
Calculus 6 33 0
total 101 245 115

the representation of the problem to solve it in a realistic time.
When and where does representation change happen in cogni-
tive process? The main contribution of our processing model
lies in pinning it down to a specific step in the problem for-
mulation process, namely the theory choice.

Our information-processing model helps discriminate be-
tween different kinds of ‘insight’ problems. Nine-dot prob-
lem and mutilated draughtboard problem have been consid-
ered typical insight problems of the same kind. However, the
reasons why people have difficulties are different in nature.
Failure in solving nine-dot problem is at least partially due
to the ambiguity of the term “line (segment)”. Disambigua-
tion of terms is a part of the perception process, but not of
the formulation or representation change in our model. In
contrast, they fail to solve mutilated draughtboard problem
because they cannot choose an appropriate theory to solve it
only from the superficial properties of the problem.

Solution Search/Reasoning

In the current implementation, we adopt a QE algorithm for
RCF (Iwane et al., 2014) as an example for solution search.
Note that we do not argue the QE algorithm per se is the
model of human answer-deduction process. We utilize it to
approximately measure the difficulty of mathematical reason-
ing on a given problem representation. The computational
cost of the QE algorithm is quite sensitive to the problem rep-
resentation; its time complexity is doubly exponential to the
number of the variables in the representation. We regard a
long running time of the algorithm as a sign of theimpasse
in the reasoning, which has been considered as a trigger of
representation change (e.g., (Öllinger et al., 2014)). In the ex-
periments, we examined to what extent this failure detection
mechanism correctly reflects the difficulty of the problems.

Experimental Procedure
Aim of the Experiment

We developed a prototype implementation of the model de-
scribed in the previous section. The theory choice process and
representation change mechanism is not yet implemented.
The aim of the experiment is to test if we can use the model
as a basis for developing a computational model of theory
choice and representation change. We thus need to verify:
A) the model can solve manynon-insightproblems, which
do not require representation change and B) the response of
the model correlates with the difficulty of the problems. B)
means the model is usable toquantifythe difficulty of a prob-

Table 2: Overall benchmark results
Solved Failed

Problem Solved Time (sec) FM TO WR
Source (%) min/med/avg/max (%) (%) (%)

Ex 75.2 1 / 4 / 20 / 1069 7.9 13.9 3.0
Univ 65.3 1 / 7 / 38 / 1061 7.3 22.9 4.5
IMO 26.1 2 / 10 / 56 / 513 10.4 60.0 3.5

lem in a certain representation, which is a requirement for a
quantitative study on representation change.

Material

We collected more than 400 problems taken from three
sources: exercise books (Ex), Japanese university entrance
exams (Univ), and International Mathematical Olympiads
(IMO ). TheEx problems were sampled from a popular ex-
ercise book series. The problems in the books are marked
with one to five stars in accordance with their difficulty: one
to three stars signify textbook exercise level and four and five
stars signify university entrance exam level. We sampled ap-
proximately the same number of problems from those marked
with one, two, and three stars. TheUniv problems were taken
from the past entrance exams of seven top Japanese national
universities. TheIMO problems were taken from the past
IMOs held from 1959 through 2014.

We examined the problems and exhaustively selected those
that can be formulated (by humans) in the theory of RCF. The
distinction between RCF and non-RCF problems was made
solely on the basis of the essential mathematical content of
the problems. The selected problems thus contain problems
in several subject areas as shown in Table 1.

The problems were manually formalized in a higher-order
language. Operators, who all majored in computer science
and/or mathematics, were trained to translate the problems as
faithfully as possible to the original natural language state-
ments following the design of the perception module.

Experimental Results
The prototype system was run on the benchmark problems
with a time limit of 3600s per problem. Table 2 shows
the number of successfully solved problems; minimum, me-
dian, average, and maximum (wallclock) time spent on solved
problems; number of failures in the reformulation of the pri-
mary ZF representation in RCF (FM); number of failures due
to timeout (TO); and wrong answers (WR). Wrong answers
were due to bugs in the current implementation.

Overall, the performances on theEx, Univ, andIMO prob-
lems seem to well reflect the inherent differences in their dif-
ficulty levels. We conductedχ2-test on the difference in the
rates of success on them. The difference betweenIMO and
other sources were statistically significant (p< 0.01) though
that betweenEx andUniv was not (p= 0.09).

We further examined how well the system performance
correlates with the fine-grained difficulty level assessed by
human experts. Table 3 lists the performance figures for



Table 3: Results forEx problems by number of stars
Succeeded Failed

#⋆ Success % Time (sec) FM TO
min/med/avg/max (%) (%)

1 82.4 (28/34) 1 / 4 / 5 / 39 11.8 5.9
2 73.5 (25/34) 2 / 4 / 6 / 39 5.9 11.8
3 69.7 (23/33) 2 / 4 / 51 / 1069 6.1 24.2
4 63.2 (24/38) 2 / 6 / 36 / 589 10.5 23.7
5 54.3 (19/35) 3 / 10 / 198 / 3245 2.9 42.9

Table 4: Syntactic profiles of the formalized problems
Ex Univ IMO

# of ∀ 2.2 2.0 5.8
# of ∃ 5.3 9.3 3.1
# of λ 1.3 2.1 0.1
# of relations 12.5 19.8 13.8
# of functions 19.9 36.3 21.9
# of bound variables 8.8 13.4 9.1
# of free variables 3.0 3.1 1.8

theEx problems (one to three stars) and additional problems
sampled from those marked with four and five stars in the
same exercise books. The overall correlation between the
difficulty level and the system performance is clear although
the difference in the success rates was statistically signifi-
cant only between the problems with one star and five stars
(p< 0.05,χ2-test).

Analysis of the Experimental Results

Can we estimate the difficulty of a problem just by seeing it?
If we can, the difficulty of the problems shall be attributed
more to its inherent search cost (e.g., the time complexity de-
termined by the number of variables) rather than the necessity
of representation change. Table 4 presents several syntactic
features of the benchmark problems. The figures are averaged
over the problems taken from each source. It reveals that the
syntactic features of theIMO problems are not very different
from the exercise problems inEx except for the distribution
of variable binders (∀, ∃, λ).

In addition to the basic features listed in Table 4, we may
be able to estimate the difficulty of a problem by the vocab-
ulary (i.e., distribution of function/relation symbols). To see
this, we trained a binary classifier that predicts whether or
not a problem can be solved by the prototype system in one
hour. We used the features in Table 4 and the number of each
symbol in a problem as the input and trained the classifier
on the results of the benchmark test. Table 5 lists the pre-
cision and the recall of the classification obtained by 5-fold
cross-validation. The definitions of the precision and recall
are: precision =TP/(TP+FP) and recall =TP/(TP+FN),
whereTP (resp. FP) is the number of problems correctly
(resp. wrongly) predicted ‘solvable’ andFN is the number of
problems wrongly predicted ‘unsolvable.’ The overall predic-
tion accuracy in Table 5 is way above the majority baseline of
57% but the accuracy is not very high especially onUniv and
IMO problems.

Table 5: Accuracy of the solvability prediction
Source Precision Recall
Ex 88% ( 67/ 76) 93% ( 67/ 72)
Univ 73% (116/160) 78% (116/149)
IMO 57% ( 17/ 30) 47% ( 17/ 36)
All 75% (200/266) 78% (200/257)

The analysis presented above revealed that certain types of
the difficulty are not captured by the superficial properties of
the problems including the problem size and the vocabulary.
This is a partial indication of the necessity of representation
change or other kinds of insight for solving the problems. A
future work is to examine such problems and clarify why they
are difficult and what kinds of theory choice appear in human
solutions of such problems.

Discussions

A first-order theory consists of a language and axioms. A for-
mal theory is expressed in propositional logic, the first-order
predicate logic, or higher-order predicate logic (typed lambda
calculus). In our model, we set the primary representation
expressed in the first-order ZF. Thus, there are three kinds of
theory changes: axiom change, language (and axiom) change,
and change from propositional to predicate logic.

Axiom Change

There are infinitely-many possible representations for propo-
sitional logic. Among them we can find analytic tableaux
(cut-free LK), resolution, and Frege system (LK). The former
two are the major systems used as the basis for automated
theorem proving. Cut rule (axiom) allows one to introduce
“lemmas” to prove theorems.

The pigeonhole principle is known to require exponen-
tial size proofs both in analytic tableau (Cook & Reckhow,
1979) and resolution (Haken, 1985), but it has polynomial-
size proofs in Frege system (Buss, 1987). This is because
we can introduce concepts of “addition”, “subtraction” and
“counting”, and manipulate them to do some “restricted arith-
metic” in Frege system. However, search-cost for appropriate
cut-formulas is extravagant, and there is almost no hope that
someone comes up with appropriate cut-formulas.

Another way to shorten proofs is to introduce a “symme-
try rule” (Arai, 1996) as a new axiom. Propositional vari-
able pi, j stands for “theith-pigeon sitting in thej th-hole”,
and “

∨n
j=1 p1, j ” for “the first pigeon sitting in some hole”

when expressing the pigeonhole principle in propositional
logic (Fig. 2). If we have to check all the possible pigeons’
positions, proofs blow up exponentially. Proofs will be short-
ened if we, without loss of generality, assume that the first
pigeon sits in the first hole. In other words, “insight” real-
izing that a given problem has the property of symmetric-
ity helps us to escape from an exhaustive search. There are
some heuristics known to detect symmetricity, and it is im-
plemented on computer (Arai & Masukawa, 2000).
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Figure 3: Solution to the quadrangle problem

Language Change
Elementary (Euclidean) geometry is known to be embeddable
into the Cartesian coordinate system, and finally to RCF.
However, languages and sets of axioms are different. As a
result, the difficulties of problems do not remain the same.

Consider the following problem: “LetABCD be a quad-
rangle. Find the point P that minimizes the sum ofAP, BP,
CP, andDP.” Fig. 3 illustrates that the intersection of the
diagonals minimizes the sum because of triangle inequality.

Insight may be required to line up the intersection of the
diagonals as a candidate forP. However, the idea is easier to
conceive when it is represented in Euclidean Geometry than
in RCF since the intersection of the diagonals has salience in
Euclidean Geometry.

Propositional or Predicate?
Mutilated draughtboard problem (2n×2n version) is a good
example of problems which is solvable when one changes
the setting radically. The problem requires exponential-size
proofs in resolution and analytic tableaux. It is not known
whether or not it has short proofs in tableaux with symmetry
rule. However, it has a short proof in arithmetic.

Conclusion
An end-to-end model of math problem solving has been pre-
sented. In the model, representation change is explained as
the result of a choice of a local theory and the reformula-
tion of a primary problem representation in it. Experimen-
tal results on more than 400 problems show that our proto-
type implementation reflects the difficulties of the problems
quite precisely. Specifically, IMO problems require the sys-
tem “theory change” more often than others when interpret-
ing the timeout as “impasse”. It indicates the model correctly
captures the difficulty of the problems and hence it can serve
as a basis of a quantitative study on representation change.
Future work includes further analysis of the difficulty of math
problems in light of our information-processing account and
development of computational models of theory choice.

References
Arai, N. H. (1996). Tractability of cut-free gentzen type

propositional calculus with permutation inference.Theo-
retical Computer Science, 170(1), 129–144.

Arai, N. H., & Masukawa, R. (2000). How to find symme-
tries hidden in combinatorial problems. InProceedings of

the eighth symposium on the integration of symbolic com-
putation and mechanized reasoning.

Buss, S. R. (1987). Polynomial size proofs of the proposi-
tional pigeonhole principle.The Journal of Symbolic Logic,
52(04), 916–927.

Carpenter, B. (1997).Type-logical semantics. MIT Press.
Chou, S.-C. (1988).Mechanical geometry theorem proving

(Vol. 41). Springer Science & Business Media.
Cook, S. A., & Reckhow, R. A. (1979). The relative efficiency

of propositional proof systems.The Journal of Symbolic
Logic, 44(01), 36–50.

Fischer, M. J., & Rabin, M. O. (1974). Super-exponential
complexity of presburger arithmetic. InProc. of the siam-
ams symposia in applied mathematics(Vol. 7, pp. 27–41).

Haken, A. (1985). The intractability of resolution.Theoreti-
cal Computer Science, 39, 297–308.

Heim, I., & Kratzer, A. (1998). Semantics in generative
grammar. Wiley.

Isaak, M. I., & Just, M. A. (1995). Constraints on thinking in
insight and invention. In R. J. Sternberg & J. E. Davidson
(Eds.),The nature of insight(pp. 281–325). MIT Press.

Iwane, H., Yanami, H., & Anai, H. (2014). Synrac: A tool-
box for solving real algebraic constraints. InMathematical
software–icms 2014(pp. 518–522). Springer.

Kamp, H., & Reyle, U. (1993).From discourse to logic:
Introduction to modeltheoretic semantics of natural lan-
guage, formal logic and discourse representation theory.
Kluwer Academic.

Kaplan, C. A., & Simon, H. A. (1990). In search of insight.
Cognitive psychology, 22(3), 374–419.

Kerber, M., & Pollet, M. (2006). A tough nut for mathemat-
ical knowledge management. InMathematical knowledge
management(pp. 81–95). Springer.

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001).
Information processing and insight: A process model of
performance on the nine-dot and related problems.Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 27(1), 176.

Newell, A., & Simon, H. A. (1972).Human problem solving
(Vol. 104) (No. 9). Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1992). Information-processing explanations of
insight and related phenomena. InAdvances in the psychol-
ogy of thinking(pp. 1–44). Harvester Wheatsheaf.
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