Inverse Kinematics and Path Planning of Manipulator

Using Real Quantifier Elimination
Based on Comprehensive Grobner Systems

Mizuki Yoshizawa, Akira Terui, and Masahiko Mikawa
University of Tsukuba, Tsukuba, Japan

Computer Algebra in Scientific Computing: CASC 2023
August 31, 2023

An example of robot manipulator of 3 DOF

(LEGO MINDSTORMS EV3)

Degree of freedom

e

Segment / Lin

-effector

End

Motion planning of a robot

How to move the manipulator (the end-effector) from the initial position
to a desired (given) position? (The problem and a calculation)

N

%cié?
\("‘o
PR %@R
\» 4

What we investigate

Inverse kinematic problem and path planning problem

Path planning problem:
r\?u verity if the end-effector can be
v moved along the given path —

Inverse kinematic problem: \@

verity if the end-effector can be

located in the desired position — / celEnEE & serfes o
- T
calculate corresponding algles of \ \\/. corresponding algles of the joints
the joints \

You may know...

Inverse kinematic problems have been frequently solved with Grobner basis

computation

A system of polynomial
eqguations;

I'=(fis /o 13 Ja)

The Grobner basis of /

w.r.t. a certain monomial
ordering

g1(xz) =0

» 92(37,3/ =0
93($7y7w) =0
g4(x,y,z,w) =0

The system of polynomial equations can be solved by solving
gl(x) — O - gz('x’y) — O — g3(.X,y,W) — O — 84(X,yaZ,W) — O

,\E

One can know the feasibility of the motion
before the actual computation

¥

Tends to be computationally expensive

Our previous results

Solving the inverse kinematic problem using Comprehensive Grobner Systems
(CGS) and real quantifier elimination based on the CGS (CGS-QE method) (Otaki et
al., CASC 2021)

e Features:
e Verification of inverse kinematics solutions with the CGS-QE method
* Preventing repeated calculation of Grobner bases by the use of CGS

* A remaining issue: “the preparation steps” (preparation of the solver before the
actual calculation) were executed by hand

6

Our new contributions

1. A new and efficient implementation (automating “the preparation steps”)

2. An extension of the inverse kinematics computation to the trajectory
planning

1. Repeated calculation of inverse kinematics computation

2. For a given path expressed with a parameter, certify that the whole
motion along the path is feasible by the use the CGS-QE method

Plan of the talk

1. Formulation of the inverse kinematic problem
2. Solving the inverse kinematic problem using the CGS-QE method
3. Solving the trajectory planning problem using the CGS-QE method

4. Trajectory planning with verification of the feasibility of the whole motion
along the path using the CGS-QE method

Formulation of the Inverse
Kinematic problem

Forward and inverse kinematic problems

The end-effector

Forward kinematic
problem

Joint 2

0, . \
’ YN
v — Joint space Configuration space

16 length I, s
Position of the end-
61 . .
< N Angle gf tge joints offector
T e (x,y)

length /,

Inverse kKinematic

problem

Cox et al. (2015)

10

kinematic problem
Configuration space

(1) Formulate the forward

Joint space

t space and the configuration space

In

The jo

lon of the
effector)

Pos
end

(

Ints 1

join

I~
=
-
©
4

(-
o,
)
o
@)
-

<

(2) Solve the inverse

kKinematic problem

11

Formulation of the forward kinematic problem

1. Define a coordinate system for each joint
2. Calculate coordinate transformations between adjacent joints

12

Defining coordinate-system for each joint

A modified Denavit-Hartenberg convention (Siciliano, et al. (2008))

« 2. : the coordinate system with the origin at

Jointi (i =1,...,7):

e Z:: along with the axis of Joint 1

 X;: the common normal to z;_; and z;

(overlapping with the link)

Joints 1, 4 and 7 are
» y.: defined so that 2.; forms the right- revolutional joints

handed coordinate system

13

Parameters that specify the position and the orientation
of 2. ; w.rt. 2,

Ys Y7 Ye Ya Y3

* a;: the distance between axes z;_; and z; }

. the angle between axes z;_; and z; e

Segment 0

O
with respect to x; axis 7 \ (S

» d;: the distance between axes x;_; and x;

» 0. the angle between axes x;_; and x;

Joints 1, 4 and 7 are

with respect to z; axis revolutional joints

14

The transformation matrix ~!7. fromX.to X, wrt. X,

Rotation Translation

cos 0, —sin 0,

17 = Cf)sal-s.mﬁi Cf)S a;cosf; —sina; ila; (mm) o; d; (mm) 6,
sinq; sin6; sina;cos6; cosa, 1 0 0 R0 04
2 0 /2 0 /4
3| 88 0 0 T /4
o o 4 24 0 0 04
I'="1,"15---"15"1g 5 96 0 0 —7/2
6| 16 0 0 /2
for transformation from 2q to 2., 7740 0 0 07
8 120 0 0 0

15

The forward kinematic problem

'(x,y,7): position of the end-effector, 0;: the angle of joint i (i = 1, 4, 7)

Position of the end-effector w.r.t. 2., is expressed as:

x=—120cos 0, cos0,s1n 6, + 16 cos O, cos 6, — 120 cos &, sin 6, cos &,

—136c0s0,s1n0, + 44\/5 cos 0,
y =—120smn6, cos0,sin 6, + 16sin 0, cos 6, — 120 sin &, sin 6, cos &,

—136in 6, sin O, + 444/2 sin 6,
z = 120 cos 0, cos 0, + 136¢c0s0, — 120 sin 6, sin O, + 16sind, + 104 + 444/2

16

The inverse kinematic problem expressed as a
system of polynomial equations

With ¢; = cos @, s; = sin 6, (1 = 1,4,7), we have:
f; = 120c¢,¢487 — 16¢,¢4 + 120¢;5,¢7 + 136¢5, — 44\/§c1 +x=0
fr = 120s,¢c487 — 168,¢c4 + 12055407 + 13655, — 444/ 25, + y =0
f3 = —120c,c7 — 136¢, + 12055, — 165, — 104 —444/2 + 7= 0
fa = S12 + 6‘12 —1=0

5=S£+C£—1=O

Constraints on the trigonometric

functions

=t d-1=0

17

Solving the inverse kinematic
problem using the CGS-QE method

Quantifier elimination algorithms based on CGS

* Weispfenning (1998): using Comprehensive Grobner Bases and
counting the number of real roots of a system of polynomial

equations

* Fukasaku et al. (2015): using an improved CGS algorithm by Suzuki
and Sato (2006) with further improvements (the CGS-QE algorithm)

 CGS-QE = (CGS calculation) + (the theory of real root counting)

19

CGS-QE algorithm

(Weispfenning (1998), Fukasaku et al. (2015))

fis--»f. € R[A, X]

X =Xy, ..., X, (variables)

A=A,....,A (parameters)

EI)_((fl(A,)_() =0 A - /\f,,(A,)_() = () ... (*) subject of quantifier

elimination

20

CGS-QE algorithm

(Weispfenning (1998), Fukasaku et al. (2015))

1. Calculate CGS of (f;, ...,f.):let & = {(S;, G}), ..., (S, G,)}

(Sl-: a segment: the set of parameters)

2. For each §;, by using the theory of real root counting (Becker, Wéermann
(1994), Pedersen et al. (1993)), derive a condition y; on parameters A such
that (the system of polynomial equations defined by) G; has real roots

[
3. \/ ((the difining formula of S;) A ;) is equivalent to the given formula (),

i=1
with quantifiers eliminated

21

Solving the inverse kinematic problem

Variables ¢y, S, C4, S4, C7, S7, Parameters x, y, z, position of the end-effector (xo, Yos ZO) e |
fi = 120¢,c487 — 16¢ic4 + 120¢54¢7 + 136¢5, — 44\/561 +x =0

fr = 120s,¢487 — 16s,¢4 + 1208,5,¢7 + 13655, — 444/ 25, + y =0

f3 = — 120¢c4c7 — 136¢,4 + 1208457 — 165, — 104 —444/2 + 2 =0
fi=si+ci—1=0

I5 = sf + cf —1=0

fo=sttei-1=0

22

Algorithm 1

Solving the inverse kinematic problem

Inputs:

1. F=1{f,....].}

2. Variables X = 1C15> 815 Cqs Sq5 C75 57}
3. Parameters A = {x,V, z}
4. Position of the end-effector a = (xy, Yy, 29) € R-

Output: configuration of the joints ® = {60,, 0,, 0-}

23

Algorithm 1

Solving the inverse kinematic problem

1. Calculate CGS of (F): € = {(S;, G,(A, X)), ..., (S, Gt(/i,)_())} (S;: a segment)
(CGS can be calculated in advance)
2. From & = {(S$,,Gy), ..., (S,, G, }, eliminate (S;, G;) satisfying S; N | > = @, and define

g = {05, Gl(A,)_{)), o (5, Gt(A,)_())} again (the “preprocessing step” in our previous
method)

3. Fora = (xy, ¥y, Z9), choose (S;, G;) from & satisfying a € S,
4. Count the number of real roots of G,(a,)_()

1. If real roots exist, then calculate real roots of G;(a, X) and return © = {6,, 0,, 6}

2. If (G{a, X)) is not zero-dimensional, process it separately

24

Step 2 (the “preprocessing step” in our previous method)

For 5y = Va:(]m)\vc(lkz) Iy ;i = <Fk]> U=12),f€ F:

« If fis univariate: count the real roots (with the discriminant

(degf = 2), or the Sturm’s method (deg f > 3)) — eliminate S, if real
root does not exist

o If f has trivial root(s): substitute the roots for g € F ro thenit g = 0,

eliminate S,

25

Step 4-2: in the case (Gl-(a, X)) is not zero-dimensional

1. If there exists g(a, X) € G; which has trivial root(s), then substitute
the root(s) with g(a, X) € G.(a, X)

2. Now, is {G,(a, X)) zero-dimensional?
+ Yes — calculate real roots of G.(a, X)

e No — cancel the calculation

20

Implementation and experiments

https://qgithub.com/teamsnactsukuba/ev3-cgs-ge-ik-2
* Implemented on Risa/Asir Version 20230315
* With the use of PARI-GP 2.3.11 (called from Asir for numerical solving of equations)
* CGS calculation: with Risa/Asir (implementation by Nabeshima (2018))
* Computing environment:
e Intel Xeon Silver 4210 3.2 GHz, RAM 256 GB
* Linux Kernel 5.4.0

27

https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2

Experiments

1. Choose 1000 positions of the end-effector { (x, y, Z)j J }2(1)0 randomly within the feasible region

(x, v,z € Q,x = al/bwith |b| < 100; the same condition applies to the denominator of y and z)

2. Solve the inverse kinematic problem at (x, y, z); and calculate the configuration of the joint (6, 65, 65);

3. Using the forward kinematics with (8;, 6, 63)., calculate the position of the end-effector (x', y', z’)j and

the error (the euclidean distance) from the given position of the end-effector (x, y, z)j by

\/ =X+ (O =y + (' —2)°

Note: the CGS has been pre-calculated (calculation time: 62.3s)

28

Experimental results

Test Time (sec.) Error (mm)

1 0.1386 1.2428 x 10~ *?

2 0.1331 2.3786 x 1012

10 tests against 100 3 0.1278 1.0845 x 10~

~ points: 4 0.1214 1.6150 x 10~ "2
AR POS 5 0.1147 1.5721 x 1072
6 0.1004 1.6229 x 10~

7 0.0873 2.2518 x 1012

8 0.0792 1.3923 x 1012

9 0.0854 1.2919 x 1012

10 0.0797 1.8674 x 1012

Average 0.1068 1.6319 x 10~ *#

29

Solving the trajectory planning
problem using the CGS-QE method

A path of the end-effector

As a line segment

e« Po = (X, Vo» Zo): the initial position

. p,="'(x,y,z): present position

« Py = "(xp, yp, 27): the final position
(PgsPos Py € R>, py # Pr)

The path: p, = py(1 —) + DgS, S € [0,1]

31

Changing the position s as a function of ¢

A trajectory by expressing s € |0,1] as s = s(#), a function of
t € |0..T] (T: positive integer)

e Let$ = 5(¢) (velocity) and § = s"(f) (acceleration)

» Express s(¢) as a polynomial

o If we restrict s(0) = s"(0) = 0and s'(T) = s"(T) = 0, then s(¢)
becomes a polynomial of degree 5 in 7 (Lynch and Park (2017))

32

Derivation of s(7), s(?), s(¢)

a1l ([t > ayl ([t * a1l ([t i al ([t ’
Fors()=— =) +— | =) +— | =) +— | =] +ay,
S \T 4 \T 3 \T 2 \T

$(t) and 5(7) are expressed as

. [’ [3 [- [
S(t) = dy, (?) + A3 (?) +) (?) + dy (;) + d,

5 da, ([t i 3a; [t : 2a, [t a
SO))=—|=) +t— (=) +— | =) +—
T \T T \T T \T T

33

Derivation of s(7), s(?), s(¢)

With s(0) = $(0) = §(0) = 0, s(T) = 1, $(T) = 5(T) = 0, we have a
system of linear equations as:

60
20612"‘15613"‘12614—7:0, a2+a3+a4=0, 2a2+3a3+4a4=0
B lving th ti h > 00 > th
y solving the equations, we have a, = —, a4y, = — —, a, = —, thus
cor0 T T
s(t) = Ops_ Dy Eﬁ, $(t) = L ﬂtz, §(1) = 105 19,9,

1> T* 1> 1> T* 1> 1> T* 1>

34

Algorithm 2

Solving trajectory planning problem

Inputs:

1. F={f,...f)

. Variables X = {cy, $;, C4, S4, C7, 57}

. Parameters A = {x,, z}

3

2

3

4. The initial position of the path p, = (xy, Yo, 29) € R
5. The final position of the path p, = (X, Y, Zo) € |

6

. The length of time series T € N
Output: a series of the configuration of the joints L = {©®, = (0, ,0,,6,) | t=1,...,T}

35

Algorithm 2

Solving trajectory planning problem

1. Calculate CGS of (F): & = {(S;, G|(A, X)), ..., (S,, G(A, X))} (S;: a segment)
((S;, G;) satisfying S; N R3 = @ can be eliminated)

2. L « &
3. Fort=1,...,7T, repeat the following:
. 6 . 15, 10,
1. Calculate the position of the end-effector as s < —1° — —1" + —17; p; < po(l —) + p;;

13 T4 T3
2. Calculate the solution ® of the inverse kinematic problem by Algorithm 1 with the inputs
(Fa Xa Aapd)

3. If the solution ® is calculated, then L «— L U {®}
4. Return L

36

Algorithm 2: an example

p() — t(x()a y()9 Z()) — t(10940980)5
pr = "(x5 yp, 2) = '(40,100,20), T = 50

Total computing time of inverse kinematic
computations for 51 points: 3.377s

By eliminating ($;, G;) satisfying $; N R’ = @
before the inverse kinematic computation: 2.246s

37

Trajectory planning with
verification of the feasibility of the
Inverse kinematic solution

Substitute the path of the end-effector into the equations

Substitute p, = py(1 — s) + pys = "X, y,2) = '(xy(1 —5) + Xe8, Yo(1 — 8) + yrs, 29(1 — 8) + zp5)

into the system of polynomial equations

fi = 120¢,¢48; — 16¢,c4 + 120¢ 547 + 136¢5, — 444/ 2,4

fr = 120s,¢487 — 16s1¢4 + 120s854¢7 + 13655, — 444/ 25, +Hy -
Ja = S12 + 612 —1=0

fS:Sf+cf—1:()

X,V, Z: parameters

.f6=S72+C72_1=O

39

Verification of the existence of a real root

For s € |0,1], verify that the system of equations has a real root with
the CGS-QE method

fi = 120¢,¢487 — 16¢icy + 120c¢ 5407 + 1365, — 44\/561 + Xp(1 —) + xp5 = 0,

fo = 120s,c48; — 16s1¢4 + 1205547 + 1365154 — 444/ 251 + yo(1 — 5) + yps = 0,

f3 = = 120c¢ys7 — 136¢,4 + 120545, — 165, — 104 — 444/2 + 75(1 — 5) + 25 = 0,

fi=si+ci—1=0
fS =Sj+Cf— 1 =0 S: a parameter

f=std-1=0

40

Algorithm 3

Verification of the feasibility of the inverse kinematic solution

Inputs:

1. F={f,....f)

. Variables X = {cy, $;, C4, S4, C7, 57}

. Parameters A = {x,, z}

2
3
4. The initial position of the path p, = (xy, Yo, 29) € R
5. The end (target) position of the path Pr= (X0, Yo» Z0) € |
6

. The length of time series T € N
Output: a time series of the configuration of the joints L = {0, = (0, ,0, .6,) | t=1,...,T}

41

Algorithm 3

Verification of the feasibility of the inverse kinematic solution

1. F’ « (Substituting x, y, z in F with the path p; < po(1 —) + py);

2. Calculate CGS of (F'Y as & = {(S;, G;(A, X)), ..., (S, G(A,X))} (S; a
segment)

. 3 .
((S;, G;) satisfying S; N R” = & can be eliminated)

3. For &, with the CGS-QE algorithm, calculate the range M of s for which F’ has a
real root

4. 1f[0,1] C M, then call Algorithm 2 with (F, X, A, Po Py T) to calculate the
series of the configuration of the joints L = {©®, = (0, ,,0,,,0;,) | t=1,...,T}

42

Algorithm 3: an example

e Py = "(X0, Yo» Z9) = '(10,40,80), pr = "(x1, ys» 7p) = '(40,100,20)
 CGS with 6 segments have been calculated in 485.8s

« For CGS & = {(8{,Gy), ..., (8, Gg) }, segments satisfying . N R’ = @
have been eliminated in 0.009s; three segments have been remained

* With the CGS-QE method, it has been verified that the system of
equations has a real root for s € [0,1]in 1.107s

* [he trajectory planning has been executed with Algorithm 2

43

Concluding remarks

* Proposed methods with the use of the CGS-QE method for solving the inverse
kinematic problem and the path planning problem of robot manipulator of 3 DOF:

* Solving an inverse kinematic problem for a single point of the end-effector

* Solving inverse kinematic problems repeatedly for a series of points in the path
given as a line segment

* Verifying feasibility of path planning computation for the path given as a line
segment with a parameter

45

Future work

* (Guarantee continuity of inverse kinematic solutions

* Detect/analyze singular points of polynomial systems with
parameters

* Improvement of the efficiency of the solver
* Path planning with more general curves represented by polynomials

* Developing a method for manipulators of higher DOF

46

Thank you!

References

Becker, E., Woermann, T.: On the trace formula for quadratic forms. In: Recent advances in real algebraic
geometry and quadratic forms. Contemp. Math., vol. 155, pp. 271-291. AMS (1994).

Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical systems. In: Gerdt, V.P,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 101-125. Springer (2011).

Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, Heidelberg (2005).

Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra (4th Ed.). Springer (2015).

Faugere, J.C., Merlet, J.P,, Rouillier, F.: On solving the direct kinematics problem for parallel robots. Research
report RR-5923, INRIA (2006).

Fukasaku, R., lwane, H., Sato, Y.: Real Quantifier Elimination by Computation of Comprehensive Grobner
Systems. In: Proceedings of ISSAC '15 p. 173-180. ACM (2015).

Horigome, N., Terui, A., Mikawa, M.: A design and an implementation of an inverse kinematics computation in
robotics using Grobner bases. In: ICMS 2020. LNCS, vol. 12097, pp. 3—13. Springer (2020).

48

References (continued)

Kalker-Kalkman, C.M.: An implementation of Buchbergers’ algorithm with applications to robotics. Mech. Mach.
Theory 28(4), 523-537 (1993).

Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636-667 (2007).

Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press,
Cambridge (2017).

Maekawa, M., Noro, M., Ohara, K., Takayama, N., Tamura, K.: The design and implementation of OpenXM-RFC
100 and 101. In: ASCM 2001, pp. 102-111. World Scientific (2001).

Nabeshima, K.: CGS: a program for computing comprehensive Gr'obner sys- tems in a polynomial ring
[computer software] (2018). https://www.rs.tus.ac.jp/~nabeshima/softwares.htm

Noro, M.: A computer algebra system: Risa/Asir. In: Algebra, Geometry and Software Systems, pp. 147-162.
Springer (2003).

Otaki, S., Terui, A., Mikawa, M.: A design and an implementation of an inverse kinematics computation in robotics
using real quantifier elimination based on comprehensive Gr'obner systems. Preprint (2021). arXiv:2111.00384

49

References (continued)

Pedersen, P, Roy, M.F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Computational algebraic
geometry, Progr. Math., vol. 109, pp. 203-224. Birkhauser (1993).

Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Springer. Robotics: Modelling, Planning and Control (2008).

da Silva, S.R.X., Schnitman, L., Cesca Filho, V.: A solution of the inverse kinematics problem for a 7-degrees-
of-freedom serial redundant manipulator using Grobner bases theory. Math. Probl. Eng. 2021, 6680687 (2021).

Terui, A., Yoshizawa, M., Mikawa, M.: ev3-cgs-ge-ik-2: an inverse kinematics solver based on the CGS-QE
algorithm for an EV3 manipulator [computer software] (2023).
https://qgithub.com/teamsnactsukuba/ev3-cgs-qge-ik-2

The PARI Group, Univ. Bordeaux: PARI/GP version 2.13.1 (2021). https://pari.math.u-bordeaux.fr/

Uchida, T., McPhee, J.: Triangularizing kinematic constraint equations using Grobner bases for real-time
dynamic simulation. Multibody Syst. Dyn. 25, 335-356 (2011).

Uchida, T., McPhee, J.: Using Grobner bases to generate efficient kinematic solutions for the dynamic
simulation of multi-loop mechanisms. Mech. Mach. Theory 52, 144-157 (2012).

50

https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2
https://pari.math.u-bordeaux.fr/

References (continued)

Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and
Cylindrical Algebraic Decomposition. pp. 376-392. Springer (1998).

Wolfram Research Inc: Mathematica, Version 13.1 [computer software] (2022).

Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type
theorems. Sci. China Ser. F Inf. Sci. 44(1), 33-49 (2001).

51

