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Analytical and number-theoretical properties of the

two-dimensional sigma function

Takanori Ayano∗ and Victor M. Buchstaber†

Dedicated to the outstanding mathematician
Academician Vladimir Petrovich Platonov

in connection with his anniversary.

Abstract

This survey is devoted to the classical and modern problems related to the en-
tire function σ(u;λ), defined by a family of nonsingular algebraic curves of genus 2,
where u = (u1, u3) and λ = (λ4, λ6, λ8, λ10). It is an analogue of the Weierstrass
sigma function σ(u; g2, g3) of a family of elliptic curves. Logarithmic derivatives of
order 2 and higher of the function σ(u;λ) generate fields of hyperelliptic functions of
u = (u1, u3) on the Jacobians of curves with a fixed parameter vector λ. We consider

three Hurwitz series σ(u;λ) =
∑

m,n≥0 am,n(λ)
um
1 un

3
m!n! , σ(u;λ) =

∑
k≥0 ξk(u1;λ)

uk
3
k!

and σ(u;λ) =
∑

k≥0 µk(u3;λ)
uk
1
k! . The survey is devoted to the number-theoretic

properties of the functions am,n(λ), ξk(u1;λ) and µk(u3;λ). It includes the latest re-
sults, which proofs use the fundamental fact that the function σ(u;λ) is determined
by the system of four heat equations in a nonholonomic frame of six-dimensional
space.

1 Introduction

Deep results on the number-theoretic properties of fields of hyperelliptic functions were
obtained in the papers of V.P. Platonov, where he gave answers to long-standing ques-
tions. The fields of meromorphic functions on the Jacobian of curves of genus 2 occupy
one of the main places in these papers (see [40], [41] and [42]). Abelian functions, in-
cluding meromorphic functions on the Jacobians of algebraic curves, were a central topic
of the 19th century mathematics. In this review, we mainly discuss the results obtained
due to a new direction in the study of fields of Abelian functions. This direction arose
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in the mid-seventies of the last century in response to the discovery that Abelian func-
tions provide a solution to a number of challenging problems of modern theoretical and
mathematical physics. The elliptic sigma function, which was defined and investigated
by Weierstrass, is important in many fields in mathematics and physics. This function
is closely related to the theory of the elliptic curves. In [28] and [29], F. Klein posed
the problem of the construction of multi-dimensional sigma functions associated with the
hyperelliptic curves. He obtained important results in this direction. Many years later, F.
Klein wrote a paper and a survey in which he acknowledged that the theory of his sigma
functions is still far from complete (see [30] and [31]). The theory of the hyperelliptic
sigma functions was developed by H. F. Baker in [5], [6], [7], and [8]. Recently, by a series
of work of V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, the theory of the hyperel-
liptic sigma functions was developed significantly and they were generalized to the large
family of algebraic curves called (n, s) curves, which include the hyperelliptic curves as
special cases (see [12], [13], [14], [15], [17]). After the publications of Buchstaber, Enolskii,
and Leykin, many papers appeared on the theory and applications of multi-dimensional
sigma functions. Our survey is devoted to the sigma functions of curves of genus 2. The
focus of our attention is the number-theoretic aspects of the results on these functions.
Throughout the present survey, we denote the sets of positive integers, integers, rational
and complex numbers by N,Z,Q, and C, respectively.

Let V be a hyperelliptic curve of genus g defined by

y2 = x2g+1 + λ4x
2g−1 + λ6x

2g−2 + · · ·+ λ4gx+ λ4g+2, λi ∈ C. (1)

The sigma function σ(u;λ), where u = (u1, u3, . . . , u2g−1) and λ = (λ4, . . . , λ4g+2), associ-
ated with V , is an entire function in u ∈ Cg. It is shown that the coefficients of the power
series expansion of σ(u) around u = 0 are polynomials of the coefficients λ4, . . . , λ4g+2

over the rationals ([14], [15], [17], [33]). Let R be an integral domain with characteristic
0, u1, u3, . . . , u2g−1 be indeterminates, and

R〈〈u1, u3 . . . , u2g−1〉〉 =





∑

i1,i3,...,i2g−1≥0

ai1,i3,...,i2g−1

ui1
1 u

i3
3 · · ·ui2g−1

2g−1

i1!i3! · · · i2g−1!

∣∣∣∣∣∣
ai1,i3,...,i2g−1 ∈ R



 .

If a power series belongs to R〈〈u1, u3 . . . , u2g−1〉〉, then it is said to be Hurwitz integral

over R. In [39], Y. Ônishi proved that the power series expansion of σ(u) around u = 0

is Hurwitz integral over the ring Z[λ4, . . . , λ4g+2] by using the expression of the sigma
function in terms of the tau function of KP-hierarchy given in [34]. In [37], in the case
of g = 1, the Hurwitz integrality of the sigma function is proved in a different way
from [39] and relationships with number theory are discussed. In [21], in the case of
g = 1, it is conjectured that the power series expansion of the sigma function is Hurwitz
integral over Z[2λ4, 24λ6]. The focus of our survey is on the above fundamental fact, i.e.,
the power series expansion of the sigma function around the origin is Hurwitz integral
over Z[λ4, . . . , λ4g+2]. In this survey, we will discuss in detail expansions of the sigma

functions of curves of genus 1 and 2, including the Ônishi’s proof for Hurwitz integrality
(see Sections 2.2 and 2.3).

Weierstrass [45] showed that the elliptic sigma function σ(u;λ4, λ6) satisfies the fol-
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lowing system of equations

4λ4σλ4 + 6λ6σλ6 − uσu + σ = 0,

6λ6σλ4 −
4

3
λ2
4σλ6 −

1

2
σuu +

1

6
λ4u

2σ = 0.

The second equation of this system is the heat equation or, equivalently, the Schrödinger
equation of type ℓ2σ = 1

2
H2σ, where ℓ2 = 6λ6

∂
∂λ4

− 4
3
λ2
4

∂
∂λ6

and H2 = ∂2

∂u2 − 1
3
λ4u

2.
Weierstrass gave recurrence relations of the coefficients of series expansion of the elliptic
sigma function. Buchstaber and Leykin succeeded in generalizing the theory of the heat
equations to the sigma functions of higher genus curves ([18], [19], and [20]). In [24],
the detailed proof of their theory is given. In [19] and [24], the recurrence relations of
the coefficients of series expansion of the two-dimensional sigma function are given based
on the heat equations. In [25], the theory of the heat equations is constructed for the
elliptic curves defined by the most general Weierstrass equation. In [23], for g = 1, 2, it is
shown that the holomorphic solution of the heat equations around (u0, 0) ∈ C3g for some
u0 ∈ Cg is the sigma function up to a multiplicative constant. We consider the case of
g = 2. For λ = (λ4, λ6, λ8, λ10), we set

σ(u;λ) =
∑

k≥0

ξk(u1;λ)
uk
3

k!
, σ(u;λ) =

∑

k≥0

µk(u3;λ)
uk
1

k!
.

In Section 3, we will derive the differential equations satisfied by ξk and µk from the
heat equations. From these results, we will prove that two-dimensional sigma function is
Hurwitz integral over Z[λ4, λ6, λ8, 2λ10] (Corollary 3.2).

For (x, y) ∈ V , let

du1 = − x

2y
dx, du3 = − 1

2y
dx,

which are a basis of the vector space of holomorphic one forms on V . We have two
ultra-elliptic integrals

∫ P

∞
du1 and

∫ P

∞
du3 obtained with the help of two holomorphic

differentials du1 and du3. We take a point P∗ ∈ V and an open neighborhood U∗ of this
point P∗ such that U∗ is homeomorphic to an open disk in C. Let us fix a path γ∗ on the
curve V from ∞ to the point P∗. We consider the holomorphic mappings defined by the
ultra-elliptic integrals

I3 : U∗ → C, P = (x, y) 7→
∫ P

∞

du3,

I1 : U∗ → C, P = (x, y) 7→
∫ P

∞

du1,

where as the path of integration we choose the composition of the fixed path γ∗ from ∞
to the point P∗ and some path in the neighborhood U∗ from P∗ to the point P . When
we consider the map I3, we assume P∗ 6= ∞. When we consider the map I1, we assume
P∗ 6= (0,±

√
λ10). If U∗ is sufficiently small, then the maps I1 and I3 are biholomorphisms.

In [4], the inversion problems of the maps I1 and I3 are considered. In Section 4, we will
summarize the results of [4]. Proposition 4.8 in the present survey gives the recurrence
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formula of the coefficients of series expansion of the solution of the inversion problem
with respect to I1 in the case of P∗ = ∞. This result is not included in [4].

The classical Bernoulli numbers Bn are defined by the generating function

u

eu − 1
=

∞∑

n=0

Bn
un

n!
. (2)

Bernoulli numbers Bn are important in many areas of mathematics, including number
theory and algebraic topology. Many beautiful properties for the Bernoulli numbers Bn

are known. For example, the von Staudt-Clausen theorem states

B2n +
∑

(p−1)|2n

1

p
∈ Z,

where the summation is over all primes p such that p − 1 divides 2n. Let a ≥ 1 be an
integer, p be a prime, and m,n be even positive integers such that m,n ≥ a+1, m and n
are not divisible by p− 1, and n ≡ m mod (p− 1)pa−1. Then the Kummer’s congruence
states

Bn

n
≡ Bm

m
mod pa.

Let us introduce the universal logarithmic series

α(u) = u+
∑

n>1

αn
un+1

n+ 1
(3)

over the grading ring A = Z[α1, α2, . . .], deg αn = −2n, and the universal exponential
series

β(t) = t+
∑

n>1

βn
tn+1

(n+ 1)!
(4)

over the grading ring B = Z[β1, β2, . . .], deg βn = −2n. Set deg u = deg t = 2. Then
α(u) and β(t) are homogeneous series of degree 2. Imposing condition α(β(t)) = t
that equivalent to condition β(α(u)) = u, we obtain an isomorphism of rings preserving
grading

ξ : Â = Z[α̂1, α̂2, . . .] −→ B̂ = Z[β̂1, β̂2, . . .],

where α̂n = αn

n+1
and β̂n = βn

(n+1)!
. Thus, we obtain the polynomials

β̂n = β̂n(α̂1, . . . , α̂n) ∈ Â, n = 1, 2, . . . ,

which coefficients are integers satisfying the relations

β(α(u) + α(v)) ∈ A[[u, v]],

where A = Z[a1, a2, . . .] ⊂ Â and

αn ∈ A, βn = (n+ 1)! β̂n

(
α1

2
, . . . ,

αn

n + 1

)
∈ A.
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These relations play an important role in describing the coefficient ring of the universal
formal group (see [32], [16]) and in the algebraic-topological applications of the formal
group in the theory of complex cobordisms (see [36], [43]).

The polynomials Bn = Bn(α̂1, . . . , α̂n) ∈ Â which generating series is given by the
Hurwitz exponential series over the ring Â

∑

n≥0

Bn
tn

n!
=

t

β(t)
(5)

are called universal Bernoulli numbers. For example,

B1 = α̂1, B2 = 2(α̂2 − α̂2
1), B3 = 3!(α̂3 − 3α̂1α̂2 + 2α̂3

1).

The classic Bernoulli numbers are obtained by substituting αn = (−1)n. Substituting
α̂1 = −1

2
, α̂2 =

1
3
, α̂3 = −1

4
, we obtain numbers B1 = −1

2
, B2 =

1
6
, B3 = 0.

Classical Bernoulli numbers entered into algebraic geometry and algebraic topology
due to the fact that the generating series (2) defines the Hirzebruch genus, which as-
sociates to any smooth complex manifold an integer equal to the Todd genus of this
manifold (see [26]). The generating series (5) of universal Bernoulli numbers defines the
universal Todd genus, which associates to any smooth complex manifold an integer poly-
nomial (see details in [9]). In [22], F. Clarke generalized the von Staudt-Clausen theorem
for the classical Bernoulli numbers to the universal Bernoulli numbers. The Kummer’s
congruence for the classical Bernoulli numbers was generalized to the universal Bernoulli
numbers ([1], [2], [3], [38]).

For a hyperelliptic curve of genus g defined by equation (1), in a neighborhood of
point (∞,∞), we can choose a local coordinate u such that the functions x(u) and y(u)
can be expanded around u = 0 as

x(u) =
1

u2
+

c−1

u
+

∞∑

n=2

Cn

n

un−2

(n− 2)!
,

y(u) =
1

u2g+1
+

d−2g

u2g
+ · · ·+ d−1

u
+

∞∑

n=2g+1

Dn

n

un−2g−1

(n− 2g − 1)!
.

Then Cn and Dn are called generalized Bernoulli-Hurwitz numbers. In [38], the von
Staudt-Clausen theorem and the Kummer’s congruence for the classical Bernoulli num-
bers are extended to the generalized Bernoulli-Hurwitz numbers in the case of the curves
y2 = x2g+1 − 1 and y2 = x2g+1 − x. We will extend the methods of [38] to the curve
y2 = x5 + λ4x

3 + λ6x
2 + λ8x+ λ10 and show some number-theoretical properties for the

generalized Bernoulli-Hurwitz numbers associated with this curve (Theorem 5.2). These
results will give the precise information on the series expansion of the solution of the
inversion problem of the ultra-elliptic integrals.

2 Preliminaries

2.1 The sigma function

For a positive integer g, we set

∆ = {(λ4, λ6, . . . , λ4g+2) ∈ C2g | fg(x) has a multiple root},

5



where
fg(x) = x2g+1 + λ4x

2g−1 + λ6x
2g−2 + · · ·+ λ4gx+ λ4g+2,

and B = C2g \∆. We consider the non-singular hyperelliptic curve of genus g

V = {(x, y) ∈ C2 | y2 = fg(x)}, (6)

where (λ4, λ6, . . . , λ4g+2) ∈ B. In this paragraph we recall the definition of the sigma-
function for the curve V (see [15]) and give facts about it which will be used later on.
For (x, y) ∈ V , let

du2i−1 = −xg−i

2y
dx, 1 ≤ i ≤ g,

which are a basis of the vector space of holomorphic one forms on V , and du = t(du1, du3, . . . , du2g−1).
Further, let

dr2i−1 =
1

2y

g+i−1∑

k=g−i+1

(−1)g+i−k(k + i− g)λ2g+2i−2k−2x
kdx, 1 ≤ i ≤ g, (7)

which are meromorphic one forms on V with a pole only at ∞. In (7) we set λ0 = 1 and
λ2 = 0. For g = 1, we have

du1 = − 1

2y
dx, dr1 = − x

2y
dx,

for g = 2, we have

du1 = − x

2y
dx, du3 = − 1

2y
dx, dr1 = −x2

2y
dx, dr3 =

−λ4x− 3x3

2y
dx.

Let {αi, βi}gi=1 be a canonical basis in the one-dimensional homology group of the
curve V . We define the matrices of periods by

2ω1 =

(∫

αj

dui

)
, 2ω2 =

(∫

βj

dui

)
, −2η1 =

(∫

αj

dri

)
, −2η2 =

(∫

βj

dri

)
.

The matrix of normalized periods has the form τ = ω−1
1 ω2. Let δ = τδ′ + δ′′, δ′, δ′′ ∈ Rg,

be the vectors of Riemann’s constants with respect to the choice ({αi, βi},∞) and δ :=
t(tδ′, tδ′′). Then we have δ′ = t(1

2
, . . . , 1

2
) and δ′′ = t( g

2
, g−1

2
, . . . , 1

2
). If g is even, we define

A0 = (2g − 1, 2g − 5, . . . , 7, 3) and c0 by the sign of the permutation

c0 = sgn

(
0 2 · · · g − 4 g − 2 g − 1 g − 3 · · · 3 1

g − 1 g − 2 · · · · · · · · · · · · · · · · · · 1 0

)
.

If g is odd, we define A0 = (2g− 1, 2g− 5, . . . , 5, 1) and c0 by the sign of the permutation

c0 = sgn

(
0 2 · · · g − 3 g − 1 g − 2 g − 4 · · · 3 1

g − 1 g − 2 · · · · · · · · · · · · · · · · · · 1 0

)
.
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We consider the Riemann’s theta-function with the characteristic δ, which is defined by

θ[δ](u, τ) =
∑

n∈Zg

exp{π
√
−1 t(n+ δ′)τ(n + δ′) + 2π

√
−1 t(n+ δ′)(u+ δ′′)},

where u = t(u1, u3, . . . , u2g−1) ∈ Cg. We set ∂ui
= ∂/∂ui. For a non-empty subset

I = {i1, . . . , ik} ⊂ {1, 3, . . . , 2g − 1}, we set

∂I = ∂ui1
· · ·∂uik

.

It is known that ∂A0θ[δ]
(
0, τ) 6= 0 ([35]). The sigma-function σ(u) is defined by (cf. [15],

[35])

σ(u) = exp

(
1

2
tuη1ω

−1
1 u

)
θ[δ]
(
(2ω1)

−1u, τ)

c0∂A0θ[δ]
(
0, τ)

,

which is an entire function on Cg. We set ℘i,j = −∂ui
∂uj

log σ, σi = ∂ui
σ, and σi,j =

∂ui
∂uj

σ. We define the period lattice Λ = {2ω1m1 + 2ω2m2 | m1, m2 ∈ Zg} and set
W = {u ∈ Cg | σ(u) = 0}.

Proposition 2.1. ([15] Theorem 1.1 and [33] p.193) For m1, m2 ∈ Zg, let Ω = 2ω1m1 +
2ω2m2, and let

A = (−1)2(
tδ′m1−tδ′′m2)+tm1m2 exp(t(2η1m1 + 2η2m2)(u+ ω1m1 + ω2m2)).

Then
(i) σ(u+ Ω) = Aσ(u), where u ∈ Cg.
(ii) σi(u+ Ω) = Aσi(u), i = 1, 3, . . . , 2g − 1, where u ∈ W .

Proposition 2.1 (i) implies that u+ Ω ∈ W for any u ∈ W and Ω ∈ Λ. The surface

(σ) := {u ∈ Cg/Λ | σ(u) = 0}

is called the sigma divisor. We set deg u2k−1 = −(2k − 1) and deg λ2i = 2i, where
1 ≤ k ≤ g and 2 ≤ i ≤ 2g + 1. A sequence of non-negative integers µ = (µ1, µ2, . . . , µl)
such that µ1 ≥ µ2 ≥ · · · ≥ µl is called a partition. Let Sµg

(u) be the Schur function
associated with the partition µg = (g, g − 1, . . . , 1) and set |µg| = g + (g − 1) + · · · + 1
(cf. [33] Section 4).

Theorem 2.1. ([14] Theorem 6.3, [15] Theorem 7.7, [17], [33] Theorem 3, [35] Theorem
13) The sigma function σ(u) does not depend on the choice of {αi, βi}gi=1 and has the
series expansion of the form

σ(u) = Sµg
(u) +

∑

i1+3i3+···+(2g−1)i2g−1>|µg|

α
(g)
i1,i3,...,i2g−1

ui1
1 u

i3
3 · · ·ui2g−1

2g−1 , (8)

where the coefficient α
(g)
i1,i3,...,i2g−1

is a homogeneous polynomial in Q[λ4, λ6, . . . , λ4g+2] of

degree i1 + 3i3 + · · ·+ (2g − 1)i2g−1 − |µg| if α(g)
i1,i3,...,i2g−1

6= 0.
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For g = 1, the sigma function σ(u) is an entire odd function on C and it is given by
the series

σ(u) = u+
∑

i≥4

α
(1)
i ui+1,

where the coefficient α
(1)
i is a homogeneous polynomial in Q[λ4, λ6] of degree i if α

(1)
i 6= 0.

For g = 2, the sigma function σ(u) = σ(u1, u3) is an entire odd function on C2 and it is
given by the series

σ(u1, u3) =
1

3
u3
1 − u3 +

∑

i+3j≥7

α
(2)
i,j u

i
1u

j
3, (9)

where the coefficient α
(2)
i,j is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree

i+ 3j − 3 if α
(2)
i,j 6= 0.

Theorem 2.2. ([10, 12, 18, 19, 20, 24])
(i) For g = 1, the sigma function σ(u;λ4, λ6) satisfies the following system of equations:

4λ4σλ4 + 6λ6σλ6 − uσu + σ = 0,

6λ6σλ4 −
4

3
λ2
4σλ6 −

1

2
σuu +

1

6
λ4u

2σ = 0.

(ii) For g = 2, the sigma function σ(u1, u3;λ4, λ6, λ8, λ10) satisfies the following system
of equations :

Qiσ = 0, where Qi = ℓi −Hi, i = 0, 2, 4, 6,

t(ℓ0, ℓ2, ℓ4, ℓ6) = T t(∂λ4 , ∂λ6 , ∂λ8 , ∂λ10),

T =




4λ4 6λ6 8λ8 10λ10

6λ6 8λ8 − 12
5
λ2
4 10λ10 − 8

5
λ4λ6 −4

5
λ4λ8

8λ8 10λ10 − 8
5
λ4λ6 4λ4λ8 − 12

5
λ2
6 6λ4λ10 − 6

5
λ6λ8

10λ10 −4
5
λ4λ8 6λ4λ10 − 6

5
λ6λ8 4λ6λ10 − 8

5
λ2
8


 ,

H0 = u1∂u1 + 3u3∂u3 − 3,

H2 =
1

2
∂2
u1

− 4

5
λ4u3∂u1 + u1∂u3 −

3

10
λ4u

2
1 +

1

10
(15λ8 − 4λ2

4)u
2
3,

H4 = ∂u1∂u3 −
6

5
λ6u3∂u1 + λ4u3∂u3 −

1

5
λ6u

2
1 + λ8u1u3 +

1

10
(30λ10 − 6λ4λ6)u

2
3 − λ4,

H6 =
1

2
∂2
u3

− 3

5
λ8u3∂u1 −

1

10
λ8u

2
1 + 2λ10u1u3 −

3

10
λ8λ4u

2
3 −

1

2
λ6.

2.2 Hurwitz integrality of the expansion of the elliptic sigma

function

In [39], Hurwitz integrality of the expansion of the sigma functions is proved. In this
subsection, we will explain the proof of [39] for g = 1.
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In this subsection, we assume g = 1. For simplicity, we denote u1 and du1 by u and
du, respectively. For an integral domain R with characteristic 0 and a variable u, let

R〈〈u〉〉 =
{

∞∑

i=0

αi
ui

i!

∣∣∣∣∣ αi ∈ R

}
.

For n < 0 let pn(u) = 0 and for n ≥ 0 let

pn(u) =
un

n!
.

For an arbitrary partition µ = (µ1, µ2, . . . , µl), we define the Schur polynomial sµ(u) by

sµ(u) = det (pµi−i+j(u))1≤i,j≤l .

Lemma 2.1. We have sµ(u) ∈ Z〈〈u〉〉.

Proof. For i, j ≥ 0, we have

ui

i!

uj

j!
=

(i+ j)!

i!j!

ui+j

(i+ j)!
=

(
i+ j
i

)
ui+j

(i+ j)!
.

Since

(
i+ j
i

)
∈ Z, we obtain the statement of the lemma.

Let

t =
x

y
, s =

1

x
.

Then t is a local parameter of V around ∞. We have

x =
1

s
, y =

1

st
. (10)

Denote by Z≥r the set of integers that are not less than r.

Lemma 2.2. We have the following expansion of s in terms of t around t = 0

s = t2

(
1 +

∞∑

i=4

βit
i

)
,

where βi is a homogeneous polynomial in Z[λ4, λ6] of degree i. In particular, we have

s = t2 + λ4t
6 + λ6t

8 + · · · .

Proof. By substituting (10) into y2 = x3 + λ4x+ λ6, we have

s = t2 + λ4s
2t2 + λ6s

3t2. (11)

The expansion of s with respect to t around t = 0 takes the following form

s = t2
∞∑

i=0

βit
i,

9



where βi ∈ C. By substituting the above expansion into (11), we have

∞∑

i=0

βit
i = 1 + λ4t

4

(
∞∑

i=0

βit
i

)2

+ λ6t
6

(
∞∑

i=0

βit
i

)3

.

By comparing the coefficients, we obtain β0 = 1, β4 = λ4, β6 = λ6, and βn = 0 for
n = 1, 2, 3, 5. For n ≥ 6, we have

βn = λ4

∑

(i1,i2)∈I1

βi1βi2 + λ6

∑

(i1,i2,i3)∈I2

βi1βi2βi3 ,

where I1 = {(i1, i2) ∈ Z2
≥0 | i1+i2 = n−4} and I2 = {(i1, i2, i3) ∈ Z3

≥0 | i1+i2+i3 = n−6}.
Therefore we obtain the statement of the lemma.

From Lemma 2.2 and (10), we have the expansions

x =
1

t2

(
1 +

∞∑

i=4

ait
i

)
, y =

1

t3

(
1 +

∞∑

i=4

ait
i

)
, (12)

where ai is a homogeneous polynomial in Z[λ4, λ6] of degree i. We enumerate the mono-
mials xmyn, where m is a non-negative integer and n = 0, 1, according as the order of a
pole at ∞ and denote them by ϕj, j ≥ 1. In particular we have ϕ1 = 1. We set ei = ti+1.
We expand tϕj around ∞ with respect to t. Let

tϕj =
∑

i

ξi,jei,

where ξi,j ∈ Z[λ4, λ6]. For a partition µ = (µ1, µ2, . . . , ), we define

ξµ = det(ξmi,j)i,j∈N,

wheremi = µi−i and the infinite determinant is well defined. Then we have ξµ ∈ Z[λ4, λ6].
We define the tau function τ(u) by

τ(u) =
∑

µ

ξµsµ(u),

where the sum is over all partitions. From Lemma 2.1, we obtain the following proposi-
tion.

Proposition 2.2. We have τ(u) ∈ Z[λ4, λ6]〈〈u〉〉.

Lemma 2.3. The expansion of du around ∞ with respect to t takes the form

du =

(
∞∑

j=1

bjt
j−1

)
dt,

where b1 = 1 and b2 = b3 = b4 = 0.

10



Proof. From (12), we have

du = −dx

2y
=

1−
∑∞

i=4 ai
i−2
2
ti

1 +
∑∞

i=4 ait
i

dt =
(
1 +O(t4)

)
dt.

We take the algebraic bilinear form

ω(P,Q) =
x1x2(x1 + x2) + λ4(x1 + x2) + 2y1y2 + 2λ6

4y1y2(x1 − x2)2
dx1dx2, (13)

where P = (x1, y1), Q = (x2, y2) ∈ V . We can expand ω(P,Q) around ∞×∞ as

ω(P,Q) =

(
1

(t1 − t2)2
+
∑

i,j≥1

qijt
i−1
1 tj−1

2

)
dt1dt2, (14)

where qij ∈ C and t1, t2 are copies of the local parameter t.

Lemma 2.4. We have q11 = 0.

Proof. From (13) and (14), we have

{x1x2(x1 + x2) + λ4(x1 + x2) + 2y1y2 + 2λ6}dx1dx2

= 4y1y2(x1 − x2)
2

(
1

(t1 − t2)2
+
∑

i,j≥1

qijt
i−1
1 tj−1

2

)
dt1dt2.

By substituting the expansions of x1, x2, y1, y2 into the above equation and multiplying
the both sides of this equation by t71t

7
2(t1 − t2)

2, we obtain

(t1 − t2)
2(−2 + 2a4t

4
1 + · · · )(−2 + 2a4t

4
2 + · · · )

×
[
f(t1)f(t2){t22f(t1) + t21f(t2)}+ λ4t

2
1t

2
2{t22f(t1) + t21f(t2)}+ 2t1t2f(t1)f(t2) + 2λ6t

4
1t

4
2

]

= 4f(t1)f(t2){t22f(t1)− t21f(t2)}2
{
1 + q11(t1 − t2)

2 +
∑

i+j≥3

q̃ijt
i
1t

j
2

}
,

where f(t) is defined by x = t−2f(t) and q̃ij ∈ C. By comparing the coefficient of t62 in
the above equation, we obtain q11 = 0.

We define ci by the following relation

√
du

dt
= exp

(
∞∑

i=1

ci
i
ti

)
.

Lemma 2.5. We have c1 = 0.

11



Proof. From Lemma 2.3, we have the following expansion

√
du

dt
= 1 +O(t4).

On the other hand, we have

exp

(
∞∑

i=1

ci
i
ti

)
= 1 + c1t+O(t2).

Thus we have c1 = 0.

Theorem 2.3. ([34], Theorem 4) We have

τ(u) = exp

(
−c1u+

1

2
q11u

2

)
σ(b1u).

From Theorem 2.3, Lemma 2.3, Lemma 2.4, and Lemma 2.5, we have

σ(u) = τ(u). (15)

From Proposition 2.2 and (15), we obtain the following theorem.

Theorem 2.4. ([39]) We have

σ(u) ∈ Z[λ4, λ6]〈〈u〉〉.

2.3 Hurwitz integrality of the expansion of the two-dimensional

sigma function

In this subsection, we will explain the proof of [39] for Hurwitz integrality of the expansion
of the sigma function for g = 2.

In this subsection, we assume g = 2. For an integral domain R with characteristic 0
and variables u1, u3, let

R〈〈u1, u3〉〉 =
{

∞∑

i=0

∞∑

j=0

αi,j
ui
1u

j
3

i!j!

∣∣∣∣∣ αi,j ∈ R

}
.

For n < 0 let pn(u1, u3) = 0 and for n ≥ 0 let

pn(u1, u3) =
∑ ui

1u
j
3

i!j!
,

where the summation is over all (i, j) ∈ Z2
≥0 satisfying i + 3j = n. For an arbitrary

partition µ = (µ1, µ2, . . . , µl), we define the Schur polynomial sµ(u1, u3) by

sµ(u1, u3) = det (pµi−i+j(u1, u3))1≤i,j≤l .

12



Lemma 2.6. We have sµ(u1, u3) ∈ Z〈〈u1, u3〉〉.
Proof. For i, j, k, ℓ ≥ 0, we have

ui
1u

j
3

i!j!

uk
1u

ℓ
3

k!ℓ!
=

(i+ k)!(j + ℓ)!

i!j!k!ℓ!

ui+k
1 uj+ℓ

3

(i+ k)!(j + ℓ)!
=

(
i+ k
i

)(
j + ℓ
j

)
ui+k
1 uj+ℓ

3

(i+ k)!(j + ℓ)!
.

Since

(
i+ k
i

)(
j + ℓ
j

)
∈ Z, we obtain the statement of the lemma.

Let

t =
x2

y
, s =

1

x
.

Then t is a local parameter of V around ∞. We have

x =
1

s
, y =

1

s2t
. (16)

Lemma 2.7. We have the following expansion of s in terms of t around t = 0

s = t2

(
1 +

∞∑

i=4

γit
i

)
,

where γi is a homogeneous polynomial in Z[λ4, λ6, λ8, λ10] of degree i. In particular, we
have

s = t2 + λ4t
6 + λ6t

8 + (2λ2
4 + λ8)t

10 + (5λ4λ6 + λ10)t
12 + · · · .

Proof. By substituting (16) into y2 = x5 + λ4x
3 + λ6x

2 + λ8x+ λ10, we have

s = t2 + λ4s
2t2 + λ6s

3t2 + λ8s
4t2 + λ10s

5t2. (17)

The expansion of s with respect to t around t = 0 takes the following form

s = t2
∞∑

i=0

γit
i,

where γi ∈ C. By substituting the above expansion into (17), we have

∞∑

i=0

γit
i = 1+λ4t

4

(
∞∑

i=0

γit
i

)2

+λ6t
6

(
∞∑

i=0

γit
i

)3

+λ8t
8

(
∞∑

i=0

γit
i

)4

+λ10t
10

(
∞∑

i=0

γit
i

)5

.

By comparing the coefficients, we obtain γ0 = 1, γ4 = λ4, γ6 = λ6, γ8 = 2λ2
4 + λ8, γ10 =

5λ4λ6 + λ10 and γn = 0 for n = 1, 2, 3, 5, 7, 9. For n ≥ 10, we have

γn = λ4

∑

(i1,i2)∈I1

γi1γi2 + λ6

∑

(i1,i2,i3)∈I2

γi1γi2γi3 + λ8

∑

(i1,i2,i3,i4)∈I3

γi1γi2γi3γi4

+λ10

∑

(i1,i2,i3,i4,i5)∈I4

γi1γi2γi3γi4γi5,

where I1 = {(i1, i2) ∈ Z2
≥0 | i1 + i2 = n − 4}, I2 = {(i1, i2, i3) ∈ Z3

≥0 | i1 + i2 + i3 =
n− 6}, I3 = {(i1, i2, i3, i4) ∈ Z4

≥0 | i1 + i2 + i3 + i4 = n− 8}, and I4 = {(i1, i2, i3, i4, i5) ∈
Z5
≥0 | i1 + i2 + i3 + i4 + i5 = n− 10}. Therefore we obtain the statement of the lemma.
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From Lemma 2.7, we have the expansions

x =
1

t2

(
1 +

∞∑

i=4

d
(1)
i ti

)
, y =

1

t5

(
1 +

∞∑

i=4

d
(2)
i ti

)
,

where d
(1)
i , d

(2)
i are homogeneous polynomials in Z[λ4, λ6, λ8, λ10] of degree i. We enumer-

ate the monomials xmyn, where m is a non-negative integer and n = 0, 1, according as
the order of a pole at ∞ and denote them by ϕj, j ≥ 1. In particular we have ϕ1 = 1.
We set ei = ti+1. We expand t2ϕj around ∞ with respect to t. Let

t2ϕj =
∑

ξi,jei,

where ξi,j ∈ Z[λ4, λ6, λ8, λ10]. For a partition µ = (µ1, µ2, . . . , ), we define

ξµ = det(ξmi,j)i,j∈N,

where mi = µi − i and the infinite determinant is well defined. Then we have ξµ ∈
Z[λ4, λ6, λ8, λ10]. We define the tau function τ(u1, u3) by

τ(u1, u3) =
∑

µ

ξµsµ(u1, u3),

where the sum is over all partitions. From Lemma 2.6, we obtain the following proposi-
tion.

Proposition 2.3. We have τ(u1, u3) ∈ Z[λ4, λ6, λ8, λ10]〈〈u1, u3〉〉.

The expansions of dui around ∞ with respect to t take the following form

dui =
∞∑

j=1

bijt
j−1dt.

Lemma 2.8. We have b11 = 1, b13 = 0, b31 = 0, b33 = 1.

Proof. We have

du1 = − x

2y
dx = − t−2(1 +

∑∞
i=4 d

(1)
i ti)

2t−5(1 +
∑∞

i=4 d
(2)
i ti)

(
−2t−3 +

∞∑

i=4

(i− 2)d
(1)
i ti−3

)
= (1 +O(t4))dt.

Therefore we obtain b11 = 1 and b13 = 0. We have

du3 = −dx

2y
= −−2t−3 +

∑∞
i=4(i− 2)d

(1)
i ti−3

2t−5(1 +
∑∞

i=4 d
(2)
i ti)

= (t2 +O(t6))dt.

Therefore we obtain b31 = 0 and b33 = 1.

We define ci by the following relation

√
du3

dt
= t exp

(
∞∑

i=1

ci
i
ti

)
.
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Lemma 2.9. We have c1 = c2 = c3 = 0.

Proof. We have the following expansion

du3

dt
= t2(1 +O(t4)).

Therefore we have the following expansion
√

du3

dt
= t(1 +O(t4)).

On the other hand, we have

exp

(
∞∑

i=1

ci
i
ti

)
= 1 + c1t +

(
c2
2
+

c21
2

)
t2 +

(
c3
3
+

c1c2
2

+
c31
6

)
t3 + · · · .

Thus we have c1 = c2 = c3 = 0.

We take the algebraic bilinear form

ω(P,Q) =
x2
1x

2
2(x1 + x2) + λ4x1x2(x1 + x2) + 2λ6x1x2 + λ8(x1 + x2) + 2y1y2 + 2λ10

4y1y2(x1 − x2)2
dx1dx2,

(18)
where P = (x1, y1), Q = (x2, y2) ∈ V ([15], p.217). We can expand ω(P,Q) around∞×∞
as

ω(P,Q) =

(
1

(t1 − t2)2
+
∑

i,j≥1

qijt
i−1
1 tj−1

2

)
dt1dt2, (19)

where qij ∈ C and t1, t2 are copies of the local parameter t.

Lemma 2.10. We have q11 = 0, q13 = q31 = λ4, q51 = q15 = 2λ6, q33 = 3λ6.

Proof. We define f(t) by s = t2f(t). From Lemma 2.7, we have

f(t) = 1 + λ4t
4 + λ6t

6 + · · · .
From (18) and (19), we obtain

AB − C = D · (q11 + q31t
2
1 + q13t

2
2 + q51t

4
1 + q15t

4
2 + q33t

2
1t

2
2 + · · · ),

where

A = t21f(t1) + t22f(t2) + λ4t
2
1t

2
2f(t1)f(t2)(t

2
1f(t1) + t22f(t2)) + 2λ6t

4
1t

4
2f(t1)

2f(t2)
2

+λ8t
4
1t

4
2f(t1)

2f(t2)
2(t21f(t1) + t22f(t2)) + 2t1t2f(t1)f(t2) + 2λ10t

6
1t

6
2f(t1)

3f(t2)
3

B = (1 + 3λ4t
4
1 + 4λ6t

6
1 + · · · )(1 + 3λ4t

4
2 + 4λ6t

6
2 + · · · )

C = f(t1)f(t2)(t1 + t2)
2{1 + λ4(t

4
1 + t21t

2
2 + t42) + λ6(t

6
1 + t41t

2
2 + t21t

4
2 + t62) + · · · }2

D = f(t1)f(t2)(t
2
1 − t22)

2{1 + λ4(t
4
1 + t21t

2
2 + t42) + λ6(t

6
1 + t41t

2
2 + t21t

4
2 + t62) + · · · }2.

By comparing the coefficient of t41, we obtain q11 = 0. By comparing the coefficient of t61,
we obtain q31 = q13 = λ4. By comparing the coefficient of t81, we obtain q51 = q15 = 2λ6.
By comparing the coefficient of t61t

2
2, we obtain

q33 − 2q51 = −λ6.

Therefore we obtain q33 = 3λ6.
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Theorem 2.5. ([34], Theorem 4) We have

τ(u1, u3) = exp

(
−c1u1 − c3u3 +

1

2
q11u

2
1 +

1

2
q33u

2
3 + q13u1u3

)
σ(b11u1+b13u3, b31u1+b33u3).

From Theorem 2.5, Lemma 2.8, Lemma 2.9, and Lemma 2.10, we have

σ(u1, u3) = exp

(
−3λ6

u2
3

2
− λ4u1u3

)
τ(u1, u3). (20)

Lemma 2.11. For any non-negative integer n, we have εn :=
(2n)!

2nn!
∈ Z.

Proof. We have ε1 = 1 ∈ Z. Assume εn ∈ Z. Then we have

εn+1 =
(2n+ 2)!

2n+1(n+ 1)!
=

(2n+ 2)(2n+ 1)

2(n+ 1)
εn = (2n+ 1)εn ∈ Z.

By mathematical induction, we obtain the statement.

Lemma 2.12. We have

exp

(
−3λ6

u2
3

2
− λ4u1u3

)
∈ Z[λ4, λ6, λ8, λ10]〈〈u1, u3〉〉.

Proof. We have

exp

(
−3λ6

u2
3

2
− λ4u1u3

)
=

∞∑

n=0

1

n!

(
−3λ6

u2
3

2
− λ4u1u3

)n

.

From Lemma 2.11, for any k, ℓ ∈ Z≥0, we have

1

(k + ℓ)!

(
k + ℓ
k

)(
−3λ6

u2
3

2

)k

(−λ4u1u3)
ℓ

= (−3λ6)
k(−λ4)

ℓu
ℓ
1

ℓ!

u2k+ℓ
3

(2k + ℓ)!

(2k + ℓ)!

2kk!
∈ Z[λ4, λ6, λ8, λ10]〈〈u1, u3〉〉.

Therefore we obtain the statement.

From Proposition 2.3, Lemma 2.12, and (20), we obtain the following theorem.

Theorem 2.6. ([39]) We have

σ(u1, u3) ∈ Z[λ4, λ6, λ8, λ10]〈〈u1, u3〉〉.
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2.4 Universal Bernoulli numbers

In this subsection, we will describe the definition of the universal Bernoulli numbers and
their properties according to [22, 38].

Let f1, f2, . . . be infinitely many indeterminates. We consider the power series

u = u(z) = z +
∞∑

n=1

fn
zn+1

n+ 1

and its formal inverse series

z = z(u) = u− f1
u2

2!
+ (3f 2

1 − 2f2)
u3

3!
+ · · · ,

namely, the series such that u(z(u)) = u. Then we define B̂n ∈ Q[f1, f2, . . . ] by

u

z(u)
=

∞∑

n=0

B̂n
un

n!

and call them the universal Bernoulli numbers. We have B̂0 = 1. If we set deg fi = i,
then B̂n is homogeneous of degree n if B̂n 6= 0. Let S be the set of finite sequences
U = (U1, U2, . . . ) of non-negative integers. For U = (U1, U2, . . . ) ∈ S, we use the notations
U ! = U1!U2! · · · , ΛU = 2U13U24U3 · · · , fU = fU1

1 fU2
2 · · · , γU = ΛUU !, w(U) =

∑
j jUj , and

d(U) =
∑

j Uj.

Proposition 2.4. ([38] Proposition 2.8) We have the expression

B̂n

n
=

∑

w(U)=n

τUf
U ,

where

τU = (−1)d(U)−1 (w(U) + d(U)− 2)!

γU
. (21)

For a rational number α, we denote by ⌊α⌋ the largest integer which does not exceed α.
If p is a prime and the p-part of given rational number r is pe, then we write e = ordpr. If
τ is a polynomial (possibly in several variables) with rational coefficients, then we denote
by ordpτ the least number of ordpr for all the coefficients r of τ . For a prime number p
and an integer a, let a|p = a/pordpa. For positive integers a, b and a prime number p, we
have

ordp(a+ b)!− ordpa!− ordpb! = ordp
(a+ b)!

a!b!
.

Since (a+ b)!/(a!b!) ∈ Z, we have

ordp(a+ b)! ≥ ordpa! + ordpb!. (22)

For a positive integer a and a prime number p, the following formula is well known

ordp(a!) =
∞∑

ν=1

⌊
a

pν

⌋
. (23)

If positive integers a and b are relatively prime, we denote it by a ⊥ b.
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Lemma 2.13. ([38] Proposition 3.11) Let p be an odd prime and U = (U1, U2, . . . , ) be
an element of S. If p ≥ 5, we assume U1 = U2 = Up−1 = U2p−1 = 0 and d(U) 6= 0.
If p = 3, we assume U1 = U2 = U5 = U8 = 0 and d(U) 6= 0. Then τU defined in (21)
satisfies

ordp(τU) ≥
⌊
w(U) + d(U)− 2

2p

⌋
.

Proof. For the sake to be complete and self-contained, we give a proof of this lemma. By
using (22) and (23), we have

ordp(τU) = ordp(w(U) + d(U)− 2)!− ordp(γU)

= ordp

(
∑

j≥1

jUj +
∑

j≥1

Uj − 2

)
!−

∑

ε,k≥1, ε⊥p

kUεpk−1 −
∑

j≥1

ordp(Uj !)

≥ ordp

(
∑

j≥1

jUj − 2

)
!−

∑

ε,k≥1, ε⊥p

kUεpk−1

= ordp



−2 +
∑

p∤j+1

jUj +
∑

ε,k≥1, ε⊥p

(εpk − 1)Uεpk−1



!−
∑

ε,k≥1, ε⊥p

kUεpk−1

=

∞∑

ν=1

 1

pν



−2 +
∑

p∤j+1

jUj +
∑

ε,k≥1, ε⊥p

(εpk − 1)Uεpk−1





−
∑

ε,k≥1, ε⊥p

kUεpk−1

≥

1
p


−2 +

∑

p∤j+1

jUj +
∑

ε,k≥1, ε⊥p

(εpk − 1)Uεpk−1




−
∑

ε,k≥1, ε⊥p

kUεpk−1

=

1
p


−2 +

∑

p∤j+1

jUj +
∑

ε,k≥1, ε⊥p

(εpk − kp− 1)Uεpk−1






=

 1

2p


−4 +

∑

p∤j+1

2jUj +
∑

ε,k≥1, ε⊥p

2(εpk − kp− 1)Uεpk−1




 .

By the assumption of the lemma, there exists a positive integer i such that i ≥ 3 and
Ui 6= 0. For j ≥ 3, we have 2j − (j + 1) ≥ 2. If p ≥ 5, let Tp = {(1, 1), (2, 1)}. If p = 3,
let Tp = {(1, 1), (2, 1), (1, 2)}. By the assumption of the lemma, we have Uεpk−1 = 0 for
any (ε, k) ∈ Tp. For any integers ε ≥ 1 and k ≥ 1 such that (ε, k) /∈ Tp and ε ⊥ p, we can
check

2(εpk − kp− 1)− εpk ≥ 2.

Therefore we have

ordp(τU) ≥

 1

2p


−2 +

∑

p∤j+1

(j + 1)Uj +
∑

ε,k≥1, ε⊥p

εpkUεpk−1




 =

⌊
w(U) + d(U)− 2

2p

⌋
.
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Lemma 2.14. Let U = (U1, U2, . . . , ) be an element of S such that Ui = 0 for any odd
integer i, U2 = 0, and d(U) 6= 0. Then we have

ord2(τU) ≥
⌊
w(U) + d(U)− 2

4

⌋
.

Proof. We can prove this lemma in the same way as [38] Proposition 3.11. For the sake
to be complete and self-contained, we give a proof of this lemma. By using (22), (23),
and ord2(Λ

U) = 0, we have

ord2(τU ) = ord2(w(U) + d(U)− 2)!− ord2(γU) = ord2

(
∑

j≥4

jUj +
∑

j≥4

Uj − 2

)
!− ord2(U !)

≥ ord2

(
∑

j≥4

jUj − 2

)
! =

∞∑

ν=1

⌊∑
j≥4 jUj − 2

2ν

⌋
≥
⌊∑

j≥4 jUj − 2

2

⌋

=

⌊∑
j≥4 2jUj − 4

4

⌋
.

Since j ≥ 4, we have 2j − (j + 1) ≥ 3. Therefore we have
⌊∑

j≥4 2jUj − 4

4

⌋
≥
⌊∑

j≥4(j + 1)Uj − 2

4

⌋
=

⌊
w(U) + d(U)− 2

4

⌋
.

In [22], F. Clarke showed the following resutls, which are a generalization of the von
Staudt-Clausen theorem for the classical Bernoulli numbers to the universal Bernoulli
numbers (cf. the paper of Onishi [38]). These results were used in the proof of our
Theorem 5.2 in the present survey.

Theorem 2.7. (i) We have

B̂1 =
1

2
f1,

B̂2

2
= −1

4
f 2
1 +

1

3
f2,

(ii) If n ≡ 0 mod 4, then we have

B̂n

n
≡

∑

n=a(p−1), p : prime

a|−1
p mod p1+ordpa

p1+ordpa
fa
p−1 mod Z[f1, f2, . . . ].

(iii) If n ≡ 2 mod 4 and n 6= 2, then we have

B̂n

n
≡ fn−6

1 f 2
3

2
− nfn

1

8
+

∑

n=a(p−1), p : odd prime

a|−1
p mod p1+ordpa

p1+ordpa
fa
p−1 mod Z[f1, f2, . . . ].

(iv) If n ≡ 1, 3 mod 4 and n 6= 1, then we have

B̂n

n
≡ fn

1 + fn−3
1 f3
2

mod Z[f1, f2, . . . ].

In (ii) and (iii), a|−1
p mod p1+ordpa denotes an integer δ such that (a|p)δ ≡ 1 mod p1+ordpa.
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3 Differential equations for the coefficients of the ex-

pansions of the two-dimensional sigma function

In this section, we assume g = 2.

3.1 The coefficients of u3

Let λ = (λ4, λ6, λ8, λ10). We set

σ(u1, u3;λ) =
∑

k≥0

ξk(u1;λ)
uk
3

k!
.

Proposition 3.1. For k ≥ 0, the functions ξ0, ξ1, . . . satisfy the following hierarchy of
systems

u1ξ
′
k + 3(k − 1)ξk = 4λ4ξk,λ4 + 6λ6ξk,λ6 + 8λ8ξk,λ8 + 10λ10ξk,λ10, (24)

u1ξk+1 = −1

2
ξ′′k +

4k

5
λ4ξ

′
k−1 +

3

10
λ4u

2
1ξk −

k(k − 1)

10
(15λ8 − 4λ2

4)ξk−2

+6λ6ξk,λ4 + (8λ8 −
12

5
λ2
4)ξk,λ6 + (10λ10 −

8

5
λ4λ6)ξk,λ8 −

4

5
λ4λ8ξk,λ10, (25)

ξ′k+1 =
6k

5
λ6ξ

′
k−1 − kλ4ξk +

λ6

5
u2
1ξk − kλ8u1ξk−1 −

k(k − 1)

10
(30λ10 − 6λ4λ6)ξk−2 + λ4ξk

+8λ8ξk,λ4 + (10λ10 −
8

5
λ4λ6)ξk,λ6 + (4λ4λ8 −

12

5
λ2
6)ξk,λ8 + (6λ4λ10 −

6

5
λ6λ8)ξk,λ10, (26)

ξk+2 =
6k

5
λ8ξ

′
k−1 +

λ8

5
u2
1ξk − 4kλ10u1ξk−1 +

3k(k − 1)

5
λ8λ4ξk−2 + λ6ξk

+20λ10ξk,λ4 −
8

5
λ4λ8ξk,λ6 + (12λ4λ10 −

12

5
λ6λ8)ξk,λ8 + (8λ6λ10 −

16

5
λ2
8)ξk,λ10, (27)

where the prime denotes the derivation with respect to u1 and ξk,λ2j
denotes the derivation

of ξk with respect to λ2j.

Proof. We substitute the expressions

σ1 =
∑

k≥0

ξ′k(u1)
uk
3

k!
, σ3 =

∑

k≥0

ξk+1(u1)
uk
3

k!
, σ11 =

∑

k≥0

ξ′′k(u1)
uk
3

k!
,

σ13 =
∑

k≥0

ξ′k+1(u1)
uk
3

k!
, σ33 =

∑

k≥0

ξk+2(u1)
uk
3

k!
.

into the equations Qiσ = 0 for i = 0, 2, 4, 6 in Theorem 2.2 (ii) and compare the coeffi-
cients of uk

3/k!. Then, from Q0σ = 0, Q2σ = 0, Q4σ = 0, Q6σ = 0, we obtain (24), (25),
(26), (27), respectively.
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Lemma 3.1. The fact that ξk satisfies the differential equation (24) means that ξk is
homogeneous in u1 and λ2j, j = 2, . . . , 5, with degree 3k − 3.

Proof. We set

ξk(u1;λ) =
∑

i1,j4,j6,j8,j10≥0

a
(k)
i1,j4,j6,j8,j10

ui1
1 λ

j4
4 λ

j6
6 λ

j8
8 λ

j10
10 , a

(k)
i1,j4,j6,j8,j10

∈ C.

By substituting the above expression into (24) and comparing the coefficient of ui1
1 λ

j4
4 λ

j6
6 λ

j8
8 λ

j10
10 ,

we have
a
(k)
i1,j4,j6,j8,j10

(i1 + 3k − 3) = a
(k)
i1,j4,j6,j8,j10

(4j4 + 6j6 + 8j8 + 10j10).

If a
(k)
i1,j4,j6,j8,j10

6= 0, we have 4j4 + 6j6 + 8j8 + 10j10 − i1 = 3k − 3.

Proposition 3.2. The function ξ0 satisfies the following differential equation

1

2
ξ′′0 −

1

2
u1ξ

′′′
0 − 7

10
λ4u

2
1ξ0 −

λ6

5
u4
1ξ0 +

3

10
λ4u

3
1ξ

′
0 − 8λ8u

2
1ξ0,λ4

−(10λ10 −
8

5
λ4λ6)u

2
1ξ0,λ6 − (4λ4λ8 −

12

5
λ2
6)u

2
1ξ0,λ8 − (6λ4λ10 −

6

5
λ6λ8)u

2
1ξ0,λ10

+6λ6u1ξ
′
0,λ4

+ (8λ8 −
12

5
λ2
4)u1ξ

′
0,λ6

+ (10λ10 −
8

5
λ4λ6)u1ξ

′
0,λ8

− 4

5
λ4λ8u1ξ

′
0,λ10

−6λ6ξ0,λ4 − (8λ8 −
12

5
λ2
4)ξ0,λ6 − (10λ10 −

8

5
λ4λ6)ξ0,λ8 +

4

5
λ4λ8ξ0,λ10 = 0.

Proof. From (25) with k = 0, we have

u1ξ1 = −1

2
ξ′′0+

3

10
λ4u

2
1ξ0+6λ6ξ0,λ4+(8λ8−

12

5
λ2
4)ξ0,λ6+(10λ10−

8

5
λ4λ6)ξ0,λ8−

4

5
λ4λ8ξ0,λ10 .

(28)
From (26) with k = 0, ξ′1 can be expressed in terms of ξ0 and its derivatives. We take
the derivative with respect to u1 of (28) and substitute into it the expression for ξ′1. As
a result, we obtain

ξ1 = −1

2
ξ′′′0 − 2

5
λ4u1ξ0 −

λ6

5
u3
1ξ0 +

3

10
λ4u

2
1ξ

′
0 − 8λ8u1ξ0,λ4 − (10λ10 −

8

5
λ4λ6)u1ξ0,λ6

−(4λ4λ8 −
12

5
λ2
6)u1ξ0,λ8 − (6λ4λ10 −

6

5
λ6λ8)u1ξ0,λ10 + 6λ6ξ

′
0,λ4

+ (8λ8 −
12

5
λ2
4)ξ

′
0,λ6

+(10λ10 −
8

5
λ4λ6)ξ

′
0,λ8

− 4

5
λ4λ8ξ

′
0,λ10

.

We substitute the above equation into (28) and finally obtain the statement of the propo-
sition.

We set

ξ0 =
∑

ℓ≥0

pℓ(λ)
uℓ
1

ℓ!
. (29)

Lemma 3.2. If ℓ is even, then pℓ = 0. We have p1 = 0 and p3 ∈ C.
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Proof. From Lemma 3.1 and (24) with k = 0, we obtain the statement of the lemma.

Proposition 3.3. For ℓ ≥ 2, the following recurrence relation holds :

pℓ+2 =
λ4ℓ(3ℓ− 13)

5
pℓ−2 −

2λ6

5
ℓ(ℓ− 2)(ℓ− 3)pℓ−4 − 16λ8ℓpℓ−2,λ4

−(20λ10 −
16

5
λ4λ6)ℓpℓ−2,λ6 − (8λ4λ8 −

24

5
λ2
6)ℓpℓ−2,λ8 − (12λ4λ10 −

12

5
λ6λ8)ℓpℓ−2,λ10

+12λ6pℓ,λ4 + (16λ8 −
24

5
λ2
4)pℓ,λ6 + (20λ10 −

16

5
λ4λ6)pℓ,λ8 −

8

5
λ4λ8pℓ,λ10 ,

where pi,λ2j
denotes the derivative of pi with respect to λ2j.

Proof. By substituting (29) into the differential equation in Proposition 3.2 and compar-
ing the coefficients of uℓ

1/ℓ!, we obtain the statement of the proposition.

Corollary 3.1. The sigma function σ(u1, u3;λ) is uniquely determined by the differential
equations Qiσ = 0, i = 0, 2, 4, up to a multiplicative constant.

Proof. From Lemma 3.2 and Proposition 3.3, we find that all the coefficients pℓ are
determined from p3. Note that Lemma 3.2 and Proposition 3.3 follow from (24), (25),
and (26). By (25), all the functions ξk are determined from ξ0. As mentioned in the proof
of Proposition 3.1, (24), (25), (26) follow from Q0σ = 0, Q2σ = 0, Q4σ = 0. Therefore we
obtain the statement of this corollary.

Remark 3.1. It is known that the sigma function σ(u1, u3;λ) is uniquely determined by
the differential equations Qiσ = 0, i = 0, 2, 4, 6, up to a multiplicative constant ([18],
[19], [24]). In [11], the following expression is proved :

10Q6 = 5[Q2, Q4]− 8λ6Q0 + 8λ4Q2,

where [Q2, Q4] is the commutator of Q2 and Q4. From this result, in [11], it is shown
that the sigma function σ(u1, u3;λ) is uniquely determined by the differential equations
Qiσ = 0, i = 0, 2, 4, up to a multiplicative constant.

Corollary 3.2. We have

σ(u1, u3) ∈ Z[λ4, λ6, λ8, 2λ10]〈〈u1, u3〉〉.

Proof. From Lemma 3.2 and (9), we have p0 = p1 = p2 = 0 and p3 = 2. From Propo-
sition 3.3, we can show pℓ ∈ Z[1/5, λ4, λ6, λ8, 2λ10] for any ℓ by mathematical induc-
tion. Therefore we have ξ0 ∈ Z[1/5, λ4, λ6, λ8, 2λ10]〈〈u1〉〉. From (26) with k = 0,
we can show ξ′1 ∈ Z[1/5, λ4, λ6, λ8, 2λ10]〈〈u1〉〉. Since ξ1 = −1 + O(u1), we have ξ1 ∈
Z[1/5, λ4, λ6, λ8, 2λ10]〈〈u1〉〉. From (27), we can show ξk ∈ Z[1/5, λ4, λ6, λ8, 2λ10]〈〈u1〉〉
for any k by mathematical induction. Therefore we have

σ(u1, u3) ∈ Z[1/5, λ4, λ6, λ8, 2λ10]〈〈u1, u3〉〉.

From Theorem 2.6, we obtain the statement of the corollary.
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3.2 Expansions of ξk

In this subsection we will calculate the expansions of ξk. From (9), we have p3 = 2. The
initial terms of ξi, i = 0, 1, 2, 3, 4, are as follows.

ξ0 = 2
u3
1

3!
+ 22λ4

u7
1

7!
− 26λ6

u9
1

9!
+ 23(51λ2

4 − 200λ8)
u11
1

11!
+ 27(67λ4λ6 − 140λ10)

u13
1

13!
+ · · · ,

ξ1 = −1 + 2λ4
u4
1

4!
+ 23λ6

u6
1

6!
+ 22(λ2

4 + 8λ8)
u8
1

8!
+ 25(3λ4λ6 − 20λ10)

u10
1

10!

+23(304λ2
6 + 51λ3

4 − 184λ4λ8)
u12
1

12!
+ 25(1256λ6λ8 + 237λ2

4λ6 − 1240λ4λ10)
u14
1

14!
+ · · · ,

ξ2 = 2λ6
u3
1

3!
+ 23λ8

u5
1

5!
+ 22(20λ10 + λ4λ6)

u7
1

7!
+ 25(5λ4λ8 − 2λ2

6)
u9
1

9!
+ 23(51λ2

4λ6 + 104λ6λ8

−360λ4λ10)
u11
1

11!
+ 25(232λ2

8 − 31λ2
4λ8 + 268λ4λ

2
6 + 320λ6λ10)

u13
1

13!
+ · · · ,

ξ3 = −λ6 + 2λ8
u2
1

2!
+ 2(λ4λ6 + 4λ10)

u4
1

4!
+ 22(λ4λ8 + 2λ2

6)
u6
1

6!
+ 22(λ2

4λ6 + 104λ4λ10 − 8λ6λ8)
u8
1

8!

+23(88λ2
8 + 51λ2

4λ8 + 12λ4λ
2
6 − 160λ6λ10)

u10
1

10!

+(7104λ4λ6λ8 + 8960λ8λ10 + 2432λ3
6 + 408λ3

4λ6 − 12768λ2
4λ10)

u12
1

12!
+ · · · ,

ξ4 = 23λ10
u1

1!
+ 2(λ2

6 + 2λ4λ8)
u3
1

3!
+ 24(λ6λ8 + λ4λ10)

u5
1

5!

+22(2λ2
4λ8 + λ4λ

2
6 + 88λ6λ10 − 28λ2

8)
u7
1

7!
+ 25(6λ4λ6λ8 + 16λ8λ10 − 2λ3

6 + 51λ2
4λ10)

u9
1

9!

+23(744λ4λ
2
8 + 408λ2

6λ8 + 102λ3
4λ8 + 51λ2

4λ
2
6 − 1008λ4λ6λ10 − 160λ2

10)
u11
1

11!

+26(960λ6λ
2
8 + 237λ2

4λ6λ8 + 1072λ4λ8λ10 + 134λ4λ
3
6 + 168λ2

6λ10 − 849λ3
4λ10)

u13
1

13!
+ · · · .

3.3 The coefficients of u1

We set

σ(u1, u3;λ) =
∑

k≥0

µk(u3;λ)
uk
1

k!
. (30)

Proposition 3.4. For k ≥ 0, the functions µ0, µ1, . . . satisfy the following hierarchy of
systems

(k − 3)µk + 3u3µ
′
k = 4λ4µk,λ4 + 6λ6µk,λ6 + 8λ8µk,λ8 + 10λ10µk,λ10, (31)

µk+2 =
8

5
λ4u3µk+1 − 2kµ′

k−1 +
3k(k − 1)

5
λ4µk−2 −

15λ8 − 4λ2
4

5
u2
3µk

+ 12λ6µk,λ4 + (16λ8 −
24

5
λ2
4)µk,λ6 + (20λ10 −

16

5
λ4λ6)µk,λ8 −

8

5
λ4λ8µk,λ10, (32)
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µ′
k+1 −

6

5
λ6u3µk+1 = −λ4u3µ

′
k +

k(k − 1)

5
λ6µk−2 − kλ8u3µk−1 − (3λ10 −

3

5
λ4λ6)u

2
3µk

+λ4µk + 8λ8µk,λ4 + (10λ10 −
8

5
λ4λ6)µk,λ6 + (4λ4λ8 −

12

5
λ2
6)µk,λ8

+(6λ4λ10 −
6

5
λ6λ8)µk,λ10, (33)

λ8u3µk+1 =
5

6
µ′′
k −

k(k − 1)

6
λ8µk−2 +

10

3
kλ10u3µk−1 −

λ4λ8

2
u2
3µk −

5

6
λ6µk

− 50

3
λ10µk,λ4 +

4

3
λ4λ8µk,λ6 − (10λ4λ10 − 2λ6λ8)µk,λ8 − (

20

3
λ6λ10 −

8

3
λ2
8)µk,λ10, (34)

where the prime denotes the derivation with respect to u3 and µk,λ2j
denotes the derivation

of µk with respect to λ2j.

Proof. We substitute the expression (30) into the equations Qiσ = 0 for i = 0, 2, 4, 6
in Theorem 2.2 (ii) and compare the coefficients of uk

1/k!. Then, from Q0σ = 0, Q2σ =
0, Q4σ = 0, Q6σ = 0, we obtain (31), (32), (33), (34), respectively.

Lemma 3.3. The fact that µk satisfies the differential equation (31) means that µk is
homogeneous in u3 and λ2j, j = 2, . . . , 5, with degree k − 3.

Proof. In the same way as Lemma 3.1, we obtain the statement of the lemma.

Proposition 3.5. The function µ0 satisfies the following differential equation

µ′′
0 +

9

5
λ4λ8u

2
3µ0 − λ6µ0 −

6

5
λ2
6u

2
3µ0 −

18

5
λ8λ10u

4
3µ0 − u3µ

′′′
0 +

6

5
λ6u

2
3µ

′′
0 −

3

5
λ4λ8u

3
3µ

′
0

+λ6u3µ
′
0 − 20λ10µ0,λ4 +

8

5
λ4λ8µ0,λ6 +

(
12

5
λ6λ8 − 12λ4λ10

)
µ0,λ8 +

(
16

5
λ2
8 − 8λ6λ10

)
µ0,λ10

+20λ10u3µ
′
0,λ4

− 8

5
λ4λ8u3µ

′
0,λ6

+

(
12λ4λ10 −

12

5
λ6λ8

)
u3µ

′
0,λ8

+

(
8λ6λ10 −

16

5
λ2
8

)
u3µ

′
0,λ10

+

(
48

5
λ2
8 − 24λ6λ10

)
u2
3µ0,λ4 + 12λ8λ10u

2
3µ0,λ6 +

(
24

5
λ4λ

2
8 −

72

5
λ4λ6λ10

)
u2
3µ0,λ8

+

(
36

5
λ4λ8λ10 −

48

5
λ2
6λ10 +

12

5
λ6λ

2
8

)
u2
3µ0,λ10 = 0

Proof. By substituting (34) for k = 0 into (33) for k = 0, we obtain the statement of the
proposition.

We set

µ0 =
∑

ℓ≥0

qℓ(λ)
uℓ
3

ℓ!
. (35)

Lemma 3.4. If ℓ is even, then qℓ = 0. We have q1 ∈ C and q3 = λ6q1.

Proof. From Lemma 3.3 and (31), we obtain qℓ = 0 for any non-negative even integer ℓ
and q1 ∈ C. Further, we find that the coefficient of u0

3 in µ1 is equal to 0. By comparing
the coefficient of u3 in the equation (34) for k = 0, we obtain q3 = λ6q1.
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Proposition 3.6. For ℓ ≥ 2, the following recurrence relation holds :

qℓ+2 = (
6

5
ℓ+ 1)λ6qℓ + ℓ(3− 3

5
ℓ)λ4λ8qℓ−2 −

6

5
λ2
6ℓqℓ−2 −

18ℓ(ℓ− 2)(ℓ− 3)

5
λ8λ10qℓ−4

+ 20λ10qℓ,λ4 −
8

5
λ4λ8qℓ,λ6 + (12λ4λ10 −

12

5
λ6λ8)qℓ,λ8 + (8λ6λ10 −

16

5
λ2
8)qℓ,λ10

+ (
48

5
λ2
8 − 24λ6λ10)ℓqℓ−2,λ4 + 12λ8λ10ℓqℓ−2,λ6 + (

24

5
λ4λ

2
8 −

72

5
λ4λ6λ10)ℓqℓ−2,λ8

+ (
36

5
λ4λ8λ10 −

48

5
λ2
6λ10 +

12

5
λ6λ

2
8)ℓqℓ−2,λ10 ,

where qi,λ2j
denotes the derivative of qi with respect to λ2j.

Proof. By substituting (35) into the differential equation in Proposition 3.5 and compar-
ing the coefficients of uℓ

3/ℓ!, we obtain the statement of the proposition.

Corollary 3.3. Let λ8 6= 0. Then the sigma function σ(u1, u3;λ) is uniquely determined
by the differential equations Qiσ = 0, i = 0, 4, 6, up to a multiplicative constant.

Proof. From Lemma 3.4 and Proposition 3.6, we find that all the coefficients qℓ are
determined from q1. Note that Lemma 3.4 and Proposition 3.6 follow from (31), (33),
and (34). By (34), all the functions µk are determined from µ0. As mentioned in the proof
of Proposition 3.4, (31), (33), (34) follow from Q0σ = 0, Q4σ = 0, Q6σ = 0. Therefore we
obtain the statement of this corollary.

Remark 3.2. In [11], the following expression is proved :

6λ8Q2 = 5[Q4, Q6] + 10λ10Q0 + 6λ6Q4 − 10λ4Q6.

From this result, the statement of Corollary 3.3 can be also proved.

3.4 Expansions of µk

In this subsection we will calculate the expansions of µk. From (9), we have q1 = −1.
The initial terms of µi, i = 0, 1, 2, 3, are as follows.

µ0 = −u3 − λ6
u3
3

3!
− (λ2

6 + 2λ4λ8)
u5
3

5!
+ (8λ8λ10 − 6λ4λ6λ8 − λ3

6 − 24λ2
4λ10)

u7
3

7!
+ · · · ,

µ1 = 8λ10
u4
3

4!
+ (88λ6λ10 − 16λ2

8)
u6
3

6!
+ (816λ2

6λ10 − 192λ6λ
2
8 − 160λ4λ8λ10)

u8
3

8!
+ · · · ,

µ2 = 2λ8
u3
3

3!
+ (24λ4λ10 + 4λ6λ8)

u5
3

5!
+ (160λ2

10 + 264λ4λ6λ10 + 6λ2
6λ8 − 36λ4λ

2
8)
u7
3

7!
+ · · · ,

µ3 = 2 + 2λ6
u2
3

2!
+ (2λ2

6 + 4λ4λ8)
u4
3

4!
+ (12λ4λ6λ8 + 32λ8λ10 + 2λ3

6 + 48λ2
4λ10)

u6
3

6!
+ · · · .

4 The ultra-elliptic integrals

In [4], the inversion problem of the ultra-elliptic integrals is considered. In this section,
we will summarize the main results in [4]. Proposition 4.8 is not described in [4].
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In this section, we assume g = 2. Let us take a point P∗ ∈ V and an open neighbor-
hood U∗ of this point that is homeomorphic to an open disk in C. We fix a path γ∗ on
the curve V from ∞ to P∗. Let us consider the holomorphic mappings

I1 : U∗ → C, P = (x, y) 7→
∫ P

∞

du1,

I3 : U∗ → C, P = (x, y) 7→
∫ P

∞

du3,

where as the path of integration we choose the composition of the path γ∗ from ∞ to the
point P∗ and any path in the neighborhood U∗ from P∗ to the point P . We consider the
meromorphic function on C2

f = −σ3

σ1
.

We assume P∗ 6= ∞. If we take the open neighborhood U∗ sufficiently small, then
I3 is injective. Let ϕ(u) be the implicit function defined by σ(ϕ(u), u) = 0 around
(I1(P∗), I3(P∗)). We define the function F (u) = f(ϕ(u), u).

Proposition 4.1. ([4]) Set u = I3(P ), where P = (x, y) ∈ U∗. Then x = F (u) and
y = −F ′(u)/2, where F ′ is the derivative of F with respect to u.

Theorem 4.1. ([4]) The function F (u) satisfies the following ordinary differential equa-
tions:

(F ′/2)2 = F 5 + λ4F
3 + λ6F

2 + λ8F + λ10, (36)

F ′′ = 10F 4 + 6λ4F
2 + 4λ6F + 2λ8. (37)

From Proposition 4.1 and Theorem 4.1, one can obtain the series expansion of F (u).
Since the function F (u) is holomorphic in a neighborhood of u∗ = I3(P∗), the expansion
in the neighborhood of this point has the form

F (u) =

∞∑

n=0

p̃3n+2(u− u∗)n, p̃3n+2 ∈ C. (38)

Proposition 4.2. ([4]) Set P∗ = (x∗, y∗). Then in the expansion (38) we have p̃2 = x∗

and p̃5 = −2y∗.

We set deg p̃2 = 2 and deg p̃5 = 5.

Proposition 4.3. ([4]) The coefficients p̃3n+2 in the expansion (38) are determined from
the following recurrence relations:

• p̃8 = 5p̃42 + 3λ4p̃
2
2 + 2λ6p̃2 + λ8,

• (n+ 2)(n+ 1)p̃3n+8 = 10
∑

(n1,n2,n3,n4)∈S1
p̃3n1+2 p̃3n2+2 p̃3n3+2 p̃3n4+2+

+6λ4

∑
(n1,n2)∈S2

p̃3n1+2 p̃3n2+2 + 4λ6p̃3n+2, n ≥ 1, where

S1 = {(n1, n2, n3, n4) ∈ Z4
≥0 | n1+n2+n3+n4 = n}, S2 = {(n1, n2) ∈ Z2

≥0 | n1+n2 = n},
and the coefficient p̃3n+2 is a homogeneous polynomial in Q[p̃2, p̃5, λ4, λ6, λ8, λ10] of degree
3n+ 2, if p̃3n+2 6= 0.
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We assume P∗ 6= (0,±
√
λ10). If we take the open neighborhood U∗ sufficiently small,

then I1 is injective. Let η(u) be the implicit function defined by σ(u, η(u)) = 0 around
(I1(P∗), I3(P∗)). Let us define the function G(u) = f(u, η(u)).

Proposition 4.4. ([4]) For P = (x, y) ∈ U∗ let u = I1(P ). Then we have x = G(u) and
y = −G(u)G′(u)/2, where G′ is the derivative of G with respect to u.

Theorem 4.2. ([4]) The function G(u) satisfies the following ordinary differential equa-
tions:

(GG′/2)2 = G5 + λ4G
3 + λ6G

2 + λ8G+ λ10, (39)

G4(G′′′ − 12GG′)− 4λ8GG′ − 12λ10G
′ = 0. (40)

Let us assume that P∗ 6= (0,±
√
λ10) and P∗ 6= ∞. Using Proposition 4.4 and Theorem

4.2, one can obtain the series expansion of the function G(u). Since the function G(u)
is holomorphic in the neighborhood of the point u∗ = I1(P∗), this expansion in the
neighborhood of this point has the form

G(u) =

∞∑

n=0

q̃n+2(u− u∗)n, q̃n+2 ∈ C. (41)

Proposition 4.5. ([4]) Let P∗ = (x∗, y∗). Then we have q̃2 = x∗ and q̃3 = −2y∗/x∗.

Let us set deg q̃2 = 2 and deg q̃3 = 3.

Proposition 4.6. ([4]) The coefficients q̃n+2 are determined from the following recurrence
relations:

• q̃4 = q̃−3
2 (3q̃52 + λ4q̃

3
2 − λ8q̃2 − 2λ10),

• q̃32(n+ 2)(n+ 1)q̃n+4 = −
n−1∑

k=0




(k + 2)(k + 1)q̃k+4

∑

(n1,n2,n3)∈T
(k)
1

q̃n1+2 q̃n2+2 q̃n3+2





+

+6
∑

(n1,n2,n3,n4,n5)∈T2

q̃n1+2 q̃n2+2 q̃n3+2 q̃n4+2 q̃n5+2+

+2λ4

∑

(n1,n2,n3)∈T3

q̃n1+2 q̃n2+2 q̃n3+2 − 2λ8q̃n+2, n ≥ 1, where

T
(k)
1 = {(n1, n2, n3) ∈ Z3

≥0 | n1 + n2 + n3 = n− k}, T2 = {(n1, n2, n3, n4, n5) ∈ Z5
≥0 | n1 +

n2 + n3 + n4 + n5 = n}, T3 = {(n1, n2, n3) ∈ Z3
≥0 | n1 + n2 + n3 = n}, and the coefficient

q̃n+2 is a homogeneous polynomial in Q[q̃2, q̃3, λ4, λ6, λ8, λ10] of degree n+ 2 if q̃n+2 6= 0.

Let us take P∗ = ∞ and the path γ∗ defined by the function R : [0, 1] → V such that
R(r) = ∞ for any point r ∈ [0, 1]. Then we have (I1(P∗), I3(P∗)) = (0, 0).
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Proposition 4.7. ([4]) In a neighborhood of the point u = 0, the function G(u) is given
by a series

G(u) =
1

u2
− λ4

5
u2 − λ6

7
u4 +

(
λ2
4

75
− λ8

9

)
u6 +

(
3

385
λ4λ6 −

λ10

11

)
u8 +

∑

n≥10

τn+2u
n,

where the coefficient τn+2 is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n+2
if τn+2 6= 0.

Proposition 4.8. The coefficients τn for n ≥ 12 are determined from the following
recurrence formula :

(n+ 1)τn =
∑

(n1,n2,n3,n4)∈T1

n3 − 2

2

n4 − 2

2
τn1τn2τn3τn4

−
∑

(n1,n2,n3,n4,n5)∈T2

τn1τn2τn3τn4τn5 − λ4

∑

(n1,n2,n3)∈T3

τn1τn2τn3

− λ6

∑

(n1,n2)∈T4

τn1τn2 − λ8τn−8,

where T1 = {(n1, n2, n3, n4) ∈ Z4
≥0 | n1 + · · · + n4 = n, 0 ≤ n1, . . . , n4 < n}, T2 =

{(n1, n2, n3, n4, n5) ∈ Z5
≥0 | n1 + · · · + n5 = n, 0 ≤ n1, . . . , n5 < n}, T3 = {(n1, n2, n3) ∈

Z3
≥0 | n1 + n2 + n3 = n− 4}, and T4 = {(n1, n2) ∈ Z2

≥0 | n1 + n2 = n− 6}.

Proof. Let

G(u) =
1

u2
+

∞∑

n=0

τn+2u
n. (42)

Then we have

−G′(u)

2
=

1

u3
−

∞∑

n=0

n+ 1

2
τn+3u

n,

u2G(u) =
∞∑

n=0

τnu
n, u3G

′(u)

2
=

∞∑

n=0

n− 2

2
τnu

n,

where τ0 = 1 and τ1 = 0. By substituting (42) into (39) and multiplying the both sides
by u10, we obtain

(
∞∑

n=0

τnu
n

)2( ∞∑

n=0

n− 2

2
τnu

n

)2

=

(
∞∑

n=0

τnu
n

)5

+ λ4u
4

(
∞∑

n=0

τnu
n

)3

+ λ6u
6

(
∞∑

n=0

τnu
n

)2

+ λ8u
8

∞∑

n=0

τnu
n + λ10u

10.

By comparing the coefficient of un for n ≥ 12, we obtain the statement of the proposition.
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Proposition 4.9. ([4]) There exists the formula

G(u) = ℘(u) + g(u),

where g(u) is a holomorphic function that in a neighborhood of the point u = 0 is given
by a series

g(u) = −λ8

9
u6 − λ10

11
u8 +

∑

n≥10

τ̃n+2u
n.

Here the coefficient τ̃n+2 is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n+2
if τ̃n+2 6= 0.

Denote by Gd(u) the formal Laurent series obtained from G(u) by substitution λ8 =
λ10 = 0 in the series expansion of this function in a neighborhood of the point u = 0.

Corollary 4.1. ([4]) We have Gd(u) = ℘(u).

5 Number-theoretical properties of the generalized

Bernoulli-Hurwitz numbers for the curve of genus

2

In this section, we assume g = 2. Let V be a hyperelliptic curve of genus 2 defined by

y2 = x5 + λ4x
3 + λ6x

2 + λ8x+ λ10. (43)

We take an open neighborhood U∗ of ∞ such that U∗ is homeomorphic to an open disk
in C. We consider the map

I1 : U∗ → C, P = (x, y) 7→
∫ P

∞

− x

2y
dx,

where as the path of integration we take any path in U∗ from∞ to P . For P = (x, y) ∈ U∗,
let u = I1(P ). If U∗ is sufficiently small, then the map I1 is biholomorphism. Therefore,
we can regard x and y as functions of u. From Proposition 4.4, we have x(u) = G(u) and
y(u) = −G(u)G′(u)/2. From Proposition 4.7, the function x(u) can be expanded around
u = 0 as

x(u) =
1

u2
+

∞∑

n=4

Cn

n

un−2

(n− 2)!
, (44)

where the coefficient Cn is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n if
Cn 6= 0.

Lemma 5.1. We have

y(u) = −1

4
(x(u)2)′,

where (x(u)2)′ denotes the derivative of x(u)2 with respect to u.

Proof. From Proposition 4.4, we obtain the statement of the lemma.
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From (44) and Lemma 5.1, we find that y(u) can be expanded around u = 0 as

y(u) =
1

u5
+

∞∑

n=6

Dn

n

un−5

(n− 5)!
, (45)

where the coefficient Dn is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n if
Dn 6= 0. Then Cn andDn are called generalized Bernoulli-Hurwitz numbers. In particular,
we find that Cn = Dn = 0 for any odd integer n. In [38], the hyperelliptic curve of genus
2 defined by y2 = x5 − 1 is considered and the following formulae are proved.

Theorem 5.1. ([38]) For the curve y2 = x5 − 1, we have

C10n

10n
≡ −

∑

p : prime, p≡1 mod 10, 10n=a(p−1)

a|−1
p mod p1+ordpa

p1+ordpa
Aa

p mod Z,

D10n

10n
≡ −

∑

p : prime, p≡1 mod 10, 10n=a(p−1)

(4!a)|−1
p mod p1+ordpa

p1+ordpa
Aa

p mod Z,

where Ap = (−1)(p−1)/10 ·
(

(p− 1)/2
(p− 1)/10

)
.

In this section, we will generalize the method of [38] to the curve V defined by (43) and
derive some number-theoretical properties of the generalized Bernoulli-Hurwitz numbers
for the curve V .

Proposition 5.1. It is possible to take a local parameter z of V around ∞ such that

x =
1

z2
, y =

1

z5
(1 +

∞∑

n=4

anz
n),

where an is a homogeneous polynomial in Z[1
2
, λ4, λ6, λ8, λ10] of degree n if an 6= 0.

Proof. It is possible to take a local parameter z1 such that

x =
1

z21
.

The expansion of y around ∞ with respect to z1 takes the following form

y =
α

z51
(1 +O(z1)), α ∈ C.

By substituting the above expansions into (43), multiplying the both sides by z101 , and
comparing the coefficient of z01 , we obtain

α2 = 1.

If α = 1, then we set z = z1. If α = −1, then we set z = −z1. Then we have

x =
1

z2
, y =

1

z5
(1 +

∞∑

n=1

anz
n),
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where an ∈ C. By substituting the above expressions into (43), we obtain

(
1 +

∞∑

n=1

anz
n

)2

= 1 + λ4z
4 + λ6z

6 + λ8z
8 + λ10z

10.

From the above equation, we can find that an is a homogeneous polynomial in Z[1
2
, λ4, λ6, λ8, λ10]

of degree n if an 6= 0 recursively.

We can regard u(z) as a function defined around z = 0.

Proposition 5.2. The function u(z) is expanded around z = 0 as

u(z) = z +

∞∑

n=1

fn
zn+1

n+ 1
, (46)

where f1 = f2 = f3 = 0 and fn is a homogeneous polynomial in Z[1
2
, λ4, λ6, λ8, λ10] of

degree n if fn 6= 0.

Proof. From Proposition 5.1, we have

u =

∫ z

0

− z−2 · (−2)z−3

2z−5(1 +
∑∞

n=4 anz
n)
dz =

∫ z

0

(
1 +

∞∑

n=4

anz
n

)−1

dz.

From Proposition 5.1, we obtain the statement of the proposition.

For positive integers n and k such that n ≥ k, we use the notation

(n)k = n(n− 1) · · · (n− k + 1).

We consider the inverse mapping z(u) of u(z). The expansions of z−k, where k =
1, 2, 3, 4, have the following forms :

1

zk
=

1

uk
+

∞∑

n=4

C
(k)
n

(n)k

un−k

(n− k)!
, k = 1, 2, 3, 4, (47)

where C
(k)
n is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n if C

(k)
n 6= 0.

From Theorem 2.7, we obtain

C
(1)
n

n
=

∑

n=a(p−1), p≥5 : prime

z1(p, n)

p1+ordpa
fa
p−1 + f̃n, (48)

where z1(p, n) ∈ Z and f̃n ∈ Z[1
2
, λ4, λ6, λ8, λ10].
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Lemma 5.2. For k = 1, 2, 3, we have

k

∞∑

n=4

C
(k+1)
n

(n)k+1

un−k

(n− k)!
+

∞∑

n=4

C
(k)
n

(n)k

un−k

(n− k)!
= k

∞∑

n=4

fn
zn−k

n− k
.

Proof. For k = 1, 2, 3, we have

∫ u

0

(
1

zk+1
− 1

uk+1

)
du =

∞∑

n=4

C
(k+1)
n

(n)k+1

un−k

(n− k)!
.

By differentiating the both sides of (46) with respect to u, we obtain

1 =
dz

du
+

∞∑

n=4

fnz
n dz

du
.

By dividing the both sides of the above equation by zk+1, we have

1

zk+1
=

1

zk+1

dz

du
+

∞∑

n=4

fnz
n−k−1 dz

du
.

Therefore we have
∫ u

0

(
1

zk+1
− 1

uk+1

)
du = −1

k

1

zk
+

∞∑

n=4

fn
zn−k

n− k
+
1

k

1

uk
= −1

k

∞∑

n=4

C
(k)
n

(n)k

un−k

(n− k)!
+

∞∑

n=4

fn
zn−k

n− k
.

Thus we have

k

∞∑

n=4

C
(k+1)
n

(n)k+1

un−k

(n− k)!
+

∞∑

n=4

C
(k)
n

(n)k

un−k

(n− k)!
= k

∞∑

n=4

fn
zn−k

n− k
.

Lemma 5.3. ([27], [38]) Let R1 and R2 be two integral domains with characteristic 0
satisfying R1 ⊂ R2. We consider a formal power series of z

h(z) =

∞∑

n=0

αn
zn

n!
, αn ∈ R2.

If α0, . . . , αn−1 belong to R1, and there is a polynomial F of n variables over R1 such that

h(n)(z) = F (h(z), h′(z), . . . , h(n−1)(z)),

where h(n)(z) is the n-th derivative of h(z) with respect to z, then we have h(z) ∈ R1〈〈z〉〉.
Lemma 5.4. ([27], [38]) Let R be an integral domain with characteristic 0 and

h(z) = z +O(z2) ∈ R〈〈z〉〉.

Then for any positive integer m,
h(z)m

m!
also belongs to R〈〈z〉〉.
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Lemma 5.5. ([27], [38], [44]) Let R be an integral domain with characteristic 0 and

w(z) = z +O(z2) ∈ R〈〈z〉〉.

Then, the formal inverse series z(w) = w +O(w2) belongs to R〈〈w〉〉.

We set deg u = −1.

Proposition 5.3. We have z(u) = u+O(u2) ∈ Z[λ4, λ6, λ8, λ10]〈〈u〉〉 and z(u) is homo-
geneous of degree −1 with respect to u, λ4, λ6, λ8, λ10.

Proof. We have x(u) = z(u)−2. Therefore we have x′(u) = −2z(u)−3z′(u). From Lemma
5.1, we obtain y(u) = z(u)−5z′(u). From (43), we obtain

(z′)2 = 1 + λ4z
4 + λ6z

6 + λ8z
8 + λ10z

10.

By differentiating the both sides of the above equation with respect to u and dividing by
2z′, we obtain

z′′ = 2λ4z
3 + 3λ6z

5 + 4λ8z
7 + 5λ10z

9. (49)

We define the polynomial F (Z1, Z2) over Z[λ4, λ6, λ8, λ10] by

F (Z1, Z2) = 2λ4Z
3
1 + 3λ6Z

5
1 + 4λ8Z

7
1 + 5λ10Z

9
1 .

From (49), we have z′′ = F (z, z′). Since the function z(u) is expanded around u = 0 as

z(u) = u+O(u2),

we have z(0) = 0 and z′(0) = 1. From Lemma 5.3, we have z(u) ∈ Z[λ4, λ6, λ8, λ10]〈〈u〉〉.

Lemma 5.6. For n ≥ 4, we have the following relations.

(i)
C

(2)
n

(n)2
+

C
(1)
n

n
∈ Z[1/2, λ4, λ6, λ8, λ10]

(ii) 2
C

(3)
n

(n)3
+

C
(2)
n

(n)2
∈ Z[1/2, λ4, λ6, λ8, λ10]

(iii) 3
C

(4)
n

(n)4
+

C
(3)
n

(n)3
∈ 3 Z[1/2, λ4, λ6, λ8, λ10]

(iv)
C

(1)
n

n
+ 6

C
(4)
n

(n)4
∈ Z[1/2, λ4, λ6, λ8, λ10]

Proof. In Lemma 5.2, we set k = 1. Then we have

∞∑

n=4

C
(2)
n

(n)2

un−1

(n− 1)!
+

∞∑

n=4

C
(1)
n

n

un−1

(n− 1)!
=

∞∑

n=4

fn(n− 2)!
zn−1

(n− 1)!
. (50)

From Lemma 5.4 and Proposition 5.3, we have

zn−1

(n− 1)!
∈ Z[λ4, λ6, λ8, λ10]〈〈u〉〉.
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By comparing the coefficient of un−1

(n−1)!
in (50) and using fn ∈ Z[1

2
, λ4, λ6, λ8, λ10], we obtain

C
(2)
n

(n)2
+

C
(1)
n

n
∈ Z[1/2, λ4, λ6, λ8, λ10].

In Lemma 5.2, we set k = 2. Then we have

2
∞∑

n=4

C
(3)
n

(n)3

un−2

(n− 2)!
+

∞∑

n=4

C
(2)
n

(n)2

un−2

(n− 2)!
= 2

∞∑

n=4

fn(n− 3)!
zn−2

(n− 2)!
. (51)

By comparing the coefficient of un−2

(n−2)!
in (51) and using fn ∈ Z[1

2
, λ4, λ6, λ8, λ10], we obtain

2
C

(3)
n

(n)3
+

C
(2)
n

(n)2
∈ Z[1/2, λ4, λ6, λ8, λ10].

In Lemma 5.2, we set k = 3. Then we have

3

∞∑

n=4

C
(4)
n

(n)4

un−3

(n− 3)!
+

∞∑

n=4

C
(3)
n

(n)3

un−3

(n− 3)!
= 3

∞∑

n=4

fn(n− 4)!
zn−3

(n− 3)!
. (52)

By comparing the coefficient of un−3

(n−3)!
in (52) and using fn ∈ Z[1

2
, λ4, λ6, λ8, λ10], we obtain

3
C

(4)
n

(n)4
+

C
(3)
n

(n)3
∈ 3 Z[1/2, λ4, λ6, λ8, λ10].

From (i), (ii), and (iii), we obtain (iv).

Lemma 5.7. It is possible to take a local parameter s of V around ∞ such that

x =
1

s2
(1 +

∞∑

n=1

αns
n), y =

1

s5
,

where αn is a homogeneous polynomial in Z[1
5
, λ4, λ6, λ8, λ10] of degree n if αn 6= 0.

Proof. It is possible to take a local parameter s1 of V around ∞ such that

y =
1

s51
.

The expansion of x around ∞ with respect to s1 takes the following form

x =
α

s21
(1 +O(s1)), α ∈ C.

By substituting the above expansions into (43), multiplying the both sides by s101 , and
comparing the coefficient of s01, we obtain

1 = α5.
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There exists β ∈ C such that β5 = 1 and β2 = α. Let s = β−1s1. Then we have

x =
1

s2
(1 +

∞∑

n=1

αns
n), y =

1

s5
,

where αn ∈ C. By substituting the above expressions into (43) and multiplying the both
sides by s10, we obtain

1 = (1+

∞∑

n=1

αns
n)5+λ4s

4(1+

∞∑

n=1

αns
n)3+λ6s

6(1+

∞∑

n=1

αns
n)2+λ8s

8(1+

∞∑

n=1

αns
n)+λ10s

10.

From the above equation, we can find that αn is a homogeneous polynomial in Z[1
5
, λ4, λ6, λ8, λ10]

of degree n if αn 6= 0 recursively.

We can regard u(s) as a function defined around s = 0.

Lemma 5.8. The function u(s) is expanded around s = 0 as

u(s) = s+
∞∑

n=1

gn
sn+1

n+ 1
, (53)

where g1 = g2 = g3 = g4 = 0 and gn is a homogeneous polynomial in Z[1
5
, λ4, λ6, λ8, λ10]

of degree n if gn 6= 0.

Proof. We have

x(s) = s−2 +
∞∑

n=4

αns
n−2, x′(s) = −2s−3 +

∞∑

n=4

(n− 2)αns
n−3.

Since αn ∈ Z[1
5
, λ4, λ6, λ8, λ10] is homogeneous of degree n if αn 6= 0, we have αn = 0

if n is odd. Therefore, all the coefficients of the expansion of x′(s) are included in
2 Z[1

5
, λ4, λ6, λ8, λ10]. We have

u(s) =

∫ s

0

−(s−2 +
∑∞

n=4 αns
n−2)(−2s−3 +

∑∞
n=4(n− 2)αns

n−3)

2s−5
ds

=

∫ s

0

s5(s−2 +
∞∑

n=4

αns
n−2)(s−3 −

∞∑

n=4

n− 2

2
αns

n−3)ds = s+
∞∑

n=1

gn
sn+1

n + 1
, (54)

where g1 = g2 = g3 = 0 and gn is a homogeneous polynomial in Z[1
5
, λ4, λ6, λ8, λ10] of

degree n if gn 6= 0. We find that the coefficient of s−1 in

(s−2 +
∞∑

n=4

αns
n−2)(s−3 −

∞∑

n=4

n− 2

2
αns

n−3)

is equal to 0. From (54), we have g4 = 0.
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We consider the inverse mapping s(u) of u(s).

Proposition 5.4. We have s(u) ∈ Z[1
5
, λ4, λ6, λ8, λ10]〈〈u〉〉 and s(u) is homogeneous of

degree −1 with respect to u, λ4, λ6, λ8, λ10.

Proof. From Lemma 5.8, we have u(s) = s+O(s2) ∈ Z[1
5
, λ4, λ6, λ8, λ10]〈〈s〉〉. Therefore,

from Lemma 5.5, we have s(u) = u+O(u2) ∈ Z[1
5
, λ4, λ6, λ8, λ10]〈〈u〉〉. From Lemma 5.8,

we can find that s(u) is homogeneous of degree −1 with respect to u, λ4, λ6, λ8, λ10.

Therefore the expansions of s−k, where k = 1, 2, 3, 4, 5, have the following forms :

1

sk
=

1

uk
+

∞∑

n=6

D
(k)
n

(n)k

un−k

(n− k)!
, k = 1, 2, 3, 4, 5,

where D
(k)
n is a homogeneous polynomial in Q[λ4, λ6, λ8, λ10] of degree n if D

(k)
n 6= 0.

From Theorem 2.7, we obtain

D
(1)
n

n
=

∑

n=a(p−1), p≥7 : prime

z2(p, n)

p1+ordpa
gap−1 + g̃n, (55)

where z2(p, n) ∈ Z and g̃n ∈ Z[1
5
, λ4, λ6, λ8, λ10].

Lemma 5.9. For any integer n ≥ 6, we have

ord2

(
D

(1)
n

n

)
≥
⌊
n− 1

4

⌋
.

Proof. From Proposition 2.4, we have

D
(1)
n

n
=

∑

w(U)=n

τUg
U .

Note that g2 = 0 and gi = 0 for any odd integer i. Therefore, from Lemma 2.14, we
obtain the statement of the lemma.

Lemma 5.10. For k = 1, 2, 3, 4, we have

k

∞∑

n=6

D
(k+1)
n

(n)k+1

un−k

(n− k)!
+

∞∑

n=6

D
(k)
n

(n)k

un−k

(n− k)!
= k

∞∑

n=6

gn
sn−k

n− k
.

Proof. We can prove this lemma in the same way as Lemma 5.2.

Lemma 5.11. For n ≥ 6, we have the following relations.

(i)
D

(2)
n

(n)2
+

D
(1)
n

n
∈ 23 · 3 Z[1/5, λ4, λ6, λ8, λ10]

(ii) 2
D

(3)
n

(n)3
+

D
(2)
n

(n)2
∈ 22 · 3 Z[1/5, λ4, λ6, λ8, λ10]
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(iii) 3
D

(4)
n

(n)4
+

D
(3)
n

(n)3
∈ 2 · 3 Z[1/5, λ4, λ6, λ8, λ10]

(iv) 4
D

(5)
n

(n)5
+

D
(4)
n

(n)4
∈ 22 Z[1/5, λ4, λ6, λ8, λ10]

(v)
D

(1)
n

n
− 24

D
(5)
n

(n)5
∈ 22 · 3 Z[1/5, λ4, λ6, λ8, λ10]

Proof. We can prove this lemma in the same way as Lemma 5.6.

Lemma 5.12. The function x(u) satisfies the following differential equation

x′′ = 6x2 + 2λ4 − 2λ8x
−2 − 4λ10x

−3.

Proof. From y(u) = −x(u)x′(u)/2 and (43), we have
(
−xx′

2

)2

= x5 + λ4x
3 + λ6x

2 + λ8x+ λ10.

By multiplying the above equation by x−2 and differentiating this equation with respect
to u, we obtain the statement of the lemma.

Lemma 5.13. The first terms of Cn/n and Dn/n are as follows :

C4

4
= −2

5
λ4,

C6

6
= −23 · 3

7
λ6,

C8

8
=

24 · 3
5

λ2
4 − 24 · 5λ8,

C10

10
=

27 · 33
11

λ4λ6 −
27 · 32 · 5 · 7

11
λ10,

D6

6
=

1

7
λ6,

D8

8
=

22

3
λ8 −

2

5
λ2
4,

D10

10
=

23 · 32 · 5
11

λ10 −
24 · 32
11

λ4λ6.

Proof. From Proposition 4.7 and Lemma 5.1, we obtain the statement of the lemma.

Theorem 5.2. (i) For any n ≥ 4, we have

ord2

(
Cn

n

)
≥ 1, ord3

(
Cn

n

)
≥ 0.

(ii) For any n ≥ 6, we have

ord2

(
Dn

n

)
≥ −1, ord3

(
Dn

n

)
≥ −1.

Let p ≥ 5 be a prime.

(iii) If p− 1 ∤ n, then we have

ordp

(
Cn

n

)
≥ 0, ordp

(
Dn

n

)
≥ 0.

(iv) If p− 1 | n, then we have

ordp

(
Cn

n

)
≥ −1 − ordpa, ordp

(
Dn

n

)
≥ −1− ordpa.

where n = a(p− 1).
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Proof. For n ≥ 4, we have

Cn

n
=

C
(2)
n

(n)2
.

From (48) and Lemma 5.6 (i), we obtain

ord3

(
Cn

n

)
≥ 0.

From (48) and Lemma 5.6 (i), we find that if p ≥ 5 and p− 1 ∤ n, then we have

ordp

(
Cn

n

)
≥ 0,

if p ≥ 5 and p− 1 | n, then we have

ordp

(
Cn

n

)
≥ −1− ordpa,

where n = a(p− 1). From x2 = 1/z4 and Lemma 5.1, for n ≥ 6, we have

Dn

n
= −1

4

C
(4)
n

(n)4
. (56)

From Lemma 5.6 (iv), (48), and (56), we obtain if p ≥ 5 and p− 1 ∤ n,

ordp

(
Dn

n

)
≥ 0,

if p ≥ 5 and p− 1 | n,
ordp

(
Dn

n

)
≥ −1 − ordpa,

where n = a(p− 1). Since y = 1/s5, we have

Dn

n
=

D
(5)
n

(n)5
. (57)

From Lemma 5.11 (v), (55), and (57), we obtain

ord3

(
Dn

n

)
≥ −1.

From Lemma 5.9, we have

ord2

(
D

(1)
n

n

)
≥ 2, for n ≥ 10.

Therefore, from Lemma 5.11 (v), (57), and Lemma 5.13, we have

ord2

(
Dn

n

)
≥ −1, for n ≥ 6.
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From (56), we have

ord2

(
C

(4)
n

(n)4

)
≥ 1, for n ≥ 6.

From the above equation, x−1 = z2 ∈ Z[λ4, λ6, λ8, λ10]〈〈u〉〉, Lemma 5.12, and Lemma
5.13, we obtain

ord2

(
Cn

n

)
≥ 1, for n ≥ 4.

Remark 5.1. Theorem 5.2 gives the precise information on the series expansion of the
solution of the inversion problem of the ultra-elliptic integrals given in Proposition 4.7.

We assume λ4 = λ6 = λ8 = 0 and consider the curve defined by y2 = x5 + λ10.

Lemma 5.14. For any integer m ≥ 1, we have

ord3

(
C

(1)
10m

10m

)
≥
⌊
10m− 1

6

⌋
, ord5

(
C

(1)
10m

10m

)
≥
⌊
10m− 1

10

⌋
, ord7

(
C

(1)
10m

10m

)
≥
⌊
10m− 1

14

⌋
.

Proof. From Proposition 2.4 and Lemma 2.13, we obtain the statement of the lemma.

Lemma 5.15. ([38]) For m ≥ 1, we have the following relations.

(i)
C

(2)
10m

(10m)2
+

C
(1)
10m

10m
∈ 32 · 5 · 7 Z[1/2, λ10]

(ii) 2
C

(3)
10m

(10m)3
+

C
(2)
10m

(10m)2
∈ 32 · 5 · 7 Z[1/2, λ10]

(iii) 3
C

(4)
10m

(10m)4
+

C
(3)
10m

(10m)3
∈ 33 · 5 Z[1/2, λ10]

(iv) 6
C

(4)
10m

(10m)4
+

C
(1)
10m

10m
∈ 32 · 5 Z[1/2, λ10]

Proof. Since λ4 = λ6 = λ8 = 0, we have fn = 0 for 1 ≤ n ≤ 9 in (46). We can prove this
lemma in the same way as Lemma 5.6.

Lemma 5.16. ([38]) For m ≥ 1, we have the following relations.

(i)
D

(2)
10m

(10m)2
+

D
(1)
10m

10m
∈ 27 · 32 · 7 Z[1/5, λ10]

(ii) 2
D

(3)
10m

(10m)3
+

D
(2)
10m

(10m)2
∈ 25 · 32 · 7 Z[1/5, λ10]

(iii) 3
D

(4)
10m

(10m)4
+

D
(3)
10m

(10m)3
∈ 24 · 33 Z[1/5, λ10]
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(iv) 4
D

(5)
10m

(10m)5
+

D
(4)
10m

(10m)4
∈ 25 · 3 Z[1/5, λ10]

(v) −24
D

(5)
10m

(10m)5
+

D
(1)
10m

10m
∈ 25 · 32 Z[1/5, λ10]

Proof. Since λ4 = λ6 = λ8 = 0, we have gn = 0 for 1 ≤ n ≤ 9 in (53). We can prove this
lemma in the same way as Lemma 5.6.

For the curve y2 = x5 + λ10, we obtain the following theorem.

Theorem 5.3. For m ≥ 1, we have

ord2

(
C10m

10m

)
≥ 2, ord3

(
C10m

10m

)
≥ 2, ord5

(
C10m

10m

)
≥ 1, ord7

(
C10m

10m

)
≥ 1.

ord2

(
D10m

10m

)
≥ 2, ord3

(
D10m

10m

)
≥ 1, ord5

(
D10m

10m

)
≥ 1, ord7

(
D10m

10m

)
≥ 0.

Proof. From Lemma 5.14, Lemma 5.15 (i), and Lemma 5.13, for m ≥ 1, we have

ord3

(
C10m

10m

)
≥ 2, ord5

(
C10m

10m

)
≥ 1, ord7

(
C10m

10m

)
≥ 1.

From Lemma 5.15 (iv), for m ≥ 1, we have

ord3

(
C

(4)
10m

(10m)4

)
≥ 1, ord5

(
C

(4)
10m

(10m)4

)
≥ 1, ord7

(
C

(4)
10m

(10m)4

)
≥ 0.

From (56), we have

ord3

(
D10m

10m

)
≥ 1, ord5

(
D10m

10m

)
≥ 1, ord7

(
D10m

10m

)
≥ 0.

From Lemma 5.9, for m ≥ 3, we have

ord2

(
D

(1)
10m

10m

)
≥ 7.

From Lemma 5.16 (v), Lemma 5.13, and D20/20 = −213 · 36 · 53 · 7 · 13 ·λ2
10/11, for m ≥ 1,

we have

ord2

(
D10m

10m

)
≥ 2.

From (56), we have

ord2

(
C

(4)
10m

(10m)4

)
≥ 4.

From Lemma 5.12, we have

ord2

(
C10m

10m

)
≥ 2.
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