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An example of robot manipulator of 3 DOF

(LEGO MINDSTORMS EV3)
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Motion planning of a robot

How to move the manipulator (the end-effector) from the initial position
to a desired (given) position? (The problem and a calculation)
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What we investigate

Inverse kinematic problem and path planning problem

Path planning problem:
r\?u verity if the end-effector can be
v moved along the given path —

Inverse kinematic problem: \@

verity if the end-effector can be

located in the desired position — / celEnEE & serfes o
- T
calculate corresponding algles of \ \\/. corresponding algles of the joints
the joints \




You may know...

Inverse kinematic problems have been frequently solved with Grobner basis

computation

A system of polynomial
eqguations;

I'=(fis /o 13 Ja)

The Grobner basis of /

w.r.t. a certain monomial
ordering

g1(xz) =0

» 92(37,3/ =0
93($7y7w) =0
g4(x,y,z,w) =0

The system of polynomial equations can be solved by solving
gl(x) — O - gz('x’y) — O — g3(.X,y,W) — O — 84(X,yaZ,W) — O

,\E

One can know the feasibility of the motion
before the actual computation

¥

Tends to be computationally expensive



Our previous results

Solving the inverse kinematic problem using Comprehensive Grobner Systems
(CGS) and real quantifier elimination based on the CGS (CGS-QE method) (Otaki et
al., CASC 2021)

e Features:
e Verification of inverse kinematics solutions with the CGS-QE method
* Preventing repeated calculation of Grobner bases by the use of CGS

* A remaining issue: “the preparation steps” (preparation of the solver before the
actual calculation) were executed by hand
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Our new contributions

1. A new and efficient implementation (automating “the preparation steps”)

2. An extension of the inverse kinematics computation to the trajectory
planning

1. Repeated calculation of inverse kinematics computation

2. For a given path expressed with a parameter, certify that the whole
motion along the path is feasible by the use the CGS-QE method



Plan of the talk

1. Formulation of the inverse kinematic problem
2. Solving the inverse kinematic problem using the CGS-QE method
3. Solving the trajectory planning problem using the CGS-QE method

4. Trajectory planning with verification of the feasibility of the whole motion
along the path using the CGS-QE method



Formulation of the Inverse
Kinematic problem




Forward and inverse kinematic problems

The end-effector

Forward kinematic
problem

Joint 2
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Cox et al. (2015)
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kinematic problem
Configuration space
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Formulation of the forward kinematic problem

1. Define a coordinate system for each joint
2. Calculate coordinate transformations between adjacent joints
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Defining coordinate-system for each joint

A modified Denavit-Hartenberg convention (Siciliano, et al. (2008))

« 2. : the coordinate system with the origin at

Jointi (i =1,...,7):

e Z:: along with the axis of Joint 1

 X;: the common normal to z;_; and z;

(overlapping with the link)

Joints 1, 4 and 7 are
» y.: defined so that 2.; forms the right- revolutional joints

handed coordinate system
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Parameters that specify the position and the orientation
of 2. ; w.rt. 2,

Ys Y7 Ye Ya Y3

* a;: the distance between axes z;_; and z; }

. the angle between axes z;_; and z; e

Segment 0

O
with respect to x; axis 7 \ (S

» d;: the distance between axes x;_; and x;

» 0. the angle between axes x;_; and x;

Joints 1, 4 and 7 are

with respect to z; axis revolutional joints
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The transformation matrix ~!7. fromX.to X, wrt. X,

Rotation Translation

cos 0, —sin 0,

17 = Cf)sal-s.mﬁi Cf)S a;cosf; —sina; ila; (mm) o; d; (mm) 6,
sinq; sin6; sina;cos6; cosa, 1 0 0 R0 04
2 0 /2 0 /4
3| 88 0 0 T /4
o o 4 24 0 0 04
I'="1,"15---"15"1g 5 96 0 0 —7/2
6| 16 0 0 /2
for transformation from 2q to 2., 7740 0 0 07
8 120 0 0 0
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The forward kinematic problem

'(x,y,7): position of the end-effector, 0;: the angle of joint i (i = 1, 4, 7)

Position of the end-effector w.r.t. 2., is expressed as:

x=—120cos 0, cos0,s1n 6, + 16 cos O, cos 6, — 120 cos &, sin 6, cos &,

—136c0s0,s1n0, + 44\/5 cos 0,
y =—120smn6, cos0,sin 6, + 16sin 0, cos 6, — 120 sin &, sin 6, cos &,

—136in 6, sin O, + 444/2 sin 6,
z = 120 cos 0, cos 0, + 136¢c0s0, — 120 sin 6, sin O, + 16sind, + 104 + 444/2
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The inverse kinematic problem expressed as a
system of polynomial equations

With ¢; = cos @, s; = sin 6, (1 = 1,4,7), we have:
f; = 120c¢,¢487 — 16¢,¢4 + 120¢;5,¢7 + 136¢5, — 44\/§c1 +x=0
fr = 120s,¢c487 — 168,¢c4 + 12055407 + 13655, — 444/ 25, + y =0
f3 = —120c,c7 — 136¢, + 12055, — 165, — 104 —444/2 + 7= 0
fa = S12 + 6‘12 —1=0

5=S£+C£—1=O

Constraints on the trigonometric

functions

=t d-1=0
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Solving the inverse kinematic
problem using the CGS-QE method




Quantifier elimination algorithms based on CGS

* Weispfenning (1998): using Comprehensive Grobner Bases and
counting the number of real roots of a system of polynomial

equations

* Fukasaku et al. (2015): using an improved CGS algorithm by Suzuki
and Sato (2006) with further improvements (the CGS-QE algorithm)

 CGS-QE = (CGS calculation) + (the theory of real root counting)
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CGS-QE algorithm

(Weispfenning (1998), Fukasaku et al. (2015))

fis--»f. € R[A, X]

X =Xy, ..., X, (variables)

A=A,....,A (parameters)

EI)_((fl(A,)_() =0 A - /\f,,(A,)_() = () ... (*) subject of quantifier

elimination
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CGS-QE algorithm

(Weispfenning (1998), Fukasaku et al. (2015))

1. Calculate CGS of (f;, ...,f.):let & = {(S;, G}), ..., (S, G,)}

(Sl-: a segment: the set of parameters)

2. For each §;, by using the theory of real root counting (Becker, Wéermann
(1994), Pedersen et al. (1993)), derive a condition y; on parameters A such
that (the system of polynomial equations defined by) G; has real roots

[
3. \/ ((the difining formula of S;) A ;) is equivalent to the given formula (),

i=1
with quantifiers eliminated
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Solving the inverse kinematic problem

Variables ¢y, S, C4, S4, C7, S7, Parameters x, y, z, position of the end-effector (xo, Yos ZO) e |
fi = 120¢,c487 — 16¢ic4 + 120¢54¢7 + 136¢5, — 44\/561 +x =0

fr = 120s,¢487 — 16s,¢4 + 1208,5,¢7 + 13655, — 444/ 25, + y =0

f3 = — 120¢c4c7 — 136¢,4 + 1208457 — 165, — 104 —444/2 + 2 =0
fi=si+ci—1=0

I5 = sf + cf —1=0

fo=sttei-1=0
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Algorithm 1

Solving the inverse kinematic problem

Inputs:

1. F=1{f,....].}

2. Variables X = 1C15> 815 Cqs Sq5 C75 57}
3. Parameters A = {x,V, z}
4. Position of the end-effector a = (xy, Yy, 29) € R-

Output: configuration of the joints ® = {60,, 0,, 0-}

23



Algorithm 1

Solving the inverse kinematic problem

1. Calculate CGS of (F): € = {(S;, G,(A, X)), ..., (S, Gt(/i,)_())} (S;: a segment)
(CGS can be calculated in advance)
2. From & = {(S$,,Gy), ..., (S,, G, }, eliminate (S;, G;) satisfying S; N | > = @, and define

g = {05, Gl(A,)_{)), o (5, Gt(A,)_())} again (the “preprocessing step” in our previous
method )

3. Fora = (xy, ¥y, Z9), choose (S;, G;) from & satisfying a € S,
4. Count the number of real roots of G,(a, )_()

1. If real roots exist, then calculate real roots of G;(a, X) and return © = {6,, 0,, 6}

2. If (G{a, X)) is not zero-dimensional, process it separately
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Step 2 (the “preprocessing step” in our previous method)

For 5y = Va:(]m)\vc(lkz) Iy ;i = <Fk]> U=12),f€ F:

« If fis univariate: count the real roots (with the discriminant

(degf = 2), or the Sturm’s method (deg f > 3)) — eliminate S, if real
root does not exist

o If f has trivial root(s): substitute the roots for g € F ro thenit g = 0,

eliminate S,
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Step 4-2: in the case (Gl-(a, X )) is not zero-dimensional

1. If there exists g(a, X) € G; which has trivial root(s), then substitute
the root(s) with g(a, X) € G.(a, X)

2. Now, is {G,(a, X)) zero-dimensional?
+ Yes — calculate real roots of G.(a, X)

e No — cancel the calculation
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Implementation and experiments

https://qgithub.com/teamsnactsukuba/ev3-cgs-ge-ik-2
* Implemented on Risa/Asir Version 20230315
* With the use of PARI-GP 2.3.11 (called from Asir for numerical solving of equations)
* CGS calculation: with Risa/Asir (implementation by Nabeshima (2018))
* Computing environment:
e Intel Xeon Silver 4210 3.2 GHz, RAM 256 GB
* Linux Kernel 5.4.0
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https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2

Experiments

1. Choose 1000 positions of the end-effector { (x, y, Z)j J }2(1)0 randomly within the feasible region

(x, v,z € Q,x = al/bwith |b| < 100; the same condition applies to the denominator of y and z)

2. Solve the inverse kinematic problem at (x, y, z); and calculate the configuration of the joint (6, 65, 65);

3. Using the forward kinematics with (8;, 6, 63)., calculate the position of the end-effector (x', y', z’)j and

the error (the euclidean distance) from the given position of the end-effector (x, y, z)j by

\/ =X+ (O =y + (' —2)°

Note: the CGS has been pre-calculated (calculation time: 62.3s)
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Experimental results

Test Time (sec.) Error (mm)

1 0.1386 1.2428 x 10~ *?

2 0.1331 2.3786 x 1012

10 tests against 100 3 0.1278 1.0845 x 10~

~ points: 4 0.1214 1.6150 x 10~ "2
AR POS 5 0.1147  1.5721 x 1072
6 0.1004 1.6229 x 10~

7  0.0873 2.2518 x 1012

8 0.0792 1.3923 x 1012

9 0.0854 1.2919 x 1012

10 0.0797 1.8674 x 1012

Average 0.1068 1.6319 x 10~ *#
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Solving the trajectory planning
problem using the CGS-QE method




A path of the end-effector

As a line segment

e« Po = (X, Vo» Zo): the initial position

. p,="'(x,y,z): present position

« Py = "(xp, yp, 27): the final position
(PgsPos Py € R>, py # Pr)

The path: p, = py(1 — ) + DgS, S € [0,1]
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Changing the position s as a function of ¢

A trajectory by expressing s € |0,1] as s = s(#), a function of
t € |0..T] (T: positive integer)

e Let$ = 5(¢) (velocity) and § = s"(f) (acceleration)

» Express s(¢) as a polynomial

o If we restrict s(0) = s"(0) = 0and s'(T) = s"(T) = 0, then s(¢)
becomes a polynomial of degree 5 in 7 (Lynch and Park (2017))
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Derivation of s(7), s(?), s(¢)

a1l ([t > ayl ([t * a1l ([t i al ([t ’
Fors()=— =) +— | =) +— | =) +— | =] +ay,
S \T 4 \T 3 \T 2 \T

$(t) and 5(7) are expressed as

. [ ’ [ 3 [ - [
S(t) = dy, (?) + A3 (?) + ) (?) + dy (;) + d,

5 da, ([t i 3a; [ t : 2a, [t a
SO))=—|=) +t— (=) +— | =) +—
T \T T \T T \T T
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Derivation of s(7), s(?), s(¢)

With s(0) = $(0) = §(0) = 0, s(T) = 1, $(T) = 5(T) = 0, we have a
system of linear equations as:

60
20612"‘15613"‘12614—7:0, a2+a3+a4=0, 2a2+3a3+4a4=0
B lving th ti h > 00 > th
y solving the equations, we have a, = —, a4y, = — —, a, = —, thus
cor0 T T
s(t) = Ops_ Dy Eﬁ, $(t) = L ﬂtz, §(1) = 105 19,9,

1> T* 1> 1> T* 1> 1> T* 1>
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Algorithm 2

Solving trajectory planning problem

Inputs:

1. F={f,...f)

. Variables X = {cy, $;, C4, S4, C7, 57}

. Parameters A = {x,, z}

3

2

3

4. The initial position of the path p, = (xy, Yo, 29) € R
5. The final position of the path p, = (X, Y, Zo) € |

6

. The length of time series T € N
Output: a series of the configuration of the joints L = {©®, = (0, ,0,,6,) | t=1,...,T}
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Algorithm 2

Solving trajectory planning problem

1. Calculate CGS of (F): & = {(S;, G|(A, X)), ..., (S,, G(A, X))} (S;: a segment)
((S;, G;) satisfying S; N R3 = @ can be eliminated)

2. L « &
3. Fort=1,...,7T, repeat the following:
. 6 . 15, 10,
1. Calculate the position of the end-effector as s < —1° — —1" + —17; p; < po(l — ) + p;;

13 T4 T3
2. Calculate the solution ® of the inverse kinematic problem by Algorithm 1 with the inputs
(Fa Xa Aapd)

3. If the solution ® is calculated, then L «— L U {®}
4. Return L

36



Algorithm 2: an example

p() — t(x()a y()9 Z()) — t(10940980)5
pr = "(x5 yp, 2) = '(40,100,20), T = 50

Total computing time of inverse kinematic
computations for 51 points: 3.377s

By eliminating ($;, G;) satisfying $; N R’ = @
before the inverse kinematic computation: 2.246s
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Trajectory planning with
verification of the feasibility of the
Inverse kinematic solution




Substitute the path of the end-effector into the equations

Substitute p, = py(1 — s) + pys = "X, y,2) = '(xy(1 —5) + Xe8, Yo(1 — 8) + yrs, 29(1 — 8) + zp5)

into the system of polynomial equations

fi = 120¢,¢48; — 16¢,c4 + 120¢ 547 + 136¢5, — 444/ 2,4

fr = 120s,¢487 — 16s1¢4 + 120s854¢7 + 13655, — 444/ 25, +Hy -
Ja = S12 + 612 —1=0

fS:Sf+cf—1:()

X,V, Z: parameters

.f6=S72+C72_1=O
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Verification of the existence of a real root

For s € |0,1], verify that the system of equations has a real root with
the CGS-QE method

fi = 120¢,¢487 — 16¢icy + 120c¢ 5407 + 1365, — 44\/561 + Xp(1 — ) + xp5 = 0,

fo = 120s,c48; — 16s1¢4 + 1205547 + 1365154 — 444/ 251 + yo(1 — 5) + yps = 0,

f3 = = 120c¢ys7 — 136¢,4 + 120545, — 165, — 104 — 444/2 + 75(1 — 5) + 25 = 0,

fi=si+ci—1=0
fS =Sj+Cf— 1 =0 S: a parameter

f=std-1=0

40



Algorithm 3

Verification of the feasibility of the inverse kinematic solution

Inputs:

1. F={f,....f)

. Variables X = {cy, $;, C4, S4, C7, 57}

. Parameters A = {x,, z}

2
3
4. The initial position of the path p, = (xy, Yo, 29) € R
5. The end (target) position of the path Pr= (X0, Yo» Z0) € |
6

. The length of time series T € N
Output: a time series of the configuration of the joints L = {0, = (0, ,0, .6, ) | t=1,...,T}
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Algorithm 3

Verification of the feasibility of the inverse kinematic solution

1. F’ « (Substituting x, y, z in F with the path p; < po(1 — ) + py);

2. Calculate CGS of (F'Y as & = {(S;, G;(A, X)), ..., (S, G(A,X))} (S; a
segment)

. 3 .
((S;, G;) satisfying S; N R” = & can be eliminated)

3. For &, with the CGS-QE algorithm, calculate the range M of s for which F’ has a
real root

4. 1f[0,1] C M, then call Algorithm 2 with (F, X, A, Po Py T) to calculate the
series of the configuration of the joints L = {©®, = (0, ,,0,,,0;,) | t=1,...,T}
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Algorithm 3: an example

e Py = "(X0, Yo» Z9) = '(10,40,80), pr = "(x1, ys» 7p) = '(40,100,20)
 CGS with 6 segments have been calculated in 485.8s

« For CGS & = {(8{,Gy), ..., (8, Gg) }, segments satisfying . N R’ = @
have been eliminated in 0.009s; three segments have been remained

* With the CGS-QE method, it has been verified that the system of
equations has a real root for s € [0,1]in 1.107s

* [he trajectory planning has been executed with Algorithm 2
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Concluding remarks




* Proposed methods with the use of the CGS-QE method for solving the inverse
kinematic problem and the path planning problem of robot manipulator of 3 DOF:

* Solving an inverse kinematic problem for a single point of the end-effector

* Solving inverse kinematic problems repeatedly for a series of points in the path
given as a line segment

* Verifying feasibility of path planning computation for the path given as a line
segment with a parameter
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Future work

* (Guarantee continuity of inverse kinematic solutions

* Detect/analyze singular points of polynomial systems with
parameters

* Improvement of the efficiency of the solver
* Path planning with more general curves represented by polynomials

* Developing a method for manipulators of higher DOF
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Thank you!
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