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ABSTRACT

When David Hilbert started so called “Hilbert’s program”
(formalization of mathematics) in the early 20th century to
give a solid foundation to mathematics, he unintentionally
introduced the possibility of automatization of mathematics.
Theoretically, the possibility was denied by Goédel’s incom-
pleteness theorem. However, an interesting issue remains: is
“mundane mathematics” automatizable? We are developing
a system that solves a wide range of math problems written
in natural language, as a part of the Todai Robot Project,
an Al challenge to pass the university entrance examina-
tion. We give an overview and report on the progress of our
project, and the theoretical and methodological difficulties
to be overcome.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; G.4 [Mathematics of computing]:
Mathematical Software; 1.1.2 [Symbolic and Algebraic

Manipulation]: Algorithms; 1.2.7 [Artificial Intelligence]:

Natural Language Processing

General Terms

Algorithm, Experimentation
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1. INTRODUCTION

When at the beginning of the twentieth century Hilbert
and others attempted the formalization of mathematics, they
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defined it as a game, in which, starting from a number of
initial assumptions, or axioms, one derives other proposi-
tions using only the rules of inference. Many mathemati-
cians have felt a resistance to this definition, but when we
retrospectively examine the mathematics actually published
in the area of so-called pure mathematics, it comes as a
shock to see that the theorems and their proofs can actually
be formalized as the mathematical game.

The objective of formalism was to avoid the crisis to which
mathematics had been brought by the succession of para-
doxes discovered in the late nineteenth and early twenti-
eth centuries, and it was not that the formalists thought of
mathematics itself as a game of symbol processing. Math-
ematicians carry on their mathematical activities, thinking
at the level of ‘semantics,” such as the properties of num-
bers or the shape of geometric objects, and making intuitive
deductions that are often described as “revelation.” Hilbert
and his associates of course knew it. But as a result of
the formalist approach that they introduced, an unsettling
possibility came to light. This was the possibility that math-
ematics could be carried out without ‘semantics,” by means
of a machine that operates on axioms and inference rules,
but producing the same mathematical outcomes as human
mathematicians.

The work Principia Mathematica, written over the years
from 1910 to 1913 by Whitehead and Russell showed how the
theorems of set theory and elementary real number theory
could be expressed formally [14], which suddenly brought
this possibility closer to reality. At this stage, however,
the possibility of mechanical execution of mathematics was
merely a matter for philosophical debate. In 1936, by quite
different approaches, both Church [2] and Turing [13] pro-
duced formalizations of “What it means to compute,” and
with the development in the 1940s of practical computers
based on this model, the possibility of “mathematics by ma-
chine” got into the realm of engineering.

Our research team has been working since 2011 on the me-
chanical solving of university entrance exam problems [7][8].
This paper gives a survey of this work, and also considers
the meaning of “Mathematics by machine.”
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Figure 1: “y = ax + b is tangent to y =«

2. WHAT DOES IT MEAN TO SOLVE
A MATHEMATICS PROBLEM?

We use the expression “Solve a mathematics problem”
quite naturally. It does not only mean to find a proof of
a theorem, as in “Wiles has solved Fermat’s Last Theorem,”
but can also refer to mathematical activities other than the-
orem proving, as in “Did you solve all yesterday’s homework
problems?” But what does it mean to “solve a mathematics
problem”? What has to happen for a problem to be “solved”?

Consider a problem such as the following:

PrOBLEM 2.1. Let C' be a parabola in the xy-plane with
the equation y = x2. Find the equation of the tangent to C
at the point (a,a?) on C.

When we interpret the wording of the problem as plain lan-
guage, we can broadly summarize it as saying: “the problem
is to calculate the object which is the equation of the tangent
at (a,a?) to another object, y = =2, named C.”

An object is something to which we can direct an action.
We could also say that an object is anything that we can
refer to as “this” or “that.” For example, “the apple I bought
the other day” and “the intersection of the straight line [
with the parabola C” are objects. But what about “apple”
or “straight line”? A statement such like “Apples are red”
suggests that the words “apple” and “red” do not refer to
specific objects. If we add wording to look more deeply at
this statement we have: “If the object a is an apple, then a
has the property of being red.” From a normal mathematical
perspective, a will be seen as an object, but “apple” and
“red” will be seen not as objects but as concepts. It is not,
however, obvious where to draw the line between objects
and concepts. For example, consider “the intersection of the
straight line [ and the parabola C”; when there is only one
intersection point, it is surely an object. But is it still an
object if there is no intersection? What happens if there is
more than one intersection? Would it be more appropriate
to handle “intersection” as a concept (unary relation)? Is
even the straight line | an object, or should this too be a
concept? There are no absolute criteria to determine what
is an object and what is a concept; the same thing appears
to be an object in one context but a concept in another.

There is an approach to overcome this philosophical prob-
lem: axiomatic set theory.

In Zermelo-Fraenkel aziomatic set theory (ZF), the object
is a set, and in principle all mathematics can be expressed
within ZF.! This means that in ZF there is no distinction
between objects and concepts, and an object is simultane-
ously a concept. In the problem cited above, C, y = 2,
and (a,a?) are all terms of ZF. Further, “the equation of the
tangent at the point (a, a2) on the parabola y = 27 is also
a term. The solution to this problem, that is, “y = 2ax —a?”

!This really is “in principle,” and attempting to embed or-
dinary mathematics within ZF would be a nightmare.
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at (a,a?)” in epsilon-delta notation

is itself a term, too.

It thus appears that the word, “Find,” in the problem
statement actually means to rewrite the ZF term “the equa-
tion of the tangent at the point (a,a®) on the parabola
y = x> into its equivalent form “y = 2ax — a?”.

When should we stop this rewriting process? For exam-
ple, suppose someone provides as an answer: “The equation
of the tangent at the point (a,a?) on the parabola y = 22.”
This is trivially equivalent to the ZF term representing the
problem, but would not be accepted as a correct answer.
Given that there are an unlimited number of terms equiv-
alent to a direct translation of the problem, what is the
condition for an equivalent term to be a “solution” to the
problem?

We can find some hints about it by looking at the proposi-
tions that are actually regarded as “solutions” to some prob-
lems by a human. To take the example of a university en-
trance exam, except in proof problems, the answers are in
the form of equations and inequalities, such as y = 2ax — a?
or ai + -+ + an > 0. For a difficult problem the answer
may be separated into cases, but these can also be expressed
with combinations of propositional connectives, such like
(x <0 —=a=3)A(x>0— a=5). Note that there
is no quantifier (V,3) in the answers. Moreover, this vocab-
ulary is largely restricted to the four arithmetic operators
(+,—, X, =) and the basic binary relations (=, <) together
with symbolic use of elementary functions such as trigono-
metrical and exponential functions. If we refer to this vo-
cabulary as the vocabulary of elementary mathematics, then
it would not be far wrong to say that to “solve” the kind of
mathematics problem we are familiar with, such as those in
a university entrance exam, is first to convert the problem
statement into an equivalent proposition in the vocabulary
of elementary mathematics and then to eliminate quantifiers
from it.

Let’s think about the problem, “Find the equation for the
tangent to y = z? at (a,a?).” What formula of elementary
mathematics can we rewrite this to?

First we notice that this problem is not a proposition. A
proposition must be declarative, with the form “Something
has some property,” while the sentence above is imperative.
Similarly, a question in interrogative form, such as “What
relation holds between X and Y?7” also cannot be expressed
as a proposition. Thus a question in the form of “Find ...”
cannot be (directly) represented as a proposition, which has
been a central figure in formalism.

Let y = bz + ¢ be the equation of the tangent to be found.
We can then rewrite the problem as follows:

PROBLEM 2.2. Let C be the parabola y = z* in the zy-
plane. The equation of the tangent to C at the point (a, a2)
on C isy=bxr+c.

This statement is at last in the form of a proposition. We
can further express the notion of “tangent” using epsilon-
delta notation and translate the problem statement simplis-
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Figure 3: Process of solving a mathematics problem

tically to an expression such as one in Fig. 1.

This proposition includes several quantifiers. If we can
transform this expression while preserving equivalence until
there is no quantifier at all, then it will be a “solution.”

To summarize, our hypothesis is that to solve a mathe-
matics problem is to translate the problem statement into a
ZF proposition, further translate it into a proposition of el-
ementary mathematics, and then eliminate quantifiers. The
flow diagram (Fig. 3) illustrates this.

In the flow diagram, the step labeled “Natural language
processing” translates the problem statement in natural lan-
guage to a ZF proposition. The translation is done by
firstly analyzing the syntactic structure of the sentences.
The ZF proposition is then composed along the syntactic
structures of the sentences, by combining the semantic rep-
resentation of words that are defined in the semantic lexi-
con. Fig. 2 shows a part of the semantic composition process
for a phrase “When the centers of C1 and C> coincide” (the
derivation of “the centers of C; and C3” is omitted), in which
the syntactic structure is analyzed based on a grammar
formalism called Combinatory Categorial Grammar (CCG)
[10] and the semantic representation is composed through
lambda calculus.

The result of this stage is no more than a direct transla-
tion of the problem statement, which gives almost no clue for
solving the problem. To actually solve it, we further need to
paraphrase the ZF proposition to another proposition in a lo-
cal theory such as the theory of real numbers or the theory of
natural numbers, in which various mathematical tools have
been developed. This is the step labeled “Formula rewrit-
ing using math knowledge.” In that step, a ZF proposition
is rewritten using the definitions of the predicates and func-

tions (e.g., center_of(-) and coincide([-, -]) in Fig. 2) stored in
a database of defining axioms (“math knowledge base”), in
addition to generic equivalence-preserving transformations
of logical formulas.

Only when the rewriting is successful can the work of
mathematics as we normally consider it begin; we can finally
utilize the traditional technologies for automated math, such
as the theory and the practice of computer algebra and au-
tomatic theorem proving.

The problem of “ mathematics by machine” can thus be
restated as the question of whether these processes can be
fully automated, or, in other words, reduced to algorithms
and executed in a realistic amount of time.

3. CAN A MATHEMATICS PROBLEM BE
READ UNAMBIGUOUSLY?

The task of translating the problem statement to a propo-
sition of ZF falls on the area of artificial intelligence research
known as natural language processing. We tend to think of
“translation” as a rather mechanical process that can be done
by using the rules of syntax and a dictionary. The following
examples of translation from Japanese to English however
illustrate that the problem is not so simple. 2

Watashi-wa Kyoto-to Tokyo-ni  itta.
I-ToriC Kyoto-wiTH Tokyo-TO  went.
‘I went to Kyoto and Tokyo.’

Watashi-wa Kyota-to Tokyo-ni  itta.
I-Topric Kyota-wiTH Tokyo-TO went.
‘T went to Tokyo with Kyota.’

If we look at the original sentences as character strings,
the only difference is the last letter of the names, Kyoto
and Kyota. However, this greatly changes the meaning: in
the first example Kyoto and Tokyo are seen as a conjoined
noun phrase, while in the second we read Kyota as a person
accompanying the speaker. Thus the different attachment
of the particle to completely changes the meaning, as shown
by the English translations.

When there is more than one possible interpretation, in
natural language processing this is referred to as ambiguity.
According to a standard Japanese dictionary the particle to
has at least six different usages. This suggests that we can-
not obtain a correct translation only using a word dictionary
together with the rules of grammar.

The current state-of-art machine translation, Google Trans-
late for example, mistranslates the second sentence to “I

2Kyoto and Tokyo are cities in Japan; Kyota is a fairly com-
mon first name. The hyphenated words are postpositions
indicating the grammatical or semantic relation within the
sentence. The particle to can be attached to the noun phrase
to the right, forming a conjunction (A-and-B), or can attach
to the final verb, indicating that its noun phrase accompa-
nies the topic of the sentence.



went to Kyota and Tokyo,” where the particle to is misinter-
preted as conjoining noun phrases. This example shows that,
in principle, there is no way to obtain an accurate translation
using only local information such as the words and phrases
of the text. In addition to the ambiguity among the usages
of the particles such as to, demonstrative pronouns (such as
sono in Japanese) often have more than one possible refer-
ents and there are many polysemous words and phrases, for
which we need to select a correct one from their possible
meanings. We thus encounter such ambiguity everywhere in
attempting to process language automatically.

It might be thought that ambiguity is present because the
meaning of natural speech is vague, whereas a mathematical
statement would avoid such problems. We might hope so,
but sadly our hopes are betrayed.

e There is a real number y for an arbitrary positive real
number z such that y = \/z holds.

The natural reading of this statement is surely:

Vo(z > 0 — Jy(y = Vx)).

However, there are other possible readings. For example:

Jy(Vz(z > 0 = y = V1)).

Everyone would reject such a reading, since this proposi-
tion is false. However, we have to be careful here. We may
talk about the truth or falsity of a proposition (written in
natural language) only after determining its reading; hence,
we cannot assume the truth/falsity of a proposition for de-
termining its reading. Otherwise, we have to abandon the
traditional concept of truth and the proof.

There has long been awareness of the ambiguities associ-
ated with the scopes of quantifiers and negations, and vari-
ous strategies for dealing with this have been proposed. Un-
fortunately, this is not the only source of ambiguity. Our
investigations alone have found more than thirty ways of
using the particle to. The idea that being a statement of
mathematics would be sufficient to avoid ambiguity turns
out to have been a false hope.

In the system for solving mathematics problems that we
are developing, we have adopted the somewhat cheeky ap-
proach of assembling all possible readings, then seeking for
one that provides a plausible solution, and regarding this
as the correct reading. Of course we acknowledge that such
an indiscriminate approach can never guarantee the correct-
ness of the reading. It would however be difficult to logically
explain the difference between the cheeky approach and the
rejection by a human of the readings that make a proposition
false.

What is perhaps more serious than the “ethical” prob-
lem is that this method of exhaustive listing of the possible
readings runs into the problem of exponentially increasing
degrees of ambiguity.

4. WHAT DOES THIS PROPOSITION TALK
ABOUT?

When we say this is a project to solve university entrance
exam problems automatically, many people, including math-
ematicians look quizzically, saying “Isn’t automatic solving
of entrance exam problems rather easy?” This somewhat
naive response misses an important point (even considering

the lack of appreciation of the difficulties of natural language
processing). This is the question of whether it is even pos-
sible to determine from the text of a proposition just what
it talks about. In other words, the question is whether it is
possible by looking at the problem statement to determine
the formal system required to solve the problem.

The following is a quotation from the Introduction section
of Mathematical Logic by Toshiyasu Arai [1]:

In principle, there is no mathematics which
cannot be expressed as a formally provable for-
mula in first order predicate logic — this would
be “(a part of) the Definition” of mathematics.
Even stated conservatively, we can say from ex-
perience that all mathematics can ultimately be
formalized in first order predicate logic.

Here the term “first order predicate logic” refers to the
first order predicate logic of ZF set theory. And “ultimately”
means that substantial paraphrasing may be required. How-
ever, when we look again at ZF we find it an extremely
restricted theory. The naive set theory allows a set to be
constructed with a description such as “All elements hav-
ing such-and-such a property,” but ZF doesn’t. This is be-
cause such indiscriminate constructions would immediately
run into Russell’s paradox. Only something obtained from
existing sets in a limited manner can be a set. By the very
nature of the construction, at most countably infinite differ-
ent properties can exist. This leads to a curious problem:
for example, an uncountable set such as the reals is itself
allowed by ZF (since ZF has the axiom of infinity and the
axiom of the empty set), but a description of the distin-
guishing properties of many individual reals is in principle
impossible.

Whether we like it or not, we have no other means than
language (or symbols) to share our thought with others.
Even if our mathematical intuition tells us that a proposi-
tion is true, this must retrospectively be proved as “a series
of symbols.” The result should thus remain within the range
of ZF. Hence, whether we call it mathematical intuition or
telepathy, the limit of symbolic communication is the limit
to mathematics — this can be said to be the ideology of for-
malism that rescued mathematics from a crisis.

Now even if we assume that we have made translations
into the first order predicate logic of ZF, there is no guar-
antee, anywhere, that this can be written in the vocabulary
of some local axiom sets of the mathematics, such as the
theory of elementary geometry. It is a classical result that
elementary geometry can be embedded in the theory of real
closed field (RCF). However, given “a problem of generic ge-
ometric objects,” it is immediately unclear what vocabulary
and axioms we can assume.

Let us consider a proposition such as the following;:

THEOREM 4.1. If a closed, non-self-intersecting loop lies
in a plane, then the loop divides the plane into two regions.

This is an informal presentation of the famous Jordan
curve theorem. Bolzano was the first to recognize the diffi-
culty of this problem, in the 19th century, and it took almost
a century to finally determine the language and axioms re-
quired to express this problem. This is exactly how long it
took to solve this problem.



Today it is possible to create a semi-automatic mechani-
cal proof of the Jordan curve theorem [5]. However, this is
ONLY after determining for the problem: “What does this
proposition talk about?” To provide a mechanical proof af-
ter the Jordan curve theorem has already been formalized,
and to determine beforehand a formal expression to allow
the problem statement to be solved, are completely differ-
ent problems.

Since a deep problem such as the Jordan curve theorem is
not likely to appear in a university entrance exam, the reader
might be tempted to assume that for an ordinary problem
there would be a well-known (formal) theory in which it
could be embedded. But what can we make of the following
examples?

1. Let O be a circle of radius 1 centered on the origin.
Given points A and B on the circumference of O, find
the point on the z-axis equidistant from A and B.

2. Let O be a circle of radius 1 centered on the origin.
Find a point A on the z-axis such that the distance
from point A to the origin is equal to the length of the
circumference of O.

At the word level, the vocabulary of these two examples
is almost the same. However, the first statement can be
expressed in the language of RCF, while the second can-
not, because the phrase “length of the circumference” is not
representable with the vocabulary of RCF. In other words,
the vocabulary set is not sufficient to automatically deter-
mine the formal system in which we shall think about the
problem.

For the second example, adding 7 as an undefined con-
stant to the vocabulary of the RCF to create an “algebraic
extension,” RCF[r], of RCF allows the problem to be solved
on the face of it. Even so, it is not possible to prove the
truth or falsity of the following proposition:

3< <A

Adding another axiom to RCF[r] would make this problem
solvable.®> However many axioms we add, in an extension of
first-order RCF we will never be able to obtain an expression
for the precise position of © on a number line since 7 is a
transcendental number.

Additionally, when we consider the meaning of expres-
sions such as, “the area enclosed by two curves” or “dividing
a disk into parts and combining them so as not to overlap”
we have a very deep problem. The idea that ordinary math-
ematics can be naturally embedded to some (natural and
well-known) formal theory is no more than an illusion.

Here we show our working definition of “the area enclosed
by a set of curves.” We first define regions enclosed by
curves.

DEFINITION 4.1. A region is defined as an open nonempty
connected set of RF.

DEFINITION 4.2. Let F' be a finite set of k-variate func-
tions and ¢ be a region in R*. If the sign of each function
in F' does not change over ¢, ¢ is F-invariant. A partition
D of R* is an F-invariant decomposition if each element of
D is a region and the region is F-invariant.

3 A brute force solution, of course, is to add the proposition
itself as an axiom!
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Figure 4: A problem in a Tohoku Univ. entrance
exam

DEFINITION 4.3. Let F' be a finite set of k-variate func-
tions, D be an F-invariant decomposition of R¥, and S be a
union of a subset of D where S is a region and F-invariant,
and for all region ¢’ of D, either ¢’ is a subset of S, or union
of S and ¢’ is not a region and F-invariant. If S is bounded,
we define S is a region enclosed by F'.

Following the above definition, we have developed a Maple
command where a set of polynomial curves is allowed as an
input. Although our definition works for most cases, we
have found a few problems that do not fit it. The following
problem is taken from a Tohoku University entrance exam:

PROBLEM 4.1. Let !l be a liney = —x + 3/4, m be a line
y = —x/2+3/2, and C be a curve y = x*. Compute the
area enclosed by I, m, and C'" where x > 0.

Fig. 4 shows the graphs of [, m, C, and = = 0, and regions
enclosed by them. According to our definition, both S; and
Ss are ‘enclosed by [, m, C, and x = 0’ and the answer shall
be the sum of their areas. The test writer however seems
to require the area of S; only *, because we do not need [
if the intended answer is the area of S1 U S2. We thus need
to further tune the definitions to fit better to our intuitive
grasp of ‘the area enclosed by a set of curves’ such that,
for instance, Sz is not counted as enclosed by I, m, C, and
z =0.

The axiomatic framework required to solve a particular
problem as discussed above is a particular case of the notion
of frame in artificial intelligence. In general, the frame for a
problem is only ever determined after solving the problem,
by looking back at the tools used for the solution, and not
by determining the frame instantly from the presentation
of the problem. It is not necessary to pick on a particular
case such as the Jordan curve theorem, as the phenomenon
will be familiar to anyone who has ever written a disserta-
tion in mathematics. Definitions are not created in advance
of the proof of a theorem, but are put together after the
theorem has been proved. A finished paper has no sign of
the to-and-fro that occurred before the definitions were fi-
nalized. This is a courtesy to the reader, and neither would
it be allowed by mathematical esthetics. Mathematics dis-
sertations (and textbooks) are thus written in the format in
which definitions are given “as they should have been from
the beginning,” and theorems are proved based on these def-
initions. Hilbert and the other early formalists were out-
standing mathematicians of their day, and were well aware

4The answer is not publicized.



of this inner reality. Yet they pretended (or more precisely,
determined to pretend) that this format is the real mathe-
matics. It was from this “double disguise” that was born for-
malism. The twisted attitude arises from the establishment
of formalism itself, and therefore cannot be resolved within
the framework of formalism, for a fundamental reason. This
problem is an inescapable one for all fields associated with
artificial intelligence, and of course the field of automatic
problem solving is one of them.

As an intellectual endeavor, automated theorem proving
hides deep inside it the twist concerning formalism but puts
the philosophical problems about it into a cold storage. In-
stead, it pursues the possibility of statistically determining
the frame of a problem from its statement and how far the
proof can be automated once the frame is decided.

Within the framework of artificial intelligence, in addition
to the above fundamental questions, there is also a heavy
emphasis on the relative performance of an intellectual ma-
chine “compared to an average human.”

The following problem caused a stir when it appeared in
a Tokyo University entrance exam:

PROBLEM 4.2. Show that 7 is greater than 3.05.

The reason this caused a fuss was that average students
taking the exam found it quite hard, and the reason for
this was that many of them were unable to grasp what the
problem was about. In other words, the choice of an axiom
set is a difficulty not only for a machine but also for the
human examinees.

Within the research framework of artificial intelligence,
hence, a rational choice is to limit oneself to those problems
for which the axiom set, or the frame of the problems, can
be determined from the vocabulary appearing explicitly in
the problem statement.

S. DECIDABLE AXIOM SETS

Let us suppose that the problem statement has been suc-
cessfully formalized as a proposition in ZF, and it has been
determined what the problem talks about from the vocab-
ulary of the problem statement, and that the problem has
been converted to an expression in the first order predicate
logic of a local axiom set. We have at last reached the start
point, where we can consider whether it is possible to solve
the problem automatically.

As described in Section 2, the question “Can a problem
be solved automatically?” is almost the same as “Can the
quantifiers be eliminated from this logical expression?” Here
we are faced with a high wall. For an axiom set T, if there
is a quantifier elimination algorithm, then we can regard T’
as decidable.’® To say that T is decidable means that for any
proposition P (not including free variables) of T, there is
an algorithm which determines whether P is true or false in
T. Extremely few decidable axiom sets are meaningful. For
example, Godel’s incompleteness theorem and subsequent
results in proof theory show that even a very restricted sub-
set of the theory of natural numbers (Peano arithmetic) is
undecidable [4][9]. However, fortunately it turns out that

For an algebraically closed field there is also a quantifier
elimination algorithm, but this is not decidable until the
characteristic has been determined.

Table 1: Results on Univ. Tokyo Mock Test
Science Course (full score: 120)

Test set Translation Human
Manual | Semi-Auto Avg.
2013 Jul 40 40 21.8
2012 Nov 40 40 32.5
2012 Jul 25 18 29.8
Humanities Course (full score: 80)
Test set Translation Human
Manual | Semi-Auto | Avg.
2013 Jul 40 40 24.9
2012 Nov 20 8 25.7
2012 Jul 40 40 30.9

the theory of real closed field (with elementary geometry
embedded in it) is decidable!

The RCF quantifier elimination (RCF-QE) algorithm was
first developed in the 1930s by Tarski [12].° His name will
no doubt be familiar to many readers from the truly mys-
terious theorem known as the Banach-Tarski theorem. The
RCF-QE algorithm by Tarski is so extremely inefficient that
it was never implemented on a computer. However, in the
1970s, Collins proposed an efficient algorithm using Cylin-
drical Algebraic Decomposition (CAD), which enabled im-
plementation of RCF-QE on a real machine [3]. Quantifier
elimination by CAD is based on Sturm’s theorem on count-
ing the number of different real roots of a polynomial, and
is currently implemented in Mathematica [11], Maple (SyN-
RAC [6]), and other computer algebra software.

We evaluated a prototype problem solving system on the
University of Tokyo entrance exam mock tests held by one
of the largest cram schools in Japan (Yoyogi Seminar). In
the prototype system, a natural language processing mod-
ule is combined with an implementation of RCF quantifier
elimination (SyNRAC) [6]. The problems in the mock tests
are roughly at the same difficulty level as the real entrance
exams of the University of Tokyo. There are two types of
tests, one is for future applicants for the Univ. of Tokyo sci-
ence courses and the other is for humanities courses. Both
types of the mock tests are sat by thousands of test takers.

We run the system both on manual translation of the
problems and those semi-automatically derived from anno-
tated texts. The annotation on the text includes linguistic
annotations such as the syntactic structures of the sentences
as well as a small additional dictionary for those words in
the problem that were missing in the main dictionary at the
time of the experiment. These additional information was
used as a surrogate of a part of the natural language pro-
cessing module currently under development. Table 1 shows
the results on the six latest test sets that were available to
us at the time of writing. The successfully solved problems
included those on 2D and 3D geometry, linear algebra, and
calculus. Fig. 5 shows one of the problems that were success-
fully solved by the system, on which human average score
was 2.1 points out of the full score of 20. The prototype
system has a simple output module that generates human-
readable answer sheet. Fig. 6 shows the generated answer
sheet for the problem in Fig. 5.7

5The result was not published until after WWII in 1951.
"It was manually translated to English from the system’s



PROBLEM 5.1. Let a be a positive real constant. Sup-

pose that two real numbers x and y satisfy
1
igwgl and a <y < 2a.

Under these conditions, find the minimum value of

F:E—i-g—:cy.
Ty

Figure 5: A problem in Univ. Tokyo mock test (2013
Jul; Science course)

Let

Tgenl2

be the real number we want to determine.
The condition given in the question is equivalent to the following
first order formula:

(0<aANa<yAy<2aA3Izo0(Iyoola<
.0.0 Ay.0.0 < 26 Ayo.o(—z.0.0) + 00 700 =

ZTgen12) A 3 < .00 AT.0.0 <1)A0
aA (Vy_o(Vr,g(% >xoVxo>1Vagenia <

y.o(—x.0)+ zg +%)\/a >y.oVy.o > 2a)V0 > a))

Since this formula is in the language of real closed field, by the
Tarski-Seidenberg theorem, it is possible to find a quantifier-free
formula that is equivalent to the above formula. In fact, we have
the following formula by using Tarski’s quantifier-elimination al-
gorithm (transformation process omitted):

2
(0<ahas< gz Aageniz= 2L Na<yAy <
20,)\/(2%/g<a/\a§2—\1/§/\195n12:
\/4—16a2/\a§y/\y§2a)\/(a>27\1/5/\189671,12=
32 Aa<yAy < 2a)

By solving this, we have:

2
Tgen12 = 24 EL if (0<ana<gzAasyAys2a)
Tgeni2 = 2V1 —4a? if (ﬁ<a/\a§ﬁ/\a§y/\y§2a)
Tgeniz = 3o if (a>%/\a§y/\y§2a)

Figure 6: Answer sheet produced by the prototype
system

Overall, the results are encouraging. In four out of the
six test sets, the scores attained by the prototype system
matched the averages of human test takers. We should note
that the results are optimistic estimates of the performance
of a true end-to-end system wherein the linguistic annota-
tions on the text are automatically produced by natural lan-
guage processing. The results however show that the overall
architecture of our system is a reasonable choice at least as
a first step toward a true end-to-end problem solver.

The promising experimental results owe much to the in-
tensive research in last decades that has pursued practical
algorithms of RCF-QE. Even though the efficiency is vastly
better than that of Tarski’s original algorithm, the calcu-
lation time required for CAD is doubly exponential in the
number of variables n in the proposition supplied. The prac-
tical limit to obtain a solution would be at most five vari-
ables. For example, it would not be possible to solve the

output in Japanese.

following problem, even with a supercomputer.

PROBLEM 5.2. A convex quadrilateral lies in a plane. Find
the point from which the sum of the distances to the vertices
1S minimum.

The RCF-QE algorithm can in principle be improved to
doubly exponential of the number of alternating quantifiers
in the given proposition. While this may seem a subtle
change, it is extremely important: in almost all theorems
found in mathematics up to now (excluding somewhat ar-
tificial cases found in mathematical logic), the number of
alternating quantifiers is at most four. This is probably the
limit of complexity for a problem that can be grasped by the
human mind. Given the discovery of an optimum quantifier
elimination algorithm, it would not be at all surprising for
an automatic system to be able to solve all of the elementary
geometry and real number problems within human grasp.

6. CONCLUSION

Wittgenstein once asked:

What is left over if I subtract the fact that
my arm goes up from the fact that I raise my
arm? [15]

Let us think similarly. What is left over if we subtract
mathematics done by a machine from mathematics done by
a human?

This is the sort of question that leaves mathematicians
with an uncomfortable feeling.

It is the authors’ confident belief that mathematics will
not fall to the machine. Yet, both chess and shogi have al-
ready been conquered. The simple faith in Hilbert’s day that
mathematics continue in the human realm is progressively
problematic for us living in the 21st century.

Alternatively, we could ask this: if we subtract the math-
ematics done by machine from the mathematics which we
can teach to a human, is there anything left?

This question is more violent than the one above, and
is not easy to confidently answer in the affirmative. As
any mathematician involved in mathematics education is
painfully aware, up to the present the subjects we have been
relatively successful at teaching students with textbooks and
lessons are multiplication tables, differentiation and integra-
tion, matrix manipulation, and so on, but these are just the
subjects we can easily teach a machine.

This is why, in the authors’ opinion, we must ask this vio-
lent question. This is the only methodology for scientifically
asserting the existence of what remains.

7. REFERENCES

[1] T. Arai. Mathematical Logic. Iwanami Shoten, 2011.
(in Japanese).

[2] A. Church. A note on the Entscheidungsproblem.
Journal of Symbolic Logic, 1:40-41, 1936.

[3] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In
Automata Theory and Formal Languages 2nd GI
Conference Kaiserslautern, volume 33 of Lecture Notes
in Computer Science, pages 134—183. Springer-Verlag,
1975.



[4]

K. Goédel. Uber formal unentscheidbare Siitze der
Principia Mathematica und verwandter Systeme I.
Monatshefte fiir Mathematik, 38(1):173-198, 1931.

T. C. Hales. The Jordan curve theorem, formally and
informally. The American Mathematical Monthly,
114(10):882-894, 2007.

H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An
effective implementation of symbolic-numeric
cylindrical algebraic decomposition for quantifier
elimination. Theoretical Computer Science, 479:43—69,
2013.

T. Matsuzaki, H. Iwane, H. Anai, and N. Arai. The
complexity of math problems — linguistic, or
computational? In Proceedings of the Sixth
International Joint Conference on Natural Language
Processing, pages 73-81, 2013.

T. Matsuzaki, H. Iwane, H. Anai, and N. H. Arai. The
most uncreative examinee: a first step toward wide
coverage natural language math problem solving. In
Proceedings of the 28th AAAI Conference on Artificial
Intelligence, 2014. (to appear).

J. Robinson. Definability and decision problems in
arithmetic. The Journal of Symbolic Logic,
14(2):98-114, 1949.

M. Steedman. The Syntactic Process. Bradford Books.
Mit Press, 2001.

A. W. Strzebonski. Cylindrical algebraic
decomposition using validated numerics. Journal of
Symbolic Computation, 41(9):1021-1038, 2006.

A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press,
Berkeley, 1951.

A. Turing. On computable numbers, with an
application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 42:230-265, 1936.
A. N. Whitehead and B. A. W. Russell. Principia
Mathematica. Cambridge Univ. Press, Cambridge,
1910, 1912, and 1913.

L. Wittgenstein. Philosophical Investigations /
Philosophische Untersuchungen. Oxford: Basil
Blackwell, 1953.



