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Abstract

This article is devoted to the classical problem of the inversion of the ultra-
elliptic integrals given by basic holomorphic differentials on the curve of genus
2. Here we obtained the basic solutions F and G of this problem, which are
obtained from a single-valued 4-periodic meromorphic function on the Abelian
covering W of the universal hyperelliptic curve of genus 2. As W we use a non-
singular analytic curve W = {u = (u1, u3) ∈ C2 : σ(u) = 0}, where σ(u) is the
two-dimensional sigma function. It is shown that G(z) = F (ξ(z)), where z is a
local coordinate in a neighborhood of a point of the smooth curve W , and ξ(z)
is a smooth function in this neighborhood, given by the equation σ

(
u1, ξ(u1)

)
=

0. It was obtained: the differential equations for the functions F (z), G(z) and
ξ(z); recurrent formulas for the coefficients of expansion in the series of these
functions; transformation of function G(z) into Weierstrass elliptic function ℘
under deformation of a curve of genus 2 into an elliptic curve.

1 Introduction.

In 1835, Krellé’s periodic journal, Volume 13, published Jacobi’s work “On quadruply
periodic functions of two variables, which arise in the theory of Abelian functions”. This
article laid the foundations for the theory of ultra-elliptic integrals (see [24]), which is
still relevant today due to problems in the theory of functions and mathematical physics
(see a brief review below).

Let V be a nonsingular hyperelliptic curve of genus 2 defined by equation

Y 2 = X5 + λ4X
3 + λ6X

2 + λ8X + λ10, λ2k ∈ C.
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Let

du1 = − X

2Y
dX, du3 = − 1

2Y
dX (1)

be a basis of the vector space of holomorphic 1-forms on V , and let du = t(du1, du3).
The sigma function σ(u) associated with the curve V is an entire odd function on C2

(see [7, 6]).
An important specificity of sigma functions is the ability to introduce a grading (see

[11]). In this case, we have

degX = 2, deg Y = 5, deg λ2k = 2k, k = 2, . . . , 5, deg u2q−1 = 1− 2q, q = 1, 2.

In this grading, the equation of the curve V is given by a homogeneous polynomial of
degree 10, and the sigma function σ(u) is given by a homogeneous series of degree −3
whose coefficient under the monomial ui

1u
j
3 (if it is nonzero) is given by a homogeneous

polynomial in λ4, . . . , λ10 of degree i+ 3j − 3.
The initial segment of the series has the form

σ(u;λ) =
1

3
u3
1 − u3 −

1

6
λ6u

3
3 +

1

12
λ4u

4
1u3 +

1

6
λ6u

3
1u

2
3+

+
1

6
λ8u

2
1u

3
3 +

1

3
λ10u1u

4
3 −

(
1

60
λ4λ8 +

1

120
λ2
6

)
u5
3 + . . . (2)

The choice of the sign “ − ” in formulas (1) leads to the normalization σ(u, 0) =
1
3
u3
1 − u3. This corresponds to the writing of the function σ(u, 0) in the form of the

Adler–Moser polynomial (see [1]) and the Schur–Weierstrass polynomial (see [8]).
In the present paper, we obtain solutions of inversion problems for ultra-elliptic

integrals, given by equations and series that are homogeneous in this grading.
Consider the analytic curve W = {u = (u1, u3) ∈ C2 | σ(u) = 0}. The gradient

∇σ(u) =
(
σ1(u), σ3(u)

)
, where σi(u) = ∂

∂ui
σ(u), does not vanish at any point of the

curve W , therefore W does not have singular points.
The nonsingular curve on the Jacobian of the curve V , given by equation σ(u) = 0,

is called the sigma divisor and denoted by (σ).
The Jacobi variety Jac(V ) of the curve V of genus 2 is the base of the universal

covering C2 → Jac(V ), whose layer can be identified with the lattice Γ ⊂ Z2 of periods
of holomorphic differentials on V . The image of the Abel–Jacobi map

I : V −→ Jac(V ), P −→
∫ P

∞
du

is the sigma divisor (σ), therefore the mapping I defines an induced Abelian covering
with a base V , whose space can be identified withW . Thus, we obtain the coveringW →
V with the layer Γ and the possibility to construct solutions of the inversion problem of
the ultra-elliptic integrals in the class of single-valued 4-periodic meromorphic functions
on the curve W ⊂ C2.

We denote by H(C2) the ring of holomorphic functions on C2 with coordinates
u = (u1, u3) and by F(C2) the corresponding field of meromorphic functions. The field
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of functions F(Jac(V )), which are meromorphic on the Jacobian of the curve V , can be
identified with the field of functions f(u) ∈ F(C2) such that f(u + Ω) ≡ f(u) for any
period Ω ∈ Γ. Using the classical results of the theory of functions on many complex
variables, it is easy to show that any function f(u) ∈ F(C2) can be written in the form

f(u) =
1

h(u)

(
g1(u) + σ(u)g2(u)

)
,

where h(u), g1(u) and g2(u) belong to the ring H(C2). Here, if g1(u) is not equal
identically to zero on C2, then the restriction of g1(u) to the curve W ∈ C2 is not
equal identically to zero. The quotient ring H(C2)/J , where J is the ideal generated
by function σ(u), is an integral domain. The fraction field of the ring H(C2)/J can be
identified with the field F(W ) of meromorphic functions on W .

Let us denote by F(C2,W ) the field of functions f(u) ∈ F(C2) such that f(u+Ω) ≡
f(u) for any point u ∈ W and any period Ω ∈ Γ. Consider the field F

(
(σ)
)
of meromor-

phic functions on sigma-divisor (σ) ⊂ Jac(V ) and canonical projection π : W → (σ).
The image of the homomorphism π∗ : F

(
(σ)
)
→ F(W ) can be identified with the field

of functions of the form ε g(u)
h(u)

∈ F(C2,W ), where ε is constant, and restrictions of the

holomorphic functions g(u) and h(u) to the curve W are not equal identically to zero.
Our article is devoted to solving the following problems.

Problem I. Describe the field F
(
(σ)
)
in terms of the two-dimensional sigma function

σ(u).

The field of functions F(V ), that are meromorphic on the curve V , can be iden-
tified with the fraction field of polynomial ring C[X,Y ] by the ideal generated by the
polynomial

Y 2 −X5 − λ4X
3 − λ6X

2 − λ8X − λ10.

The mapping I induces the homomorphism

I∗ : F
(
(σ)
)
→ F(V ).

Problem II. Describe the homomorphism I∗.

The solution of problems I and II is given in Theorem 3.4. In this theorem we give
an explicit form of the functions f2 and f5 from F(C2,W ), which define the functions
f̃2 and f̃5 on F

(
(σ)
)
. By the same token I∗(f̃2) = X and I∗(f̃5) = Y . The functions

f2 and f5 are written as differential expressions in the sigma function σ(u) and are not
4-periodic on whole C2.

In the papers [25], [17] and [27] one constructed the functions g2 and g5 from
F(C2,W ). These functions admit constraints g̃2 and g̃5 on (σ). By the same token
I∗(g̃2) = X and I∗(g̃5) = Y . The functions g2 and g5 are written as differential expres-
sions in the sigma functions σ(u) and σ(2u).

Problem III. Describe the functions f2 − g2 and f5 − g5.

Section 7 of our work is devoted to this problem.
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We have two ultra-elliptic integrals
∫ P

∞ du1 and
∫ P

∞ du3 obtained with the help of two
holomorphic differentials du1 and du3. We take a point P∗ ∈ V such that P∗ 6= ∞ and
an open neighborhood U∗ of this point P∗ such that U∗ is homeomorphic to an open
disk in C. Let us fix a path γ∗ on the curve V from ∞ to the point P∗. We consider
the holomorphic mapping defined by an ultra-elliptic integral

I3 : U∗ → C, P = (X,Y ) 7→
∫ P

∞
du3,

where as the path of integration we choose the composition of the fixed path γ∗ from
∞ to the point P∗ and some path in the neighborhood U∗ from P∗ to the point P .
Let us put u∗

3 = I3(P∗). Since P∗ 6= ∞, then the equation σ(φ(u3), u3) = 0 defines a
single-valued implicit function φ(u3) in the neighborhood of the point u∗

3.
Let us denote by F(U∗) the field of meromorphic functions on U∗. For f ∈ F(C2,W ),

we can consider the meromorphic function f
(
φ(I3(P )), I3(P )

)
on U∗. The mapping I3

induces a ring homomorphism

I∗3 : F(C2,W ) → F(U∗), f 7→ f
(
φ(I3(P )), I3(P )

)
,

which defines a homomorphism

I∗3 : F
(
(σ)
)
→ F(U∗).

Problem IV. Describe the homomorphism I∗3 .

The solution of this problem is given in Theorem 4.2.
Let us take a point P∗ ∈ V such that P∗ 6= (0,±

√
λ10) and an open neighborhood

U∗ of the point P∗ such that U∗ is homeomorphic to an open disk in C. Let us fix a path
γ∗ on the curve V from ∞ to the point P∗. Let us consider the holomorphic mapping
defined by the ultra-elliptic integral

I1 : U∗ → C, P = (X,Y ) 7→
∫ P

∞
du1,

where as the path of integration we choose, as above, the composition of the fixed path
γ∗ from ∞ to the point P∗ and some path in U∗ from P∗ to P .

Let u∗
1 = I1(P∗). Since P∗ 6= (0,±

√
λ10), one can take the unique implicit function

ξ(u1), defined in a neighborhood of u∗
1 by the equation σ(u1, ξ(u1)) = 0. Let us denote

by F(U∗) the field of meromorphic functions on U∗. For g ∈ F(C2,W ), we can con-
sider the meromorphic function g

(
I1(P ), ξ(I1(P ))

)
on U∗. The mapping I1 induces a

homomorphism

I∗1 : F(C2,W ) → F(U∗), g 7→ g
(
I1(P ), ξ(I1(P ))

)
,

which defines a homomorphism

I∗1 : F
(
(σ)
)
→ F(U∗).
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Problem V. Describe the homomorphism I∗1 .

The solution of this problem is given in Theorem 5.2.
Let Sym2(V ) be the symmetric square of the non-singular curve V of genus 2. Let

us consider the Abel-Jacobi map

Sym2(V ) → Jac(V ), (P1, P2) 7→
∫ P1

∞
du+

∫ P2

∞
du.

Problem VI. Describe the connection between the solution of the problem of the in-
version of the Abel–Jacobi map in genus 2 and the solutions of the problems of inversion
of the ultra-elliptic integrals I1 and I3.

The solution of this problem is given in Theorems 4.9 and 5.10.
Let f2(u) = −σ3(u)/σ1(u), where σi(u) = ∂ui

σ(u).
For P = (X,Y ) ∈ U∗ and z = I3(P ), set F (z) = f2(φ(z), z). Then we have (see

Proposition 4.4)
X = F (z), Y = −F ′(z)/2, (3)

where F ′ denotes the derivative of F with respect to z. Using this solution to the
inversion problem, it is easy to obtain differential equations (see Theorem 4.5)

(F ′/2)2 = F 5 + λ4F
3 + λ6F

2 + λ8F + λ10, (4)

F ′′ = 10F 4 + 6λ4F
2 + 4λ6F + 2λ8.

Under given initial conditions, these equations allow us to obtain in an explicit form
the series expansion of the function F (z) (see Proposition 4.7 and 4.8).

For P = (X,Y ) ∈ U∗ and z = I1(P ), set G(z) = f2(z, ξ(z)). Then we have (see
Proposition 5.4)

X = G(z), Y = −G(z)G′(z)/2, (5)

where G′ denotes the derivative of G with respect to z. Using this solution to the
inversion problem, it is easy to obtain differential equations (see Theorem 5.5)

G2{(G′/2)2 −G3 − λ4G− λ6} − λ8G− λ10 = 0, (6)

G4(G′′′ − 12GG′)− 4λ8GG′ − 12λ10G
′ = 0. (7)

Under given initial conditions, these equations allow us to obtain in an explicit form
the series expansion of the function G(z) (see Propositions 5.7, 5.8, 6.2). If λ8 =
λ10 = 0, then the function G(z) coincides with the Weierstrass elliptic function ℘(z)
(see Corollary 6.5). The functions F (z) and G(z) are related by G(z) = F (ξ(z)) (see
Proposition 5.9).

In [18, 19, 20, 21, 22], the inversion of the ultra-elliptic integrals is applied to the
construction of the analytic solutions of the geodesic equations in physics. These papers
state that the functions F (z) and G(z) are solutions of differential equations (4) and
(6) in our notation, respectively.
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In [14], the inversion of the ultra-elliptic integrals for differentials of the first and
second kind is applied in the problem of the motion of the double pendulum.

In the papers [12] and [21] one described the following procedure for calculating the
functions F (z) and G(z). First, the basis in homology is fixed on the curve V and the
period matrices that are necessary for constructing the theta function are calculated.
Then, using the Newton method, implicit functions φ and ξ (in our notation) are
calculated. Finally, the functions F (z) and G(z) are calculated based on the expression
of the sigma function in terms of theta function.

In [4, 5], the authors consider the ultra-elliptic integrals in terms of the two-dimensional
theta function, i.e. the ultra-elliptic integrals of the normalized holomorphic differen-
tials. In these papers, the inversion problem of the ultra-elliptic integrals is solved with
the using of the theta functions of genus 2 (see [4], p.1729). The period matrix of holo-
morphic differentials of the curve, which is necessary for constructing theta functions,
is calculated with the using of some linear and non-linear equations that are solved by
the Newton method. In these papers, the inversion of ultra-elliptic integrals is applied
to calculate the conformal mappings of the upper half-plane into rectangular polygons.

In [5], this approach is applied to some physical problems such as the calculating
the 2D-flow of ideal fluid over a rectangular surface and the evaluation of the capacity
of multi-component rectangular capacitors with axial symmetry.

Finally, we note that the hyperelliptic integrals of the third kind are expressed in
terms of the sigma functions in [22] for g = 2 and in [13] for any genus. In [22], in
the case g = 2, these expressions are used to solve the geodesic equations in the Kerr-
de Sitter space-time. In [13], in the case g = 3, these expressions are used to solve
the geodesic equations for the massive test particles in the Hořava-Lifshitz black hole
space-times.

In our paper, we realised a new approach to the inversion problem of ultra-elliptic
integrals. We obtain the series expansion of the functions F (z) and G(z) directly from
the differential equations which they satisfy and show that the coefficients of the series
expansions are homogeneous polynomials in the parameters λ4, . . . , λ10.

Note that in the approach based on sigma functions, it becomes possible to obtain
results under continuous deformation of the parameters of the curves until the curve’s
degeneration (see, for example, [2]). As is well known, approach based on the theta
functions does not provide such an opportunity.
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2 The sigma function.

Let polynomial

Q(X) = X5 + λ4X
3 + λ6X

2 + λ8X + λ10, λi ∈ C,

has no multiple roots. Let us consider a nonsingular hyperelliptic curve of genus 2

V = {(X,Y ) ∈ C2 | Y 2 = Q(X)}. (8)

In this section, we recall the construction of the sigma function for the curve V in
terms of the theta function for this curve (see [9]) and give the facts that we will need
later.

In the coordinates (X,Y ) ∈ V we choose

du1 = − X

2Y
dX, du3 = − 1

2Y
dX

as the basis of the vector space of holomorphic 1-forms on V and set du = t(du1, du3).
Next, choose

dr1 = −X2

2Y
dX, dr3 =

−λ4X − 3X3

2Y
dX

as the meromorphic 1-forms on V .
Let {αi, βi}2i=1 be the canonical basis in the one-dimensional homology group of the

curve V . Let us define the matrices of periods by

2ω1 =

(∫
αj

dui

)
, 2ω2 =

(∫
βj

dui

)
, −2η1 =

(∫
αj

dri

)
, −2η2 =

(∫
βj

dri

)
.

Let us introduce the matrix of normalized periods τ = ω−1
1 ω2.

Let δ = τδ′ + δ′′, δ′, δ′′ ∈ R2, be the vectors of Riemann’s constants with respect to
({αi, βi},∞) and δ := t(tδ′, tδ′′). Then we have δ′ = t(1

2
, 1
2
) and δ′′ = t(1, 1

2
). The sigma

function σ(u), where u = t(u1, u3) ∈ C2, is defined by

σ(u) = C exp
(
tuκu

)
θ[δ](w, τ),

where C is a constant, κ = 1
2
η1ω

−1
1 , w = 1

2
ω−1
1 u and θ[δ](w) is the Riemann’s theta

function with characteristics δ, which is defined by

θ[δ](w) =
∑
n∈Z2

exp{π
√
−1 t(n+ δ′)τ(n+ δ′) + 2π

√
−1 t(n+ δ′)(w + δ′′)}.

Note that the transition from the period matrices 2ω1 and 2ω2 to the normalized period
matrix τ = ω−1

1 ω2 deprives the coordinates of the vector w of grading.
We set

σi = ∂iσ(u), σi,j = ∂i∂jσ(u), ℘i,j(u) = −∂i∂j log σ(u), ℘i,j,k(u) = −∂i∂j∂k log σ(u),

where ∂i =
∂

∂ui
, i = 1, 3. Let us define the period lattice Λ = {2ω1m1+2ω2m2 | m1,m2 ∈

Z2} and let
W = {u ∈ C2 | σ(u) = 0}.
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Proposition 2.1. (see [9], Theorem 1.1, and [26], p. 193) For m1,m2 ∈ Z2, we set
Ω = 2ω1m1 + 2ω2m2, and let

A = (−1)2(
tδ′m1−tδ′′m2)+tm1m2 exp(t(2η1m1 + 2η2m2)(u+ ω1m1 + ω2m2)).

Then
(i) σ(u+ Ω) = Aσ(u), where u ∈ C2.
(ii) σi(u+ Ω) = Aσi(u), i = 1, 3, where u ∈ W .

Proposition 2.1 (i) implies that u+ Ω ∈ W для for any u ∈ W and Ω ∈ Λ. The
surface

(σ) := {u ∈ C2/Λ | σ(u) = 0}
is called the sigma divisor.

Theorem 2.2. (see [8], Theorem 6.3, [9], Theorem 7.7, [11], [26], Theorem 3) The
sigma function σ(u) = σ(u1, u3) is an entire odd function on C2, and it is given by the
series

σ(u) =
1

3
u3
1 − u3 +

∑
i+3j⩾7

αi,ju
i
1u

j
3, (9)

where the coefficients αi,j ∈ Q[λ4, λ6, λ8, λ10] are homogeneous polynomials of degree
i+ 3j − 3, if αi,j 6= 0.

3 The field of meromorphic functions on the sigma

divisor.

The Abel-Jacobi mapping

I : V → Jac(V ) = C2/Λ, P 7→
∫ P

∞
du,

is an embedding, and its image is equal to the sigma divisor (σ). Let us consider the
following meromorphic functions on C2

f2 = − 1

σ1

σ3, f5 =
1

2σ3
1

(σ2
1σ3,3 − 2σ1σ3σ1,3 + σ2

3σ1,1).

Note that f2 =
1
u2
1
+ . . . and f5 =

1
u5
1
+ . . . . Let us set P = (X,Y ) ∈ V and

u =

∫ P

∞
du.

Lemma 3.1. (see [16], p. 129, and [23], Theorem 1) The function σ1(u) treated as
a function of the point P , does not identically vanish. There is the equality of the
meromorphic functions on V

X = f2(u). (10)
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Proof. From the well-known solution of the Abel–Jacobi inversion problem (see [3] and
[9] Theorem 2.4), we have

X1 +X2 = ℘1,1

(∫ P1

∞
du+

∫ P2

∞
du

)
, −X1X2 = ℘1,3

(∫ P1

∞
du+

∫ P2

∞
du

)
,

where Pi = (Xi, Yi) ∈ V, i = 1, 2. Since by definition

℘1,1 =
σ2
1 − σσ1,1

σ2
, ℘1,3 =

σ1σ3 − σσ1,3

σ2
,

we have

− X1X2

X1 +X2

=
σ1σ3 − σσ1,3

σ2
1 − σσ1,1

.

When P2 = (X2, Y2) → (∞,∞), the left side of the equation tends to −X1 and σ(u) → 0
so the right side of equality tends to −f2(u).

Lemma 3.2. ([9] p. 116) There is the equality of meromorphic functions on V

Y = f5(u). (11)

Proof. Differentiating equation (10) with respect to X, we obtain

1 = f2,1(u)

(
− X

2Y

)
+ f2,3(u)

(
− 1

2Y

)
,

where f2,i = ∂ui
f2. Therefore we have

2Y = −f2,1(u)X − f2,3(u) = −f2,1(u)f2(u)− f2,3(u) = 2f5(u). (12)

Remark 3.3. The following formula was obtained in [25]

2X = ℘1,1(2u).

The following formula was obtained in [17], p. 128 (see also [27] Lemma 3.2.4)

2Y =
σ(2u)

σ1(u)4
. (13)

Let F(C2) be the field of all meromorphic functions on C2. Let us denote by
F(C2,W ) the field of functions f(u) ∈ F(C2) such that f(u + Ω) ≡ f(u) for any
point u ∈ W and any period Ω ∈ Γ. Let J∗ be the set of meromorphic functions
f ∈ F(C2,W ), which identically equal to zero on W and F

(
(σ)
)
:= F(C2,W )/J∗. The

mapping I induces the composition

I∗ : F(C2,W ) → F(C2,W )/J∗ → F(V ), f 7→ f ◦ I.
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Theorem 3.4. The mapping I∗ : F(C2,W ) → F(V ) induces the isomorphism of fields

I∗ : F
(
(σ)
)
→ F(V ), f2 7→ X, f5 7→ Y,

where fi is the equivalence class of the function fi in F
(
(σ)
)
for i = 2 and 5.

Proof. From the equality Ker I∗ = J∗ we obtain that the mapping I∗ is injective. From
the equality I∗(f2) = X and I∗(f5) = Y we obtain that the mapping I∗ is surjective.

Let us introduce the following differentiation of the field F(V )

L3 = −2Y
d

dX
.

Let us describe in more detail the action of this operator. Consider the full differential
df of the function f ∈ F(V ) and the full differential dX of the meromorphic function
X on V . Then df/dX is the meromorphic function on V which uniquely determined
by the formula df = (df/dX) · dX. Let us consider the following differentiation of the
field F(C2)

L3 = ∂u3 + f2∂u1 .

Proposition 3.5.
(i) Let g ∈ F(C2,W ), then L3g ∈ F(C2,W ).
(ii) Let g ∈ J∗, then L3g ∈ J∗. Therefore, we can consider the operator L3 as a

differentiation of the field F
(
(σ)
)
= F(C2,W )/J∗.

(iii) There is the formula L3 ◦ I∗ = I∗ ◦ L3.

Proof. Set g ∈ F(C2,W ). Using the formula X = f2(u), we obtain

L3 ◦ I∗(g) = L3g(u) = −2Y

(
− X

2Y
g1(u)−

1

2Y
g3(u)

)
= f2(u)g1(u) + g3(u),

where gi = ∂ui
g. Since the operator L3 transforms the field F(V ) into itself, we obtain

f2(u)g1(u) + g3(u) ∈ F(V ).

Consequently, L3g = f2g1 + g3 ∈ F(C2,W ). Therefore we obtain a proof of (i).
Set g ∈ J∗, then the function f2(u)g1(u) + g3(u) as an element of F(V ) equals to

zero. This means that L3g = f2g1 + g3 ∈ J∗. Thus, we obtain a proof of assertion (ii).
We have

I∗ ◦ L3g = I∗(f2g1 + g3) = f2(u)g1(u) + g3(u).

Therefore, L3 ◦ I∗(g) = I∗ ◦ L3g. This proves statement (iii).

Proposition 3.6. There is the formula

Y = −1

2
(L3f2)(u).

Proof. The statement follows directly from the formula (12) and the definition of the
operator L3.
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4 The ultra-elliptic integral I3.

Lemma 4.1. (see [27], Proposition 2.2.1 (2) and [28], Lemma 1.9 (1)) If u ∈ W and
u /∈ Λ, then σ1(u) 6= 0.

Proof. Let us take a point u ∈ W such that u /∈ Λ. Let σ1(u) = 0. Note that the
meromorphic function X on V has a pole only at ∞. From the lemma 3.1 we get
σ3(u) = 0. Since the set of critical points {u ∈ C2 | σ(u) = σ1(u) = σ3(u) = 0} of the
function σ(u) is the empty set for the curve of genus 2 (see [9], [15], [27], Lemma 1.7.2)
we arrive at a contradiction. Therefore we obtain σ1(u) 6= 0.

Let us take a point P∗ ∈ V such that P∗ 6= ∞ and an open neighborhood U∗ of this
point that is homeomorphic to an open disk in C. We fix a path γ∗ on the curve V from
∞ to P∗. Let us consider holomorphic mappings

I3 : U∗ → C, P = (X,Y ) 7→
∫ P

∞
du3,

Ĩ3 : U∗ → W, P = (X,Y ) 7→
∫ P

∞
du,

where as the path of integration we choose the composition of the path γ∗ from ∞ to the
point P∗ and any path in the neighborhood U∗ from P∗ to the point P . Set u∗ = Ĩ3(P∗),
where u∗ = (u∗

1, u
∗
3). Since P∗ 6= ∞, we have u∗ ∈ W and u∗ /∈ Λ. Then, according

to the lemma 4.1, we have σ1(u
∗) 6= 0. In a sufficiently small open neighborhood D∗

of the point u∗ there exist an open neighborhood E∗ of u∗
3 and a uniquely determined

holomorphic function φ(u3) on E∗ such that D∗ ∩W = {(φ(u∗
3), u

∗
3) | u∗

3 ∈ E∗}.
Note that the differential du3 vanishes only at ∞. Since P∗ 6= ∞, the total derivative

of I3 at P∗ is not equal to zero. Therefore, if one take the open neighborhood U∗
sufficiently small, then the image of Ĩ3 will belong to D∗, and the mapping I3 is injective.

Let U3 be the image of I3. Then U3 is an open set which contains u∗
3, and the

mapping I3 : U∗ → U3 is bijective. Let F(U∗) be the field of meromorphic functions on
U∗. For f ∈ F(C2,W ), we can consider the meromorphic function f(φ(I3(P )), I3(P ))
on U∗. The mapping I3 induces the homomorphism

I∗3 : F(C2,W ) → F(U∗), f 7→ f(φ(I3(P )), I3(P )).

Theorem 4.2. The mapping I∗3 induces the injective homomorphism

I∗3 : F
(
(σ)
)
→ F(U∗), f2 7→ X, f5 7→ Y.

Proof. For P = (X,Y ) ∈ U∗ set z = I3(P ). Since the image of Ĩ3 belongs to D∗,

then Ĩ3(P ) = (φ(z), z). According to the lemmas 3.1 and 3.2 we have I∗3 (f2) = X
and I∗3 (f5) = Y . If f ∈ J∗, then I∗3 (f) = 0. Therefore the mapping I∗3 induces the
homomorphism

I∗3 : F
(
(σ)
)
→ F(U∗).

Since F
(
(σ)
)
is a field and I∗3 is not zero mapping, then the mapping I∗3 is injective.
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Lemma 4.3. For any meromorphic function h = h(u1, u3) on C2 there is the formula

∂

∂u3

h(φ(u3), u3) = L3h.

Proof. According to the definition of the function φ we have

∂φ

∂u3

= −σ3

σ1

(φ(u3), u3).

Therefore
∂

∂u3

h(φ(u3), u3) = −σ3

σ1

(∂u1h) + ∂u3h = L3h.

We define the function F (z) = f2(φ(z), z) on E∗.

Proposition 4.4. Set z = I3(P ), where P = (X,Y ) ∈ U∗. Then X = F (z) and
Y = −F ′(z)/2, where F ′ is the derivative of F with respect to z.

Proof. According to the theorem 4.2 we have X = F (z). The formula for Y is obtained
with using the operator L3 acting on the field F

(
(σ)
)
. From Proposition 3.6 and Lemma

4.3 we obtain Y = −F ′(z)/2.

Theorem 4.5. The function F (z) satisfies the following ordinary differential equations:

(F ′/2)2 = F 5 + λ4F
3 + λ6F

2 + λ8F + λ10, (14)

F ′′ = 10F 4 + 6λ4F
2 + 4λ6F + 2λ8. (15)

Proof. Using Proposition 4.4 and the relation Y 2 = X5 + λ4X
3 + λ6X

2 + λ8X + λ10 we
obtain the equation (14). By differentiating the both sides of (14) with respect to z, we
obtain the equation (15).

Remark 4.6. In [18] there is also the statement that the function F (z) is a solution of
the differential equation (14) and therefore the equation (15).

From Proposition 4.4 and Theorem 4.5, one can obtain the series expansion of F (z).
Since the function F (z) is holomorphic in a neighborhood of z = u∗

3, then the expansion
in the neighborhood of this point has the form

F (z) =
∞∑
n=0

p3n+2(z − u∗
3)

n, p3n+2 ∈ C. (16)

Proposition 4.7. Set P∗ = (X∗, Y∗). Then in the expansion (16) we have p2 = X∗ and
p5 = −2Y∗.

Proof. Since p2 = F (u∗
3) and p5 = F ′(u∗

3), then the statement of this proposition follows
directly from Proposition 4.4.
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In the graduation introduced above, we have: deg p2 = 2 and deg p5 = 5. Denote by
Z⩾r the set of integers that are not less than r.

Proposition 4.8. The coefficients p3n+2 in the expansion (16) are determined from the
following recurrence relations:

• p8 = 5p42 + 3λ4p
2
2 + 2λ6p2 + λ8,

• (n+ 2)(n+ 1)p3n+8 = 10
∑

(n1,n2,n3,n4)∈S1
p3n1+2 p3n2+2 p3n3+2 p3n4+2+

+6λ4

∑
(n1,n2)∈S2

p3n1+2 p3n2+2 + 4λ6p3n+2, n ⩾ 1, where

S1 = {(n1, n2, n3, n4) ∈ Z4
⩾0 | n1+n2+n3+n4 = n}, S2 = {(n1, n2) ∈ Z2

⩾0 | n1+n2 = n},

and the coefficients p3n+2 ∈ Q[p2, p5, λ4, λ6, λ8, λ10] are homogeneous polynomials of
degree 3n+ 2, if p3n+2 6= 0.

Proof. By substituting (16) into (15) and comparing the coefficients, we obtain the
assertion.

Set Pi = (Xi, Yi) ∈ U∗, i = 1, 2. Let us put u(i) = Ĩ3(Pi), u
(i) = t(u

(i)
1 , u

(i)
3 ) and

u(0) = u(1) + u(2).

Theorem 4.9. There exist the following relations

F (u
(1)
3 ) + F (u

(2)
3 ) = ℘1,1(u

(0)), F (u
(1)
3 )F (u

(2)
3 ) = −℘1,3(u

(0)),

F ′(u
(i)
3 ) = F (u

(i)
3 )℘1,1,1(u

(0)) + ℘1,1,3(u
(0)), i = 1, 2.

Proof. The well-known solution of the inversion problem of the Abel–Jacobi mapping
(see [3] and [9], Theorem 2.4) is given by the formulas

X1 +X2 = ℘1,1(u
(0)), −X1X2 = ℘1,3(u

(0)), (17)

2Yi = −Xi℘1,1,1(u
(0))− ℘1,1,3(u

(0)), i = 1, 2. (18)

From Proposition 4.4 we have Xi = F (u
(i)
3 ) and Yi = −F ′(u

(i)
3 )/2 for i = 1, 2. From

here we obtain the statement of the theorem.

5 The ultra-elliptic integral I1.

Consider the following differentiation operator

L1 = ∂u1 + f−1
2 ∂u3 .

We have L3 = f2L1.

Lemma 5.1. If P 6= (0,±
√
λ10), where

√
λ10 is a complex number t such that t2 = λ10,

then σ3(I(P )) 6= 0.

13



Proof. According to Theorem 2.2 we have σ3(0, 0) = −1. Therefore, from Proposition
2.1 (ii) we have σ3(I(∞)) 6= 0. Let P 6= (0,±

√
λ10) and P 6= ∞. Then according

to Lemma 4.1 we have σ1(I(P )) 6= 0. Therefore, according to Lemma 3.1 we obtain
σ3(I(P )) 6= 0.

Let us take a point P∗ ∈ V such that P∗ 6= (0,±
√
λ10) and an open neighborhood

U∗ of the point P∗, that is homeomorphic to an open disk in C. Let us fix a path γ∗ on
the curve V from ∞ to the point P∗. We consider the holomorphic mappings

I1 : U∗ → C, P = (X,Y ) 7→
∫ P

∞
du1,

Ĩ1 : U∗ → W, P = (X,Y ) 7→
∫ P

∞
du,

where as the path of integration we choose the composition of the fixed path γ∗ from ∞
to the point P∗ and any path in the neighborhood U∗ from P∗ to the point P . Set u∗ =
Ĩ1(P∗) and u∗ = (u∗

1, u
∗
3). According to Lemma 5.1 we have σ3(u

∗) 6= 0. In a sufficiently
small open neighborhood D∗ of the point u∗ there exist an open neighborhood E∗
of the point u∗

1 and a uniquely determined holomorphic function ξ(u1) on E∗ such
that D∗ ∩ W = {(u1, ξ(u1)) | u1 ∈ E∗}. Note that the differential du1 vanishes only
at (0,±

√
λ10). Since P∗ 6= (0,±

√
λ10) then the total derivative of the function I1

is not equal to zero at the point P∗. Therefore, if one take the open neighborhood
U∗ sufficiently small, then the image of Ĩ1 will belong to D∗, and the mapping I1 is
injective. Let F(U∗) be the field of meromorphic functions on U∗. For g ∈ F(C2,W ),
we can consider the meromorphic function g(I1(P ), ξ(I1(P ))) on U∗. The mapping I1
induces the homomorphism

I∗1 : F(C2,W ) → F(U∗), g 7→ g
(
I1(P ), ξ(I1(P ))

)
.

Theorem 5.2. The mapping I∗1 induces the injective homomorphism

I∗1 : F
(
(σ)
)
→ F(U∗), f2 7→ X, f5 7→ Y.

Proof. Let z = I1(P ), where P = (X,Y ) ∈ U∗. Since the image of Ĩ1 belongs to D∗,

we have Ĩ1(P ) = (z, ξ(z)). According to Lemmas 3.1 and 3.2 we have I∗1 (f2) = X
and I∗1 (f5) = Y . If g ∈ J∗, then I∗1 (g) = 0. Therefore the mapping I∗1 induces the
homomorphism

I∗1 : F
(
(σ)
)
→ F(U∗).

Since F
(
(σ)
)
is a field and I∗1 is not zero mapping, then the mapping I∗1 is injective.

Lemma 5.3. For any meromorphic function h = h(u1, u3) on C2 there exists the for-
mula

∂

∂u1

h(u1, ξ(u1)) = L1h.

Proof. The proof is similar to that of Lemma 4.3.
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Let us define the function G(z) = f2(z, ξ(z)) on E∗.

Proposition 5.4. For P = (X,Y ) ∈ U∗ let z = I1(P ). Then we have X = G(z) and
Y = −G(z)G′(z)/2, where G′ is the derivative of G respect to z.

Proof. According to Theorem 5.2, we have X = G(z). The expression for Y is obtained
using the differentiation operator L1, that acts on the field F

(
(σ)
)
. According to

Proposition 3.6, L3 = f2L1, and Lemma 5.3, we obtain Y = −G(z)G′(z)/2.

Theorem 5.5. The function G(z) satisfies the following ordinary differential equations:

(GG′/2)2 = G5 + λ4G
3 + λ6G

2 + λ8G+ λ10, (19)

G4(G′′′ − 12GG′)− 4λ8GG′ − 12λ10G
′ = 0. (20)

Proof. From Proposition 5.4 and the relation Y 2 = X5 +λ4X
3 +λ6X

2 +λ8X +λ10, we
obtain the equation (19). By dividing the both sides of (19) by G2, we obtain

(G′/2)2 = G3 + λ4G+ λ6 + λ8G
−1 + λ10G

−2. (21)

By differentiating twice the both sides of (21) with respect to z, we obtain (20).

Remark 5.6. In [18, 21, 22] one stated that G(z) is a solution of the differential
equation (19). The equation (21) can be considered as a deformation with parameters
λ8 and λ10 of the classical equation for Weierstrass ℘-function of the elliptic curve
Y 2 = X3 + λ4X + λ6 :

(℘′/2)2 = ℘3 + λ4℘+ λ6. (22)

The equation (20) can be considered as a deformation of the stationary KdV-equation
(see [10], Corollary 3.1):

℘′′′ − 12℘℘′ = 0.

Let us assume that P∗ 6= (0,±
√
λ10) and P∗ 6= ∞. Using Proposition 5.4 and

Theorem 5.5, one can obtain the series expansion of the function G(z). Since the
function G(z) is holomorphic in the neighborhood of the point u∗

1, then this expansion
in the neighborhood of this point has the form

G(z) =
∞∑
n=0

qn+2(z − u∗
1)

n, qn+2 ∈ C. (23)

Proposition 5.7. Let P∗ = (X∗, Y∗). Then we have q2 = X∗ and q3 = −2Y∗/X∗.

Proof. We have q2 = G(u∗
1) and q3 = G′(u∗

1). Using Proposition 5.4, we obtain the
statement.

Let us set deg q2 = 2 and deg q3 = 3.

Proposition 5.8. The coefficients qn+2 are determined from the following recurrence
relations:
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• q4 = q−3
2 (3q52 + λ4q

3
2 − λ8q2 − 2λ10),

• q32(n+ 2)(n+ 1)qn+4 = −
n−1∑
k=0

(k + 2)(k + 1)qk+4

∑
(n1,n2,n3)∈T (k)

1

qn1+2 qn2+2 qn3+2

+

+6
∑

(n1,n2,n3,n4,n5)∈T2

qn1+2 qn2+2 qn3+2 qn4+2 qn5+2+

+2λ4

∑
(n1,n2,n3)∈T3

qn1+2 qn2+2 qn3+2 − 2λ8qn+2, n ⩾ 1, where

T
(k)
1 = {(n1, n2, n3) ∈ Z3

⩾0 | n1+n2+n3 = n− k}, T2 = {(n1, n2, n3, n4, n5) ∈ Z5
⩾0 | n1+

n2+n3+n4+n5 = n}, T3 = {(n1, n2, n3) ∈ Z3
⩾0 | n1+n2+n3 = n}, and the coefficients

qn+2 ∈ Q[q2, q3, λ4, λ6, λ8, λ10] are homogeneous polynomials of degree n+ 2 if qn+2 6= 0.

Proof. Differentiating the both sides of the equation (21) with respect to z, we obtain

G3G′′ = 6G5 + 2λ4G
3 − 2λ8G− 4λ10. (24)

Substituting (23) into (24) and comparing the coefficients, we obtain the statement.

Proposition 5.9. Let P∗ 6= (0,±
√
λ10) and P∗ 6= ∞. Then the functions F (z) and

G(z) related by G(z) = F (ξ(z)). Moreover, the function ξ(z) satisfies the following
differential equation

(ξ′′/2)2 = λ10(ξ
′)6 + λ8(ξ

′)5 + λ6(ξ
′)4 + λ4(ξ

′)3 + ξ′.

Proof. We have

G(z) = f2(z, ξ(z)) = f2(φ(ξ(z)), ξ(z)) = F (ξ(z)).

According to the definition of the function ξ we have

ξ′(z) =
1

G(z)
.

The equation (19) allows us to complete the proof.

For Pi = (Xi, Yi) ∈ U∗, i = 1, 2, let us put u(i) = Ĩ1(Pi), u
(i) = t(u

(i)
1 , u

(i)
3 ) and

u(0) = u(1) + u(2).

Theorem 5.10. There exist the following formulas

G(u
(1)
1 ) +G(u

(2)
1 ) = ℘1,1(u

(0)), G(u
(1)
1 )G(u

(2)
1 ) = −℘1,3(u

(0)),

G(u
(i)
1 )G′(u

(i)
1 ) = G(u

(i)
1 )℘1,1,1(u

(0)) + ℘1,1,3(u
(0)), i = 1, 2.

Proof. From Proposition 5.4, we have Xi = G(u
(i)
1 ) and Yi = −G(u

(i)
1 )G′(u

(i)
1 )/2 for

i = 1, 2. Thus, from the relations (17) and (18) we obtain the statement.
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6 Relation with a curve of genus 1.

Let us take P∗ = ∞ and the path γ∗ defined by the function R : [0, 1] → V such
that R(r) = ∞ for any point r ∈ [0, 1]. Then we have u∗ = (0, 0). It follows from
Theorem 2.2 that σ(u∗) = 0 and σ3(u

∗) = −1. The function ξ(u1) is holomorphic in a
neighborhood of the point u1 = 0.

Proposition 6.1. In a neighborhood of the point u1 = 0 the function ξ(u1) is given by
a series

ξ(u1) =
1

3
u3
1 +

∑
n⩾3

a2n−2u
2n+1
1 ,

where the coefficients a2n−2 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous polynomials of
degree 2n− 2 if a2n−2 6= 0.

Proof. Since ξ(0) = 0, then in the neighborhood of the point u1 = 0 the function ξ(u1)
is given by a series

ξ(u1) =
∑
k⩾1

ak−3u
k
1,

where ak−3 ∈ C. From the condition σ(u1, ξ(u1)) = 0 and Theorem 2.2 we have

1

3
u3
1 −

∑
k⩾1

ak−3u
k
1 +

∑
i+3j⩾7

αi,ju
i
1

(∑
k⩾1

ak−3u
k
1

)j

= 0. (25)

Comparing the coefficients at uk
1 for 1 ⩽ k ⩽ 6 in (25), we obtain a−2 = a−1 = 0,

a0 = 1/3 and a1 = a2 = a3 = 0.
Assume k ⩾ 7 and the coefficients aℓ−3 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous

polynomials of degree ℓ− 3 if aℓ−3 6= 0 for any ℓ < k. Comparing the coefficients at uk
1

in (25), we obtain

ak−3 = αk,0 +
∑

(i,j)∈T1

αi,j

∑
(ℓ1,...,ℓj)∈T

(i,j)
2

aℓ1−3 · · · aℓj−3,

where T1 = {(i, j) ∈ Z⩾0 × Z⩾1 | 7 ⩽ i+ 3j ⩽ k} and T
(i,j)
2 = {(ℓ1, . . . , ℓj) ∈ Zj

⩾3 | ℓ1 +
· · · + ℓj = k − i}. Thus, ak−3 ∈ Q[λ4, λ6, λ8, λ10] is the homogeneous polynomial of
degree k − 3 if ak−3 6= 0. Taking into account graduation of parameters λ4, λ6, λ8, λ10,
we find that ak−3 = 0 if k is even.

Proposition 6.2. In a neighborhood of the point z = 0 the function G(z) is given by a
series

G(z) =
1

z2
− λ4

5
z2 − λ6

7
z4 +

(
λ2
4

75
− λ8

9

)
z6 +

(
3

385
λ4λ6 −

λ10

11

)
z8 +

∑
n⩾5

b2n+2z
2n,

where the coefficients b2n+2 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous polynomials of de-
gree 2n+ 2 if b2n+2 6= 0.
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Proof. From Theorem 2.2 and Proposition 6.1, we find that in a neighborhood of the
point z = 0 the series expansion of the function G(z) has a form

G(z) =
1

z2
+
∑
n⩾0

b2n+2z
2n, (26)

where the coefficients b2n+2 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous polynomials of
degree 2n+ 2 if b2n+2 6= 0. Substituting (26) into (19) and comparing the coefficient at
z−8, we obtain b2 = 0. In a neighborhood of the point z = 0 the series expansion of the
function GG′/2 has a form

G(z)G′(z)

2
= − 1

z5
+
∑
n⩾1

c2n+4z
2n−1, (27)

where the coefficients c2n+4 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous polynomials of
degree 2n+ 4 if c2n+4 6= 0. We have

c2n+4 = nb2n+4 +
n−1∑
m=1

(n−m)b2m+2b2n−2m+2.

Substituting (26) and (27) into (19) and comparing the coefficient at z2k for −3 ⩽ k ⩽ 0,
we obtain b4 = −λ4/5, b6 = −λ6/7, b8 = λ2

4/75− λ8/9, and b10 = 3λ4λ6/385− λ10/11.
Similarly, we can determine all the coefficients b2n+2 from the equation (19).

For completeness, we present the following well-known fact.

Lemma 6.3. Let a formal power series

Z(z) =
1

z2
+
∑
n⩾0

d2n+2z
2n, d2n+2 ∈ C, (28)

satisfies the differential equation

(Z ′/2)2 = Z3 + λ4Z + λ6. (29)

Then

Z(z) =
1

z2
− λ4

5
z2 − λ6

7
z4 +

λ2
4

75
z6 +

3λ4λ6

385
z8 +

∑
n⩾5

d2n+2z
2n,

where the coefficients d2n+2 ∈ Q[λ4, λ6] are the homogeneous polynomials of degree 2n+2
if d2n+2 6= 0, and the series Z(z) defines the Weierstrass function ℘(z) of the elliptic
curve Y 2 = X3 + λ4X + λ6.

Proof. Substituting (28) into (29) and comparing the coefficient at z2k for −2 ⩽ k ⩽ 0,
we obtain d2 = 0, d4 = −λ4/5 and d6 = −λ6/7. Differentiating the equation (29) with
respect to z, we obtain

Z ′′/2 = 3Z2 + λ4. (30)
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Substituting (28) into (30) and comparing the coefficient at z2n−2 for n ⩾ 3, we obtain

(2n2 − n− 6)d2n+2 = 3
n−2∑
m=1

d2m+2d2n−2m.

Consequently, we have d8 = λ2
4/75 and d10 = 3λ4λ6/385. Since the function ℘(z)

satisfies the differential equation (22), we obtain Z(z) = ℘(z).

From Proposition 6.2 and Lemma 6.3, we obtain:

Corollary 6.4. There exists the formula

G(z) = ℘(z) + g(z),

where g(z) is a holomorphic function that in a neighborhood of the point z = 0 is given
by a series

g(z) = −λ8

9
z6 − λ10

11
z8 +

∑
n⩾5

e2n+2z
2n.

Here the coefficients e2n+2 ∈ Q[λ4, λ6, λ8, λ10] are the homogeneous polynomials of degree
2n+ 2 if e2n+2 6= 0.

Denote by Gd(z) the function obtained from G(z) by substitution λ8 = λ10 = 0 in
the series expansion of this function in a neighborhood of the point z = 0.

Corollary 6.5. We have Gd(z) = ℘(z).

Proof. From the equation (21) it follows that the function Gd(z) satisfy the differential
equation

(G′
d/2)

2 = G3
d + λ4Gd + λ6.

Using the lemma 6.3, we obtain the statement

7 Applications of the addition theorem.

For the two-dimensional sigma-function, there exists the addition theorem, first obtained
by A. Baker (see [3], [9]). In our graded notation, it has the form

σ(u+ v)σ(u− v)

σ2(u)σ2(v)
= ℘1,1(u)℘1,3(v)− ℘1,3(u)℘1,1(v) + ℘3,3(v)− ℘3,3(u) (31)

There exists an equivalent formula

σ(u+v)σ(u−v) = φ1,1(u)φ1,3(v)−φ1,3(u)φ1,1(v)+σ2(u)φ3,3(v)−φ3,3(u)σ
2(v), (32)

where φi,j(u) = σ2(u)℘i,j(u) = σi(u)σj(u)− σ(u)σi,j(u) are entire functions. From the
addition theorem it is not difficult to obtain the formula

σ(2u)

σ4(u)
= ℘1,1(u)℘1,3,3(u)− ℘1,3(u)℘1,1,3(u) + ℘3,3,3(u). (33)
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Consequently,

σ(2u) = (−σ3σ3,3,3+3σ2σ3σ3,3−σσ1σ1,1σ3,3+σ3
1σ3,3− 2σσ3

3 +σ1σ
2
3σ1,1−σσ3σ1,1σ1,3−

− 2σ2
1σ3σ1,3 + σσ1σ3σ1,1,3 + σ2σ1,1σ1,3,3 − σσ2

1σ1,3,3 + 2σσ1σ
2
1,3 − σ2σ1,3σ1,1,3)(u). (34)

Let us set, as above,

f5(u) =
σ2
1σ3,3 − 2σ1σ3σ1,3 + σ2

3σ1,1

2σ3
1

(u) (35)

and

g5(u) =
σ(2u)

σ4
1(u)

. (36)

Then according to the formulas (11) and (13) the restrictions of the functions 2f5(u)
and g5(u) to the curve W ⊂ C2 coincide.

Lemma 7.1. On C2, there exists the formula

2f5 − g5 = σh, (37)

where

h = σ−4
1 (σ2σ3,3,3 − 3σσ3σ3,3 + σ1σ1,1σ3,3 + 2σ3

3 + σ3σ1,1σ1,3 − σ1σ3σ1,1,3−
− σσ1,1σ1,3,3 + σ2

1σ1,3,3 − 2σ1σ
2
1,3 + σσ1,3σ1,1,3). (38)

In the rational limit we obtain σ = 1
3
u3
1 − u3. Therefore, in this case

h = − 2

u8
1

(39)

Using the formula (34), we obtain the expression for the Abelian function

℘1,1(2u) =

(
σ1(2u)

σ(2u)

)2

− σ1,1(2u)

σ(2u)

in the form of a differential polynomial of the function σ(u).

Lemma 7.2. The function

1

2
℘1,1(2u)−

(
−σ3(u)

σ1(u)

)
in the rational limit has the form σk, where

k =
3(−10u3

1 + 3u3)

u2
1(4u

3
1 − 3u3)2

.
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