Inverse Kinematics and Path Planning of Manipulator Using Real Quantifier Elimination Based on Comprehensive Gröbner Systems

Mizuki Yoshizawa, Akira Terui, and Masahiko Mikawa
University of Tsukuba, Tsukuba, Japan
Computer Algebra in Scientific Computing: CASC 2023
August 31, 2023

An example of robot manipulator of 3 DOF (LEGO MINDSTORMS EV3)

Motion planning of a robot

How to move the manipulator (the end-effector) from the initial position to a desired (given) position? (The problem and a calculation)

What we investigate

 Inverse kinematic problem and path planning problem

You may know...

Inverse kinematic problems have been frequently solved with Gröbner basis

computation

```
A system of polynomial
    equations;
    I=\langlef, f1, f2, 较,f4
```

The Gröbner basis of I w.r.t. a certain monomia ordering

$$
\left\{\begin{array} { l }
{ f _ { 1 } (x , y , z , w) = 0 } \\
{ f _ { 2 } (x , y , z , w) = 0 } \\
{ f _ { 3 } (x , y , z , w) = 0 } \\
{ f _ { 4 } (x , y , z , w) = 0 }
\end{array} \quad \$ \quad \left\{\begin{array}{l}
g_{1}(x)=0 \\
g_{2}(x, y)=0 \\
g_{3}(x, y, w)=0 \\
g_{4}(x, y, z, w)=0
\end{array}\right.\right.
$$

The system of polynomial equations can be solved by solving

$$
g_{1}(x)=0 \rightarrow g_{2}(x, y)=0 \rightarrow g_{3}(x, y, w)=0 \rightarrow g_{4}(x, y, z, w)=0
$$

Our previous results

Solving the inverse kinematic problem using Comprehensive Gröbner Systems (CGS) and real quantifier elimination based on the CGS (CGS-QE method) (Otaki et al., CASC 2021)

- Features:

- Verification of inverse kinematics solutions with the CGS-QE method
- Preventing repeated calculation of Gröbner bases by the use of CGS
- A remaining issue: "the preparation steps" (preparation of the solver before the actual calculation) were executed by hand

Our new contributions

1. A new and efficient implementation (automating "the preparation steps")
2. An extension of the inverse kinematics computation to the trajectory planning
3. Repeated calculation of inverse kinematics computation
4. For a given path expressed with a parameter, certify that the whole motion along the path is feasible by the use the CGS-QE method

Plan of the talk

1. Formulation of the inverse kinematic problem
2. Solving the inverse kinematic problem using the CGS-QE method
3. Solving the trajectory planning problem using the CGS-QE method
4. Trajectory planning with verification of the feasibility of the whole motion along the path using the CGS-QE method

Formulation of the inverse kinematic problem

Forward and inverse kinematic problems

The joint space and the configuration space

(1) Formulate the forward kinematic problem

Formulation of the forward kinematic problem

1. Define a coordinate system for each joint
2. Calculate coordinate transformations between adjacent joints

Defining coordinate-system for each joint

 A modified Denavit-Hartenberg convention (Siciliano, et al. (2008))- Σ_{i} : the coordinate system with the origin at Joint $i(i=1, \ldots, 7)$:
- z_{i} : along with the axis of Joint i
- x_{i} : the common normal to z_{i-1} and z_{i} (overlapping with the link)
- y_{i} : defined so that Σ_{i} forms the righthanded coordinate system

Parameters that specify the position and the orientation of Σ_{i-1} w.r.t. Σ_{i}

- a_{i} : the distance between axes z_{i-1} and z_{i}
- α_{i} : the angle between axes z_{i-1} and z_{i} with respect to x_{i} axis
- d_{i} : the distance between axes x_{i-1} and x_{i}
- θ_{i} : the angle between axes x_{i-1} and x_{i} with respect to z_{i} axis

The transformation matrix ${ }^{i-1} T_{i}$ from Σ_{i} to Σ_{i-1} w.r.t. Σ_{i-1}

The forward kinematic problem

${ }^{t}(x, y, z)$: position of the end-effector, θ_{i} : the angle of joint $i(i=1,4,7)$
Position of the end-effector w.r.t. Σ_{0} is expressed as:
$x=-120 \cos \theta_{1} \cos \theta_{4} \sin \theta_{7}+16 \cos \theta_{1} \cos \theta_{4}-120 \cos \theta_{1} \sin \theta_{4} \cos \theta_{7}$
$-136 \cos \theta_{1} \sin \theta_{4}+44 \sqrt{2} \cos \theta_{1}$
$y=-120 \sin \theta_{1} \cos \theta_{4} \sin \theta_{7}+16 \sin \theta_{1} \cos \theta_{4}-120 \sin \theta_{1} \sin \theta_{4} \cos \theta_{7}$
$-136 \sin \theta_{1} \sin \theta_{4}+44 \sqrt{2} \sin \theta_{1}$
$z=120 \cos \theta_{4} \cos \theta_{7}+136 \cos \theta_{4}-120 \sin \theta_{4} \sin \theta_{7}+16 \sin \theta_{4}+104+44 \sqrt{2}$

The inverse kinematic problem expressed as a system of polynomial equations

$$
\begin{aligned}
& \text { With } c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i} \quad(i=1,4,7) \text {, we have: } \\
& f_{1}=120 c_{1} c_{4} s_{7}-16 c_{1} c_{4}+120 c_{1} s_{4} c_{7}+136 c_{1} s_{4}-44 \sqrt{2} c_{1}+x=0 \\
& f_{2}=120 s_{1} c_{4} s_{7}-16 s_{1} c_{4}+120 s_{1} s_{4} c_{7}+136 s_{1} s_{4}-44 \sqrt{2} s_{1}+y=0 \\
& f_{3}=-120 c_{4} c_{7}-136 c_{4}+120 s_{4} s_{7}-16 s_{4}-104-44 \sqrt{2}+z=0 \\
& f_{4}=s_{1}^{2}+c_{1}^{2}-1=0 \\
& f_{5}=s_{4}^{2}+c_{4}^{2}-1=0 \\
& f_{6}=s_{7}^{2}+c_{7}^{2}-1=0 \\
& \text { Constraints on the trigonometric } \\
& \text { functions }
\end{aligned}
$$

Solving the inverse kinematic problem using the CGS-QE method

Quantifier elimination algorithms based on CGS

- Weispfenning (1998): using Comprehensive Gröbner Bases and counting the number of real roots of a system of polynomial equations
- Fukasaku et al. (2015): using an improved CGS algorithm by Suzuki and Sato (2006) with further improvements (the CGS-QE algorithm)
- CGS-QE $=($ CGS calculation $)+$ (the theory of real root counting)

CGS-QE algorithm
 (Weispfenning (1998), Fukasaku et al. (2015))

$f_{1}, \ldots, f_{r} \in R[\bar{A}, \bar{X}]$
$\bar{X}=X_{1}, \ldots, X_{n}$ (variables)
$\bar{A}=A_{1}, \ldots, A_{m}$ (parameters)
$\left.\exists \bar{X}\left(f_{1}(\bar{A}, \bar{X})=0 \wedge \cdots \wedge f_{r}(\bar{A}, \bar{X})=0\right) \ldots{ }^{*}\right)$ subject of quantifier elimination

CGS-QE algorithm
 (Weispfenning (1998), Fukasaku et al. (2015))

1. Calculate CGS of $\left\langle f_{1}, \ldots, f_{r}\right\rangle$: let $\mathscr{G}=\left\{\left(S_{1}, G_{1}\right), \ldots,\left(S_{t}, G_{t}\right)\right\}$ (S_{i} : a segment: the set of parameters)
2. For each S_{i}, by using the theory of real root counting (Becker, Wöermann (1994), Pedersen et al. (1993)), derive a condition ψ_{i} on parameters \bar{A} such that (the system of polynomial equations defined by) G_{i} has real roots
3. $\bigvee^{t}\left(\left(\right.\right.$ the difining formula of $\left.\left.S_{i}\right) \wedge \psi_{i}\right)$ is equivalent to the given formula (*), $i=1$ with quantifiers eliminated

Solving the inverse kinematic problem

Variables $c_{1}, s_{1}, c_{4}, s_{4}, c_{7}, s_{7}$, parameters x, y, z, position of the end-effector $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$

$$
\begin{aligned}
& f_{1}=120 c_{1} c_{4} s_{7}-16 c_{1} c_{4}+120 c_{1} s_{4} c_{7}+136 c_{1} s_{4}-44 \sqrt{2} c_{1}+x=0 \\
& f_{2}=120 s_{1} c_{4} s_{7}-16 s_{1} c_{4}+120 s_{1} s_{4} c_{7}+136 s_{1} s_{4}-44 \sqrt{2} s_{1}+y=0 \\
& f_{3}=-120 c_{4} c_{7}-136 c_{4}+120 s_{4} s_{7}-16 s_{4}-104-44 \sqrt{2}+z=0 \\
& f_{4}=s_{1}^{2}+c_{1}^{2}-1=0 \\
& f_{5}=s_{4}^{2}+c_{4}^{2}-1=0 \\
& f_{6}=s_{7}^{2}+c_{7}^{2}-1=0
\end{aligned}
$$

Algorithm 1

Solving the inverse kinematic problem

Inputs:

1. $F=\left\{f_{1}, \ldots, f_{r}\right\}$
2. Variables $\bar{X}=\left\{c_{1}, s_{1}, c_{4}, s_{4}, c_{7}, s_{7}\right\}$
3. Parameters $\bar{A}=\{x, y, z\}$
4. Position of the end-effector $a=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$

Output: configuration of the joints $\Theta=\left\{\theta_{1}, \theta_{4}, \theta_{7}\right\}$

Algorithm 1

Solving the inverse kinematic problem

1. Calculate CGS of $\langle F\rangle: \mathscr{G}=\left\{\left(S_{1}, G_{1}(\bar{A}, \bar{X})\right), \ldots,\left(S_{t}, G_{t}(\bar{A}, \bar{X})\right)\right\}$ (S S_{i} : a segment) (CGS can be calculated in advance)
2. From $\mathscr{G}=\left\{\left(S_{1}, G_{1}\right), \ldots,\left(S_{t}, G_{t}\right)\right\}$, eliminate $\left(S_{i}, G_{i}\right)$ satisfying $S_{i} \cap \mathbb{R}^{3}=\varnothing$, and define $\mathscr{G}=\left\{\left(S_{1}, G_{1}(\bar{A}, \bar{X})\right), \ldots,\left(S_{t}, G_{t}(\bar{A}, \bar{X})\right)\right\}$ again (the "preprocessing step" in our previous method)
3. For $a=\left(x_{0}, y_{0}, z_{0}\right)$, choose $\left(S_{i}, G_{i}\right)$ from \mathscr{G} satisfying $a \in S_{i}$
4. Count the number of real roots of $G_{i}(a, \bar{X})$
5. If real roots exist, then calculate real roots of $G_{i}(a, \bar{X})$ and return $\Theta=\left\{\theta_{1}, \theta_{4}, \theta_{7}\right\}$
6. If $\left\langle G_{i}(a, \bar{X})\right\rangle$ is not zero-dimensional, process it separately

Step 2 (the "preprocessing step" in our previous method)

$$
\text { For } S_{k}=V_{\mathbb{C}}\left(I_{k, 1}\right) \backslash V_{\mathbb{C}}\left(I_{k, 2}\right), I_{k, j}=\left\langle F_{k, j}\right\rangle(j=1,2), f \in F_{k, 1}:
$$

- If f is univariate: count the real roots (with the discriminant $(\operatorname{deg} f=2)$, or the Sturm's method $(\operatorname{deg} f \geq 3)) \rightarrow$ eliminate S_{k} if real root does not exist
- If f has trivial root(s): substitute the roots for $g \in F_{k, 2}$; then if $g=0$, eliminate S_{k}

Step 4-2: in the case $\left\langle G_{i}(a, \bar{X})\right\rangle$ is not zero-dimensional

1. If there exists $g(a, \bar{X}) \in G_{i}$ which has trivial root(s), then substitute the root(s) with $g(a, \bar{X}) \in G_{i}(a, \bar{X})$
2. Now, is $\left\langle G_{i}(a, \bar{X})\right\rangle$ zero-dimensional?

- Yes \rightarrow calculate real roots of $G_{i}(a, \bar{X})$
- No \rightarrow cancel the calculation

Implementation and experiments

https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2

- Implemented on Risa/Asir Version 20230315
- With the use of PARI-GP 2.3.11 (called from Asir for numerical solving of equations)
- CGS calculation: with Risa/Asir (implementation by Nabeshima (2018))
- Computing environment:
- Intel Xeon Silver 4210 3.2 GHz, RAM 256 GB
- Linux Kernel 5.4.0

Experiments

1. Choose 1000 positions of the end-effector $\left\{(x, y, z)_{j}\right\}_{j=1}^{1000}$ randomly within the feasible region $(x, y, z \in \mathbb{Q}, x=a / b$ with $|b|<100$; the same condition applies to the denominator of y and $z)$
2. Solve the inverse kinematic problem at $(x, y, z)_{j}$ and calculate the configuration of the joint $\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \theta_{3}^{\prime}\right)_{j}$
3. Using the forward kinematics with $\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \theta_{3}^{\prime}\right)_{j}$, calculate the position of the end-effector $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)_{j}$ and the error (the euclidean distance) from the given position of the end-effector $(x, y, z)_{j}$ by

$$
\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2}}
$$

Note: the CGS has been pre-calculated (calculation time: 62.3s)

Experimental results

	Test Time (sec.) Error (mm)	
	1	0.1386

Solving the trajectory planning problem using the CGS-QE method

A path of the end-effector As a line segment

- $\boldsymbol{p}_{0}={ }^{t}\left(x_{0}, y_{0}, z_{0}\right)$: the initial position
- $\boldsymbol{p}_{d}={ }^{t}(x, y, z)$: present position
- $\boldsymbol{p}_{f}={ }^{t}\left(x_{f}, y_{f}, z_{f}\right)$: the final position
$\left(\boldsymbol{p}_{d}, \boldsymbol{p}_{0}, \boldsymbol{p}_{f} \in \mathbb{R}^{3}, \boldsymbol{p}_{d} \neq \boldsymbol{p}_{f}\right)$
The path: $\boldsymbol{p}_{d}=\boldsymbol{p}_{0}(1-s)+\boldsymbol{p}_{f} s, s \in[0,1]$

Changing the position s as a function of t

- A trajectory by expressing $s \in[0,1]$ as $s=s(t)$, a function of $t \in[0 . . T]$ (T : positive integer)
- Let $\dot{s}=s^{\prime}(t)$ (velocity) and $\dddot{s}=s^{\prime \prime}(t)$ (acceleration)
- Express $s(t)$ as a polynomial
- If we restrict $s^{\prime}(0)=s^{\prime \prime}(0)=0$ and $s^{\prime}(T)=s^{\prime \prime}(T)=0$, then $s(t)$ becomes a polynomial of degree 5 in t (Lynch and Park (2017))

Derivation of $s(t), \dot{s}(t), \ddot{s}(t)$

For $s(t)=\frac{a_{4} T}{5}\left(\frac{t}{T}\right)^{5}+\frac{a_{3} T}{4}\left(\frac{t}{T}\right)^{4}+\frac{a_{2} T}{3}\left(\frac{t}{T}\right)^{3}+\frac{a_{1} T}{2}\left(\frac{t}{T}\right)^{2}+a_{0} t$,
$\dot{s}(t)$ and $\ddot{s}(t)$ are expressed as

$$
\begin{aligned}
& \dot{s}(t)=a_{4}\left(\frac{t}{T}\right)^{4}+a_{3}\left(\frac{t}{T}\right)^{3}+a_{2}\left(\frac{t}{T}\right)^{2}+a_{1}\left(\frac{t}{T}\right)+a_{0}, \\
& \ddot{s}(t)=\frac{4 a_{4}}{T}\left(\frac{t}{T}\right)^{3}+\frac{3 a_{3}}{T}\left(\frac{t}{T}\right)^{2}+\frac{2 a_{2}}{T}\left(\frac{t}{T}\right)+\frac{a_{1}}{T}
\end{aligned}
$$

Derivation of $s(t), \dot{s}(t), \ddot{s}(t)$

With $s(0)=\dot{s}(0)=\ddot{s}(0)=0, s(T)=1, \dot{s}(T)=\ddot{s}(T)=0$, we have a system of linear equations as:
$20 a_{2}+15 a_{3}+12 a_{4}-\frac{60}{T}=0, \quad a_{2}+a_{3}+a_{4}=0, \quad 2 a_{2}+3 a_{3}+4 a_{4}=0$
By solving the equations, we have $a_{2}=\frac{30}{T}, a_{3}=-\frac{60}{T}, a_{4}=\frac{30}{T}$, thus
$s(t)=\frac{6}{T^{5}} t^{5}-\frac{15}{T^{4}} t^{4}+\frac{10}{T^{3}} t^{3}, \quad \dot{s}(t)=\frac{30}{T^{5}} t^{4}-\frac{60}{T^{4}} t^{3}+\frac{30}{T^{3}} t^{2}, \quad \ddot{s}(t)=\frac{120}{T^{5}} t^{3}-\frac{180}{T^{4}} t^{2}+\frac{60}{T^{3}} t$

Algorithm 2
 Solving trajectory planning problem

Inputs:

1. $F=\left\{f_{1}, \ldots, f_{r}\right\}$
2. Variables $\bar{X}=\left\{c_{1}, s_{1}, c_{4}, s_{4}, c_{7}, s_{7}\right\}$
3. Parameters $\bar{A}=\{x, y, z\}$
4. The initial position of the path $\boldsymbol{p}_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$
5. The final position of the path $\boldsymbol{p}_{f}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$
6. The length of time series $T \in \mathbb{N}$

Output: a series of the configuration of the joints $L=\left\{\Theta_{t}=\left(\theta_{1, t}, \theta_{4, t}, \theta_{7, t}\right) \mid t=1, \ldots, T\right\}$

Algorithm 2
 Solving trajectory planning problem

1. Calculate CGS of $\langle F\rangle: \mathscr{G}=\left\{\left(S_{1}, G_{1}(\bar{A}, \bar{X})\right), \ldots,\left(S_{t}, G_{t}(\bar{A}, \bar{X})\right)\right\}\left(S_{i}:\right.$ a segment $)$ $\left(\left(S_{i}, G_{i}\right)\right.$ satisfying $S_{i} \cap \mathbb{R}^{3}=\varnothing$ can be eliminated)
2. $L \leftarrow \varnothing$
3. For $t=1, \ldots, T$, repeat the following:
4. Calculate the position of the end-effector as $s \leftarrow \frac{6}{T^{5}} t^{5}-\frac{15}{T^{4}} t^{4}+\frac{10}{T^{3}} t^{3} ; \boldsymbol{p}_{d} \leftarrow \boldsymbol{p}_{0}(1-s)+\boldsymbol{p}_{f}$;
5. Calculate the solution Θ of the inverse kinematic problem by Algorithm 1 with the inputs $\left(F, \bar{X}, \bar{A}, \boldsymbol{p}_{d}\right)$
6. If the solution Θ is calculated, then $L \leftarrow L \cup\{\Theta\}$
7. Return L

Algorithm 2: an example

$$
\begin{aligned}
& \boldsymbol{p}_{0}={ }^{t}\left(x_{0}, y_{0}, z_{0}\right)={ }^{t}(10,40,80), \\
& \boldsymbol{p}_{f}={ }^{t}\left(x_{f}, y_{f}, z_{f}\right)={ }^{t}(40,100,20), T=50
\end{aligned}
$$

Total computing time of inverse kinematic computations for 51 points: 3.377 s

By eliminating $\left(S_{i}, G_{i}\right)$ satisfying $S_{i} \cap \mathbb{R}^{3}=\varnothing$ before the inverse kinematic computation: 2.246 s

Trajectory planning with verification of the feasibility of the inverse kinematic solution

Substitute the path of the end-effector into the equations

Substitute $\boldsymbol{p}_{d}=\boldsymbol{p}_{0}(1-s)+\boldsymbol{p}_{f} s=^{t}(x, y, z)=^{t}\left(x_{0}(1-s)+x_{f} s, y_{0}(1-s)+y_{f} s, z_{0}(1-s)+z_{f} s\right)$ into the system of polynomial equations

$$
\begin{aligned}
& f_{1}=120 c_{1} c_{4} s_{7}-16 c_{1} c_{4}+120 c_{1} s_{4} c_{7}+136 c_{1} s_{4}-44 \sqrt{2} c_{1}+x=0 \\
& f_{2}=120 s_{1} c_{4} s_{7}-16 s_{1} c_{4}+120 s_{1} s_{4} c_{7}+136 s_{1} s_{4}-44 \sqrt{2} s_{1}+y=0 \\
& f_{3}=-120 c_{4} c_{7}-136 c_{4}+120 s_{4} s_{7}-16 s_{4}-104-44 \sqrt{2}+z=0 \\
& f_{4}=s_{1}^{2}+c_{1}^{2}-1=0 \\
& f_{5}=s_{4}^{2}+c_{4}^{2}-1=0 \\
& f_{6}=s_{7}^{2}+c_{7}^{2}-1=0
\end{aligned}
$$

Verification of the existence of a real root

For $s \in[0,1]$, verify that the system of equations has a real root with the CGS-QE method

$$
\begin{aligned}
& f_{1}=120 c_{1} c_{4} s_{7}-16 c_{1} c_{4}+120 c_{1} s_{4} c_{7}+136 c_{1} s_{4}-44 \sqrt{2} c_{1}+x_{0}(1-s)+x_{f} s=0, \\
& f_{2}=120 s_{1} c_{4} s_{7}-16 s_{1} c_{4}+120 s_{1} s_{4} c_{7}+136 s_{1} s_{4}-44 \sqrt{2} s_{1}+y_{0}(1-s)+y_{f} s=0, \\
& f_{3}=-120 c_{4} s_{7}-136 c_{4}+120 s_{4} s_{7}-16 s_{4}-104-44 \sqrt{2}+z_{0}(1-s)+z_{f} s=0, \\
& f_{4}=s_{1}^{2}+c_{1}^{2}-1=0 \\
& f_{5}=s_{4}^{2}+c_{4}^{2}-1=0 \\
& f_{6}=s_{7}^{2}+c_{7}^{2}-1=0
\end{aligned}
$$

Algorithm 3

Verification of the feasibility of the inverse kinematic solution

Inputs:

1. $F=\left\{f_{1}, \ldots, f_{r}\right\}$
2. Variables $\bar{X}=\left\{c_{1}, s_{1}, c_{4}, s_{4}, c_{7}, s_{7}\right\}$
3. Parameters $\bar{A}=\{x, y, z\}$
4. The initial position of the path $\boldsymbol{p}_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$
5. The end (target) position of the path $\boldsymbol{p}_{f}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$
6. The length of time series $T \in \mathbb{N}$

Output: a time series of the configuration of the joints $L=\left\{\Theta_{t}=\left(\theta_{1, t}, \theta_{4, t}, \theta_{7, t}\right) \mid t=1, \ldots, T\right\}$

Algorithm 3

Verification of the feasibility of the inverse kinematic solution

1. $F^{\prime} \leftarrow\left(\right.$ Substituting x, y, z in F with the path $\left.\boldsymbol{p}_{d} \leftarrow \boldsymbol{p}_{0}(1-s)+\boldsymbol{p}_{f}\right)$;
2. Calculate CGS of $\left\langle F^{\prime}\right\rangle$ as $\mathscr{G}=\left\{\left(S_{1}, G_{1}(\bar{A}, \bar{X})\right), \ldots,\left(S_{t}, G_{t}(\bar{A}, \bar{X})\right)\right\}\left(S_{i}:\right.$ a segment)
$\left(\left(S_{i}, G_{i}\right)\right.$ satisfying $S_{i} \cap \mathbb{R}^{3}=\varnothing$ can be eliminated)
3. For \mathscr{G}, with the CGS-QE algorithm, calculate the range M of s for which F^{\prime} has a real root
4. If $[0,1] \subset M$, then call Algorithm 2 with $\left(F, \bar{X}, \bar{A}, \boldsymbol{p}_{0}, \boldsymbol{p}_{f}, T\right)$ to calculate the series of the configuration of the joints $L=\left\{\Theta_{t}=\left(\theta_{1, t}, \theta_{4, t}, \theta_{7, t}\right) \mid t=1, \ldots, T\right\}$

Algorithm 3: an example

- $\boldsymbol{p}_{0}={ }^{t}\left(x_{0}, y_{0}, z_{0}\right)={ }^{t}(10,40,80), \boldsymbol{p}_{f}={ }^{t}\left(x_{f}, y_{f}, z_{f}\right)={ }^{t}(40,100,20)$
- CGS with 6 segments have been calculated in 485.8 s
- For CGS $\mathscr{G}=\left\{\left(S_{1}, G_{1}\right), \ldots,\left(S_{6}, G_{6}\right)\right\}$, segments satisfying $S_{i} \cap \mathbb{R}^{3}=\varnothing$ have been eliminated in 0.009s; three segments have been remained
- With the CGS-QE method, it has been verified that the system of equations has a real root for $s \in[0,1]$ in 1.107 s
- The trajectory planning has been executed with Algorithm 2

Concluding remarks

Summary

- Proposed methods with the use of the CGS-QE method for solving the inverse kinematic problem and the path planning problem of robot manipulator of 3 DOF:
- Solving an inverse kinematic problem for a single point of the end-effector
- Solving inverse kinematic problems repeatedly for a series of points in the path given as a line segment
- Verifying feasibility of path planning computation for the path given as a line segment with a parameter

Future work

- Guarantee continuity of inverse kinematic solutions
- Detect/analyze singular points of polynomial systems with parameters
- Improvement of the efficiency of the solver
- Path planning with more general curves represented by polynomials
- Developing a method for manipulators of higher DOF

Thank you!

References

Becker, E., Wöermann, T.: On the trace formula for quadratic forms. In: Recent advances in real algebraic geometry and quadratic forms. Contemp. Math., vol. 155, pp. 271-291. AMS (1994).
Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 101-125. Springer (2011).
Cox, D.A., Little, J., O'Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, Heidelberg (2005).
Cox, D.A., Little, J., O'Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (4th Ed.). Springer (2015).
Faugère, J.C., Merlet, J.P., Rouillier, F.: On solving the direct kinematics problem for parallel robots. Research report RR-5923, INRIA (2006).
Fukasaku, R., Iwane, H., Sato, Y.: Real Quantifier Elimination by Computation of Comprehensive Gröbner Systems. In: Proceedings of ISSAC '15 p. 173-180. ACM (2015).
Horigome, N., Terui, A., Mikawa, M.: A design and an implementation of an inverse kinematics computation in robotics using Gröbner bases. In: ICMS 2020. LNCS, vol. 12097, pp. 3-13. Springer (2020).

References (continued)

Kalker-Kalkman, C.M.: An implementation of Buchbergers' algorithm with applications to robotics. Mech. Mach. Theory 28(4), 523-537 (1993).
Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636-667 (2007).
Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017).
Maekawa, M., Noro, M., Ohara, K., Takayama, N., Tamura, K.: The design and implementation of OpenXM-RFC 100 and 101. In: ASCM 2001, pp. 102-111. World Scientific (2001).
Nabeshima, K.: CGS: a program for computing comprehensive Gr"obner sys- tems in a polynomial ring [computer software] (2018). https://www.rs.tus.ac.jp/~nabeshima/softwares.htm
Noro, M.: A computer algebra system: Risa/Asir. In: Algebra, Geometry and Software Systems, pp. 147-162. Springer (2003).

Otaki, S., Terui, A., Mikawa, M.: A design and an implementation of an inverse kinematics computation in robotics using real quantifier elimination based on comprehensive Gr"obner systems. Preprint (2021). arXiv:2111.00384

References (continued)

Pedersen, P., Roy, M.F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Computational algebraic geometry, Progr. Math., vol. 109, pp. 203-224. Birkhäuser (1993).
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Springer. Robotics: Modelling, Planning and Control (2008).
da Silva, S.R.X., Schnitman, L., Cesca Filho, V.: A solution of the inverse kinematics problem for a 7-degrees-of-freedom serial redundant manipulator using Gröbner bases theory. Math. Probl. Eng. 2021, 6680687 (2021).
Terui, A., Yoshizawa, M., Mikawa, M.: ev3-cgs-qe-ik-2: an inverse kinematics solver based on the CGS-QE algorithm for an EV3 manipulator [computer software] (2023).
https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2
The PARI Group, Univ. Bordeaux: PARI/GP version 2.13 .1 (2021). https://pari.math.u-bordeaux.fr/
Uchida, T., McPhee, J.: Triangularizing kinematic constraint equations using Gröbner bases for real-time dynamic simulation. Multibody Syst. Dyn. 25, 335-356 (2011).

Uchida, T., McPhee, J.: Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mech. Mach. Theory 52, 144-157 (2012).

References (continued)

Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. pp. 376-392. Springer (1998).
Wolfram Research Inc: Mathematica, Version 13.1 [computer software] (2022).
Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. China Ser. F Inf. Sci. 44(1), 33-49 (2001).

