MATHIAS-PRIKRY AND LAVER-PRIKRY TYPE FORCING

MICHAEL HRUŠÁK AND HIROAKI MINAMI

ABSTRACT. We study the Mathias-Prikry and Laver-Prikry forcings associated with filters on ω . We give a combinatorial characterization of Martin's number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias-Prikry forcing does not add any dominating reals.

INTRODUCTION

In recent years, a variety of consistency results have been given using the Mathias-Prikry and the Laver-Prikry forcing associated with filters.

Let \mathcal{F} be a filter on ω . The *Mathias-Prikry* forcing associated with \mathcal{F} , denoted by $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, A \rangle$ such that $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$ and $s \cap A = \emptyset$. The ordering $\langle s, A \rangle \leq \langle t, B \rangle$ if $s \supset t$, $A \subset B$ and $s \setminus t \subset B$.

We will refer to the union of the first coordinates of conditions in the generic filter as the generic subset of ω , and denote it by \dot{a}_{gen} .

The Laver-Prikry forcing associated with \mathcal{F} , denoted by $\mathbb{L}_{\mathcal{F}}$ consists of subtrees $T \subset \omega^{<\omega}$ which have a stem $s \in T$ (denoted by $\mathsf{stem}(T)$) such that for every $t \in T$ either $t \subset s$ or $s \subset t$ and for every $t \in T$ extending s the set

$$\operatorname{Succ}_T(t) = \{n \in \omega : t^{\frown} \langle n \rangle \in T\} \in \mathcal{F}.$$

The order on $\mathbb{L}_{\mathcal{F}}$ is given by inclusion.

These forcing notions play a significant role in the use of the matrix iteration introduced by Blass and Shelah [5] and further developed and used by Shelah [20], Brendle [10] and Brendle and Fischer [11].

The Laver-Prikry forcing was used to separate variants of the groupwise density number and the distributivity numbers by Brendle in [7, 8, 9] and by Brendle and Hrušák to show it is relatively consistent that every countable FU_{fin} space of weight \aleph_1 is metrizable [12].

The research of first and second authors was partially supported by PAPIIT grant IN101608 and CONACYT grant 46337.

In [19], Raghavan constructs a model of ZFC without strongly separable almost disjoint families by using a similar technique.

In this paper, we shall study the relation between combinatorial properties of an ideal \mathcal{I} and the forcing properties of the Mathias-Prikry and the Laver-Prikry type forcings associated with the dual-filter \mathcal{I}^* (denoted by $\mathbb{M}_{\mathcal{I}^*}$ and $\mathbb{L}_{\mathcal{I}^*}$ respectively) often expressed in terms of the Katětov order, paying special attention to definable (Borel, analytic) ideals.

Both forcing notions are clearly c.c.c, in fact, σ -centered. Also $\mathbb{L}_{\mathcal{I}^*}$ adds a dominating real (the generic function \dot{f}_{gen} is dominating).

In section 1, we give a combinatorial characterization of the Martin number of $\mathbb{M}_{\mathcal{I}^*}$ and $\mathbb{L}_{\mathcal{I}^*}$ and introduce the separating number of the corresponding ideal. In section 2, we investigate the relationship between preservation statements for $\mathbb{M}_{\mathcal{I}^*}$ and $\mathbb{L}_{\mathcal{I}^*}$ and combinatorial properties of \mathcal{I} . Finally, in section 3, we give a characterization of those ideals \mathcal{I} such that $\mathbb{M}_{\mathcal{I}^*}$ does not add any dominating reals.

For a set X, we call $\mathcal{I} \subset \mathcal{P}(X)$ an *ideal on* X if

- (1) for $A, B \in \mathcal{I}, A \cup B \in \mathcal{I}$,
- (2) for $A, B \subset X, A \subset B$ and $B \in \mathcal{I}$ implies $A \in \mathcal{I}$ and
- (3) $X \notin \mathcal{I}$.

We assume that all ideals on X contain $[X]^{<\omega}$, all finite subsets of X. If \mathcal{I} is an ideal on X, \mathcal{I}^* is the dual filter, consisting of complements of the sets in \mathcal{I} . \mathcal{I}^+ denotes the collection of \mathcal{I} -positive set, i.e., subsets of X which are not in \mathcal{I} . We say that an ideal \mathcal{I} on the set of all natural numbers ω is *tall* if for each $A \in [\omega]^{\omega}$ there is a $I \in \mathcal{I}$ such that $I \cap A$ is infinite. If \mathcal{I} is an ideal on ω and $Y \in \mathcal{I}^+$, we denote by $\mathcal{I} \upharpoonright Y$ the ideal $\{I \cap Y : I \in \mathcal{I}\}$ on Y.

The topology of $\mathcal{P}(\omega)$ is induced by identifying each subset of ω with its characteristic function, where 2^{ω} is equipped with the product topology. We call an ideal \mathcal{I} on ω a *Borel ideal* if \mathcal{I} is Borel in this topology.

Given a tall ideal \mathcal{I} on ω and a forcing notion \mathbb{P} , we say that the forcing \mathbb{P} destroys \mathcal{I} if there is a \mathbb{P} -name \dot{x} for en element of $[\omega]^{\omega}$ such that

$$\Vdash_{\mathbb{P}} \forall I \in \mathcal{I} \cap V(|I \cap \dot{x}| < \aleph_0).$$

We say that a family $\mathcal{K} \subset [\omega]^{\omega}$ is countably tall (or ω -hitting) if given $(A_n : n \in \omega) \subset [\omega]^{\omega}$ there is an $K \in \mathcal{K}$ such that for $n \in \omega$, $|K \cap A_n| = \aleph_0$.

The Katětov order on ideals is defined as follows: Suppose \mathcal{I} and \mathcal{J} are ideals on countable sets X and Y respectively. Then $\mathcal{I} \leq_K \mathcal{J}$ if there exists a function $f: Y \to X$ such that for each $I \in \mathcal{I}$, $f^{-1}[I] \in \mathcal{J}$.

 $\mathbf{2}$

When dealing with ideals on countable sets, we often use the following cardinal invariants [15]:

 $\begin{aligned} \mathsf{add}^*(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{I} \land (\forall X \in \mathcal{I}) (\exists A \in \mathcal{A}) (A \not\subset^* X)\}.\\ \mathsf{cov}^*(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{I} \land (\forall X \in [\omega]^{\omega}) (\exists A \in \mathcal{A}) (|A \cap X| = \aleph_0)\}.\\ \mathsf{non}^*(\mathcal{I}) &= \min\{|\mathcal{X}| : \mathcal{X} \subset [\omega]^{\omega} \land (\forall I \in \mathcal{I}) (\exists X \in \mathcal{X}) (|I \cap X| < \aleph_0)\}.\\ \mathsf{cof}^*(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{I} \land (\forall I \in \mathcal{I}) (\exists A \in \mathcal{A}) (I \subset^* A)\}^1. \end{aligned}$

1. Martin numbers of $\mathbb{M}_{\mathcal{I}^*}$ and $\mathbb{L}_{\mathcal{I}^*}$

Recall that the *Martin number* $\mathfrak{m}(\mathbb{P})$ of a partial order \mathbb{P} is the minimal size of a family of dense open subsets of \mathbb{P} such that no filter on \mathbb{P} intersects with them all.

In this section, we shall give a combinatorial characterization of the cardinal invariants $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*})$ and $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*})$.

Both forcings $\mathbb{M}_{\mathcal{I}^*}$, and $\mathbb{L}_{\mathcal{I}^*}$ destroy the ideal \mathcal{I} . In fact, they do more than that. $\mathbb{M}_{\mathcal{I}^*}$ and $\mathbb{L}_{\mathcal{I}^*}$ separate \mathcal{I} and \mathcal{I}^+ , that is, they add a set $a_{gen} \subset \omega$ which is almost disjoint from every $I \in \mathcal{I}$, and have infinite intersection with every $X \in \mathcal{I}^+ \cap V$. It is useful to introduce the corresponding cardinal invariant, the separating number of an ideal \mathcal{I} .

Let \mathcal{I} be an ideal on ω . Let $\mathcal{G} \subset \mathcal{I}$, $\mathcal{H} \subset \mathcal{I}^+$ and $A \subset \omega$. We say A separates \mathcal{G} from \mathcal{H} if

(1) $|A \cap I| < \aleph_0$ for $I \in \mathcal{G}$ and

(2) $|A \cap X| = \aleph_0$ for $X \in \mathcal{H}$.

For an ideal \mathcal{I} , the separating number $sep(\mathcal{I})$ is

$$sep(\mathcal{I}) = \min\{|\mathcal{G}| + |\mathcal{H}| : \mathcal{G} \subset \mathcal{I} \land \mathcal{H} \subset \mathcal{I}^+ \land \\ \forall A \subset \omega \exists I \in \mathcal{G} \exists X \in \mathcal{H} (|A \cap I| = \omega \text{ or } |A \cap X| < \omega)\}.$$

It is clear from the definition that $\mathsf{add}^*(\mathcal{I}) \leq \mathsf{sep}(\mathcal{I}) \leq \mathsf{cov}^*(\mathcal{I})$ for every tall ideal \mathcal{I} and that $\mathsf{sep}(\mathcal{I}) = \mathsf{cov}^*(\mathcal{I})$ if \mathcal{I} is a maximal ideal.

Proposition 1.1. [15] Let \mathcal{I} and \mathcal{J} be ideals on ω . Suppose \mathcal{I} is below \mathcal{J} in the Rudin-Kiesler order, that is, there exists $f : \omega \to \omega$ such that for every $A \subset \omega$, $A \in \mathcal{I}$ if and only if $f^{-1}[A] \in \mathcal{J}$. Then $\operatorname{sep}(\mathcal{I}) \leq \operatorname{sep}(\mathcal{J})$.

¹In [13], Brendle and Shelah introduced cardinal invariants $\mathfrak{p}(\mathcal{F})$ and $\pi\mathfrak{p}(\mathcal{F})$ associated with an ultrafilter \mathcal{F} . For all tall ideals \mathcal{I} , $\mathsf{add}^*(\mathcal{I}) = \mathfrak{p}(\mathcal{I}^*)$, $\mathsf{cov}^*(\mathcal{I}) = \pi\mathfrak{p}(\mathcal{I}^*)$, $\mathsf{non}^*(\mathcal{I}) = \pi_{\chi}(\mathcal{I}^*)$ and $\mathsf{cof}^*(\mathcal{I}) = \chi(\mathcal{I}^*)$.

Brendle and Shelah characterized the Martin number of the Mathias-Prikry and Laver-Prikry type for ultrafilters in [13].

Theorem 1.2. [13] Let \mathcal{U} be an ultrafilter. Then

(1) $\mathfrak{m}(\mathbb{M}_{\mathcal{U}}) = \operatorname{cov}^*(\mathcal{U}^*).$

(2) $\mathfrak{m}(\mathbb{L}_{\mathcal{U}}) = \min\{\mathfrak{b}, \operatorname{cov}^*(\mathcal{U}^*)\}^2.$

We will prove analogous results for arbitrary filter/ideal.

1.1. Martin number of $\mathbb{L}_{\mathcal{I}^*}$. Recall that an ultrafilter \mathcal{U} on ω is nowhere dense if for every function $f : \omega \to \mathbb{R}$ there is a $U \in \mathcal{U}$ such that f[U] is a nowhere dense subset of \mathbb{R} . It is known (see [3]) that the Laver-Prikry forcing with \mathcal{U} adds a Cohen real if and only if \mathcal{U} is not a nowhere dense ultrafilter.

The following was announced in [15].

Theorem 1.3. For every ideal \mathcal{I} on ω ,

 $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) = \begin{cases} \min\{\mathfrak{b}, \mathsf{sep}(\mathcal{I})\} & \text{if } \mathcal{I}^* \text{ is a nowhere dense ultrafilter,} \\ \min\{\mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})\} & \text{otherwise.} \end{cases}$

Proof. (i) If \mathcal{I}^* is a nowhere dense ultrafilter, then the required statement holds by Theorem 1.2 (2) as $sep(\mathcal{U}^*) = cov^*(\mathcal{U}^*)$ for every ultrafilter \mathcal{U} .

Suppose that \mathcal{I}^* is not a nowhere dense ultrafilter. First we shall show $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) \leq \min\{\mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})\}.$

Since $\mathbb{L}_{\mathcal{I}^*}$ adds a dominating real, $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) \leq \mathfrak{b}$. Since \mathcal{I}^* is not a nowhere dense ultrafilter, $\mathbb{L}_{\mathcal{I}^*}$ adds a Cohen real (see [3]). So $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) \leq \mathsf{cov}(\mathcal{M})$. Since $\mathsf{add}(\mathcal{M}) = \min\{\mathfrak{b}, \mathsf{cov}(\mathcal{M})\}, \mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) \leq \mathsf{add}(\mathcal{M})$.

To see that $\mathsf{m}(\mathbb{L}_{\mathcal{I}^*}) \leq \mathsf{sep}(\mathcal{I})$, suppose that $\kappa < \mathsf{m}(\mathbb{L}_{\mathcal{I}^*})$ and let $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset \mathcal{I}^+$ such that $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$. For $J \in \mathcal{J}$, put

 $D_J = \{T \in \mathbb{L}_{\mathcal{I}^*} : \forall t \in T(\mathsf{stem}(T) \subset t \to \mathsf{Succ}_T(t) \cap J = \emptyset)\}.$

For $H \in \mathcal{H}$ and $n \in \omega$, define

$$E_{H,n} = \{T \in \mathbb{L}_{\mathcal{I}^*} : \mathsf{rang}(\mathsf{stem}(T)) \cap H \setminus n \neq \emptyset\}.$$

Then D_J and $E_{H,n}$ are dense for $J \in \mathcal{J}, H \in \mathcal{H}$ and $n \in \omega$.

Let $G \subset \mathbb{L}_{\mathcal{I}^*}$ be a $\{D_J : J \in \mathcal{J}\} \cup \{E_{H,n} : H \in \mathcal{H} \land n \in \omega\}$ -generic. Let $f_G = \bigcup \{\mathsf{stem}(T) : T \in G\}$. By genericity, $\mathsf{rang}(f_G) \cap J$ is finite for $J \in \mathcal{J}$ and $\mathsf{rang}(f_G) \cap H$ is infinite for $H \in \mathcal{H}$. So $\mathsf{rang}(f_G)$ separates \mathcal{J} from \mathcal{H} . Therefore $\kappa < \mathsf{sep}(\mathcal{I})$.

(ii) $\min\{\mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})\} \leq \mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}).$

⁰Brendle and Shelah investigated cardinal invariants of ideals $\ell^0_{\mathcal{U}}$ and $r^0_{\mathcal{U}}$ associated with an ultrafilter \mathcal{U} . For all ideals \mathcal{I} , $\mathsf{cov}(\ell^0_{\mathcal{I}^*}) = \mathfrak{m}(\mathbb{L}_{\mathcal{I}^*})$ and $\mathsf{cov}(r^0_{\mathcal{I}^*}) = \mathfrak{m}(\mathbb{M}_{\mathcal{I}^*})$.

Suppose $\kappa < \mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})$. Let $\{D_{\alpha} : \alpha < \kappa\}$ be a family of dense open subsets of $\mathbb{L}_{\mathcal{I}^*}$.

For each $\alpha < \kappa$, let $\{T_{\alpha}^{n} : n \in \omega\}$ be a maximal antichain of D_{α} . Let $I_{\alpha,t}^n = \omega \setminus \operatorname{Succ}_{T_{\alpha}^n}(t) \in \mathcal{I} \text{ for } \alpha < \kappa, n \in \omega \text{ and } t \in T_{\alpha}^n \text{ with } t \supset \operatorname{stem}(T_{\alpha}^n).$ Fix $\alpha < \kappa$. Define a rank function $\mathsf{rk}_{\alpha} : \omega^{<\omega} \to Ord$ by

- (1) $\mathsf{rk}_{\alpha}(t) = 0$ if $\exists n \in \omega \ (t \in T_{\alpha}^{n} \text{ and } t \supset \mathsf{stem}(T_{\alpha}^{n})).$ (2) $\mathsf{rk}_{\alpha}(t) \leq \beta$ if $H_{t}^{\alpha} = \{n \in \omega : \mathsf{rk}_{\alpha}(t^{\frown}\langle n \rangle) < \beta\} \in \mathcal{I}^{+}.$

Claim 1.4. [12, Lemma 4] For all $t \in \omega^{<\omega}$, $\mathsf{rk}_{\alpha}(t)$ is defined.

Since $\kappa < \operatorname{sep}(\mathcal{I})$, there is an $A \in [\omega]^{\omega}$ such that for every $\alpha < \kappa$, $n \in \omega, t \in T^n_{\alpha}$ and $s \in \omega^{<\omega}, |A \cap I^n_{\alpha,t}| < \aleph_0$, i.e., $A \subset^* \mathsf{Succ}_{T^n_{\alpha}}(t)$ and $|A \cap H_s^{\alpha}| = \aleph_0.$

Let $\mathbb{L}_{fin(A)^*}$ be the Laver-Prikry forcing on A associated with the ideal fin(A) of finite subsets of A. Let

$$D'_{\alpha} = \{T \cap A^{<\omega} : T \in D_{\alpha} \land T \cap A^{<\omega} \in \mathbb{L}_{\mathsf{fin}(A)^*}\}.$$

Claim 1.5. $\{T_{\alpha}^n \cap A^{<\omega} : n \in \omega \text{ and } T_{\alpha}^n \cap A^{<\omega} \in \mathbb{L}_{fin(A)^*}\}$ is predense in $\mathbb{L}_{fin(A)^*}$. Therefore, D'_{α} is dense in $\mathbb{L}_{fin(A)^*}$.

Proof of Claim 1.5. Fix $\alpha < \kappa$. Let $S \in \mathbb{L}_{fin(A)^*}$ and s = stem(S).

Then $\mathsf{rk}_{\alpha}(s) < \infty$. Since $\{n \in \omega : s^{\frown} \langle n \rangle \in T\} \in \mathsf{fin}(A)^*$ and $H_s^{\alpha} \cap A$ is infinite, $H_s^{\alpha} \cap \{n \in \omega : t^{\frown} \langle n \rangle \in T\} \neq \emptyset$.

By induction on rank, there exists $t \in S$ such that $t \supset s = \mathsf{stem}(S)$ and $\mathsf{rk}_{\alpha}(t) = 0$, that is, $t \in T_{\alpha}^{n}$ and $t \supset \mathsf{stem}(T_{\alpha}^{n})$ for some $n \in \omega$. Fix such $n \in \omega$.

Since $t \in A^{<\omega}$, $\operatorname{stem}(T^n_{\alpha}) \in A^{<\omega}$. For every $u \in T^n_{\alpha}$ with $u \supset \operatorname{stem}(T^n_{\alpha})$, $A \subset^* \{n \in \omega : u^{\frown} \langle n \rangle \in T^n_{\alpha}\}$. So $T^n_{\alpha} \cap A^{<\omega} \in \mathbb{L}_{\operatorname{fin}(A)^*}$ and $T^n_{\alpha} \cap A^{<\omega}$ is compatible with S. Hence $\{T^n_{\alpha} \cap A^{<\omega} : n \in \omega \land T^n_{\alpha} \cap A^{<\omega} \in \mathbb{R}\}$. $\mathbb{L}_{fin(A)^*}$ is predense.

Let $T_{\alpha}^{n'} = T_{\alpha}^n \cap A^{<\omega}$. For each $\alpha < \kappa$ and $n \in \omega$ with $T_{\alpha}^{n'} \in \mathbb{L}_{\mathsf{fin}(A)^*}$, define $g_n^{\alpha} : A^{<\omega} \to \omega$ by

$$g_n^{\alpha}(s) = \begin{cases} \min\{n : A \setminus n \subset \mathsf{Succ}_{T_{\alpha}^{n'}}(s)\} & \text{if } s \in T_{\alpha}^{n'} \text{ and } s \supset \mathsf{stem}(T_{\alpha}^{n'}), \\ 0 & \text{otherwise.} \end{cases}$$

Notice that when $\mathsf{Stem}(T^n_\alpha) \notin A^{<\omega}$, $T^{n'}_\alpha \notin \mathbb{L}_{\mathsf{fin}(A)^*}$ and g^{α}_n is undefined. Since $\kappa < \mathsf{add}(\mathcal{M}) \leq \mathfrak{b}$, there exists $g: A^{<\omega} \to \omega$ such that for $\alpha < \kappa$ and $n \in \omega$, for almost all $t \in A^{<\omega}$, $g_n^{\alpha}(t) \leq g(t)$. Define $S \in \mathbb{L}_{fin(A)^*}$ so that

- (1) $\emptyset \in S$ and
- (2) if $s \in S$, then $s^{\frown}\langle k \rangle \in S$ if and only if k > q(s) and $k \in A$.

For each $\alpha < \kappa$, put

$$D''_{\alpha} = \{ t \in S : \exists n \in \omega \ (t \in T_{\alpha}^{n'}, \ T_{\alpha}^{n'} \in \mathbb{L}_{\mathsf{fin}(A)^*} \text{ and} \\ \forall s \in S(s \supset t \to g(s) \ge g_{\alpha}^n(s))) \}.$$

Let $M_{\alpha} = \{f \in [S] : \forall n \in \omega(f \upharpoonright n \notin D''_{\alpha})\}$. Then M_{α} is nowhere dense in [S]. Since $\kappa < \operatorname{add}(\mathcal{M}) \leq \operatorname{cov}(\mathcal{M})$, there exists $f \in [S]$ such that $f \notin M_{\alpha}$ for every $\alpha < \kappa$.

Claim 1.6. For every $\alpha < \kappa$, there exists $T \in D_{\alpha}$ such that $f \in [T]$.

Proof. For $\alpha < \kappa$, let $n \in \omega$ such that $f \upharpoonright n \in D''_{\alpha}$. Then there exists $m \in \omega$ such that $f \upharpoonright n \in T^{m'}_{\alpha}$ and for $s \in S$ whenever $s \supset f \upharpoonright n$, $g(s) \ge g^m_{\alpha}(s)$. By definition of g^m_{α} , $S_{f \upharpoonright n} \subset T^{m'}_{\alpha}$. Hence $f \in [T^{m'}_{\alpha}]$. So $f \in [T]$ for some $T \in D_{\alpha}$.

By construction of f, f is a $\{D_{\alpha} : \alpha < \kappa\}$ -generic real, i.e., $\{T : f \in [T]\}$ is a filter intersecting with D_{α} for all $\alpha < \kappa$.

Corollary 1.7. For every ideal \mathcal{I} on ω ,

 $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) = \begin{cases} \min\{\mathfrak{b}, \mathsf{sep}(\mathcal{I})\} & \text{if } \mathcal{I}^* \text{ is ultrafilter} \\ \min\{\mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})\} & \text{otherwise.} \end{cases}$

1.2. Martin number of $\mathbb{M}_{\mathcal{I}^*}$. It seems that the rank argument does not work for the Mathias-Prikry type forcings. However, they can be investigated by studying the ideal $\mathcal{I}^{<\omega}$ on $[\omega]^{<\omega} \setminus \{\emptyset\}$ associated to an ideal \mathcal{I} on ω .

Definition 2. Given ideal \mathcal{I} on ω , let

 $\mathcal{I}^{<\omega} = \{ A \subset [\omega]^{<\omega} \setminus \{ \emptyset \} : \exists I \in \mathcal{I} \forall a \in A (a \cap I \neq \emptyset) \}.$

This ideal was considered by Sirota [21] and Louveau [18] in the construction of an extremely disconnected topological group. Recall that an ultrafilter \mathcal{U} on ω is selective if for every partition $\{I_n : n \in \omega\}$ of ω either there is an n such that $I_n \in \mathcal{U}$ or there is a $U \in \mathcal{U}$ such that $|I_n \cap U| \leq 1$ for every $n \in \omega$.

Theorem 2.1. For every ideal \mathcal{I} on ω ,

$$\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \begin{cases} \operatorname{sep}(\mathcal{I}) & \text{if } \mathcal{I}^* \text{ is a selective ultrafilter.} \\ \min\{\operatorname{sep}(\mathcal{I}^{<\omega}), \operatorname{cov}(\mathcal{M})\} & \text{otherwise.} \end{cases}$$

If \mathcal{I}^* is a selective ultrafilter, then $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \mathsf{cov}^*(\mathcal{I})$ by Theorem 1.2 (1).

To prove the rest of this theorem, we will first introduce two variations of $\operatorname{sep}(\mathcal{I})$. Define $\widetilde{\operatorname{sep}}(\mathcal{I})$ by $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I})$ if for $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$, there exists $A \subset \omega$ such that

(1)
$$|A \cap J| < \aleph_0 \text{ for } J \in \mathcal{J} \text{ and}$$

(2) $|[A]^{<\omega} \cap H| = \aleph_0 \text{ for } H \in \mathcal{H}.$

Define $\widetilde{\operatorname{sep}}(\mathcal{I})$ by $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I})$ if for $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$, there exists $A \subset \omega$ such that

- (1) $|A \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and
- (2) $|[A \setminus n]^{<\omega} \cap H| = \aleph_0$ for $H \in \mathcal{H}$ and $n \in \omega$.

Claim 2.2. $\widetilde{sep}(\mathcal{I}) = \widetilde{\widetilde{sep}}(\mathcal{I})$.

Proof of Claim 2.2. By definition, it is clear that $\widetilde{sep}(\mathcal{I}) \leq \widetilde{sep}(\mathcal{I})$. We shall show $\widetilde{\widetilde{sep}}(\mathcal{I}) > \widetilde{sep}(\mathcal{I})$.

Let $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| < \widetilde{\operatorname{sep}}(\mathcal{I})$. Let $\mathcal{H}^* = \{H_n : H \in \mathcal{H}, n \in \omega \text{ and } H_n = H \cap [\omega \setminus n]^{<\omega}\}$. Since $|\mathcal{J}| + |\mathcal{H}^*| = |\mathcal{J}| + |\mathcal{H}| < \widetilde{\operatorname{sep}}(\mathcal{I})$, we can pick $A \subset \omega$ so that

(1) $|A \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and

(2) $|[A]^{<\omega} \cap H| = \aleph_0$ for $H \in \mathcal{H}^*$.

Since $[A]^{<\omega} \cap H_n = [A]^{<\omega} \cap [\omega \setminus n]^{<\omega} \cap H = [A \setminus n]^{<\omega} \cap H$ for $H \in \mathcal{H}$ and $n \in \omega$, $|A \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and $|[A \setminus n]^{<\omega} \cap H| = \aleph_0$ for $H \in \mathcal{H}$ and $n \in \omega$. Therefore $\widetilde{\widetilde{sep}}(\mathcal{I}) \ge \widetilde{sep}(\mathcal{I})$.

Lemma 2.3. If \mathcal{I} is not a selective ultrafilter, then

 $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \min\{\widetilde{\mathsf{sep}}(\mathcal{I}), \mathsf{cov}(\mathcal{M})\}.$

Proof of Lemma 2.3. We shall show that $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \min\{\widetilde{sep}(\mathcal{I}), cov(\mathcal{M})\}.$ (i) $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) \geq \min\{\widetilde{sep}(\mathcal{I}), cov(\mathcal{M})\}.$

Let $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I}), \operatorname{cov}(\mathcal{M})$. Let $\{D_{\alpha} : \alpha < \kappa\}$ be a family of open dense subsets of $\mathbb{M}_{\mathcal{I}^*}$. Let $\{\langle s_{\alpha}^n, F_{\alpha}^n \rangle : n \in \omega\}$ be a maximal antichain in D_{α} . Let $I_{\alpha}^n = \omega \setminus F_{\alpha}^n \in \mathcal{I}$ for $n \in \omega$ and $\alpha < \kappa$. Let

$$H_s^{\alpha} = \{ t \in [\omega]^{<\omega} : \exists n \in \omega (s_{\alpha}^n \subset s \cup t \subset s_{\alpha}^n \cup F_{\alpha}^n) \}.$$

Claim 2.4. $H_s^{\alpha} \in (\mathcal{I}^{<\omega})^+$ for all $s \in [\omega]^{<\omega}$ and $\alpha < \kappa$.

Proof of Claim 2.4. Let $s \in [\omega]^{<\omega}$, $\alpha < \kappa$ and $I \in \mathcal{I}$. Then $\langle s, \omega \setminus (I \cup s) \rangle \in \mathbb{M}_{\mathcal{I}^*}$. Since $\{\langle s^n_{\alpha}, F^n_{\alpha} \rangle : n \in \omega\}$ is a maximal antichain, $\langle s, \omega \setminus (I \cup s) \rangle$ is compatible with some $\langle s^n_{\alpha}, F^n_{\alpha} \rangle$. So there are $n \in \omega, t \in [\omega \setminus (I \cup s)]^{<\omega}$ and $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \leq \langle s^n_{\alpha}, F^n_{\alpha} \rangle$, $\langle s, \omega \setminus (I \cup s) \rangle$.

Since $\langle s \cup t, F \rangle \leq \langle s_{\alpha}^{n}, F_{\alpha}^{n} \rangle$, $s_{\alpha}^{n} \subset s \cup t \subset s_{\alpha}^{n} \cup F_{\alpha}^{n}$. Since $\langle s \cup t, F \rangle \leq \langle s, \omega \setminus (I \cup S) \rangle$, $t \cap I = \emptyset$. Hence for each $I \in \mathcal{I}$, there exists $t \in H_{s}^{\alpha}$ such that $t \cap I = \emptyset$. Therefore $H_{s}^{\alpha} \in (\mathcal{I}^{<\omega})^{+}$.

As $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I})$, there is an $A \subset \omega$ such that

(1) $|A \cap I_{\alpha}^{n}| < \aleph_{0}$ for every $n \in \omega$ and $\alpha < \kappa$ and

(2) $|[A \setminus n]^{<\omega} \cap H_s^{\alpha}| = \aleph_0$ for every $n \in \omega, s \in [\omega]^{<\omega}$ and $\alpha < \kappa$.

Let $\mathcal{A}_{\alpha} = \{ \langle s_{\alpha}^{n}, F_{\alpha}^{n} \cap A \rangle : s_{\alpha}^{n} \subset A \text{ and } n \in \omega \} \subset \mathbb{M}_{\mathrm{fin}(A)^{*}}, \text{ where } \mathbb{M}_{\mathrm{fin}(A)^{*}} \text{ is the Mathias-Prikry forcing associated with the ideal fin}(A) of finite subsets of A and <math>\mathbb{M}_{\mathrm{fin}(A)^{*}}$ consists of pairs $\langle s, B \rangle$ such that $s \in [A]^{<\omega}$, $B \in \mathrm{fin}(A)^{*}$ and $s \cap B = \emptyset$.

Claim 2.5. \mathcal{A}_{α} is predense in $\mathbb{M}_{fin(A)^*}$.

Proof of Claim 2.5. Let $\langle s, B \rangle \in \mathbb{M}_{\mathrm{fin}(A)^*}$. Let $n \geq \max(s)$ such that $B \setminus n = A \setminus n$. Since $|[A \setminus n]^{<\omega} \cap H_s^{\alpha}| = \aleph_0$, pick $t \in [A \setminus n]^{<\omega} \cap H_s^{\alpha}$. Then there is an $n \in \omega$ such that $s_{\alpha}^n \subset s \cup t \subset s_{\alpha}^n \cup (F_{\alpha}^n \cap A)$. So $\langle s \cup t, (F_{\alpha}^n \setminus s \cup t) \cap A \rangle \leq \langle s_{\alpha}^n, F_{\alpha}^n \cap A \rangle$ and $\langle s \cup t, (F_{\alpha}^n \setminus s \cup t) \cap A \rangle \in \mathbb{M}_{\mathrm{fin}(A)^*}$. Since $t \in [A \setminus n]^{<\omega} = [B \setminus n]^{<\omega}$, $\langle s \cup t, B \setminus (s \cup t) \rangle \leq \langle s, B \rangle$. So $\langle s, B \rangle$ is compatible with $\langle s_{\alpha}^n, F_{\alpha}^n \cap A \rangle$ for some $n \in \omega$.

Let $D'_{\alpha} = \{ \langle s, F \cap A \rangle : s \subset A, F \cap A \in fin(A)^* \text{ and } \langle s, F \rangle \in D_{\alpha} \}.$ Then D'_{α} is dense open subset of $\mathbb{M}_{fin(A)^*}$. Since $|\mathbb{M}_{fin(A)^*}| = \aleph_0$, $\mathbb{M}_{fin(A)^*} \cong \mathbb{C}.$ Since $\kappa < \operatorname{cov}(\mathcal{M})$, there exists A_{gen} such that for every $\alpha < \kappa$ there is $\langle s, F \cap A \rangle \in D'_{\alpha}$ so that $s \subset A_{gen} \subset s \cup (F \cap A)$. Hence, for every $\alpha < \kappa$ there exists $\langle s, F \rangle \in D_{\alpha}$ such that $s \subset A_{gen} \subset s \cup F$. (ii) $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) \leq \min\{\widetilde{\operatorname{sep}}(\mathcal{I}), \operatorname{cov}(\mathcal{M})\}.$

Suppose $\kappa < \mathfrak{m}(\mathbb{M}_{\mathcal{I}^*})$. Let $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$. Let $D_J = \{\langle s, F \rangle \in \mathbb{M}_{\mathcal{I}^*} : F \cap J = \emptyset\}$ for $J \in \mathcal{J}$, and let $E_H^n = \{\langle s, F \rangle \in \mathbb{M}_{\mathcal{I}^*} : |[s]^{<\omega} \cap H| \geq n\}$ for $H \in \mathcal{H}$ and $n \in \omega$. Since $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$, D_J and E_H^n are dense subsets of $\mathbb{M}_{\mathcal{I}^*}$ for $J \in \mathcal{J}, H \in \mathcal{H}$ and $n \in \omega$. Let $A \subset \omega$ be a $\{D_J : J \in \mathcal{J}\} \cup \{E_H^n : H \in \mathcal{H} \land n \in \omega\}$ -generic real. Then $|A \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and $|A \cap H| = \aleph_0$ for $H \in \mathcal{H}$. So $\kappa < \widetilde{sep}(\mathcal{I})$.

Since \mathcal{I}^* is not selective ultrafilter, $\mathbb{M}_{\mathcal{I}^*}$ adds a Cohen real (see [3]). Therefore $\kappa < \operatorname{cov}(\mathcal{M})$.

Lemma 2.6.

$$\min\{\widetilde{\operatorname{sep}}(\mathcal{I}), \operatorname{cov}(\mathcal{M})\} = \min\{\operatorname{sep}(\mathcal{I}^{<\omega}), \operatorname{cov}(\mathcal{M})\}.$$

Proof. To prove $\min\{\widetilde{sep}(\mathcal{I}), cov(\mathcal{M})\} \ge \min\{sep(\mathcal{I}^{<\omega}), cov(\mathcal{M})\}$, we shall show that $\widetilde{sep}(\mathcal{I}) \ge sep(\mathcal{I}^{<\omega})$.

Claim 2.7. $\operatorname{sep}(\mathcal{I}^{<\omega}) \leq \widetilde{\operatorname{sep}}(\mathcal{I}) \leq \operatorname{sep}(\mathcal{I}).$

Proof of Claim 2.7. Suppose $\kappa < \operatorname{sep}(\mathcal{I}^{<\omega})$. Let $\mathcal{J} \subset \mathcal{I}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$. For $J \in \mathcal{J}$, put $\hat{J} = \{a \in [\omega]^{<\omega} : a \cap J \neq \emptyset\}$. Then $\hat{J} \in \mathcal{I}^{<\omega}$.

Let $A \subset [\omega]^{<\omega}$ be such that

(1) $|A \cap \hat{J}| < \aleph_0 \text{ for } J \in \mathcal{J} \text{ and}$ (2) $|A \cap H| = \aleph_0 \text{ for } H \in \mathcal{H}.$

Then $|\bigcup A \cap J| < \aleph_0$, and since $A \subset [\bigcup A]^{<\omega}$, $\bigcup A$ satisfies

(1) $|\bigcup A \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and

(2) $|[\bigcup A]^{<\omega} \cap H| = \aleph_0$ for $H \in \mathcal{H}$.

Hence $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I})$. Therefore $\operatorname{sep}(\mathcal{I}^{<\omega}) \leq \widetilde{\operatorname{sep}}(\mathcal{I})$.

 $\widetilde{\operatorname{sep}}(\mathcal{I}) \leq \operatorname{sep}(\mathcal{I})$ follows from the fact when $H \in \mathcal{I}^+$, $H^* = \{\{n\} : n \in H\} \in (\mathcal{I}^{<\omega})^+$.

To finish the proof of the theorem, we shall show $\min\{\widetilde{sep}(\mathcal{I}), cov(\mathcal{M})\} \leq \min\{sep(\mathcal{I}^{<\omega}), cov(\mathcal{M})\}.$

Suppose $\kappa < \widetilde{\operatorname{sep}}(\mathcal{I})$, $\operatorname{cov}(\mathcal{M})$. Let $\mathcal{J} \subset \mathcal{I}^{<\omega}$ and $\mathcal{H} \subset (\mathcal{I}^{<\omega})^+$ with $|\mathcal{J}| + |\mathcal{H}| \leq \kappa$. For $J \in \mathcal{J}$, fix $I_J \in \mathcal{I}$ so that $a \cap I_J \neq \emptyset$ for $a \in J$. Let $A \subset \omega$ be such that

(1) $|A \cap I_J| < \aleph_0$ for all $J \in \mathcal{J}$.

(2) $|[A \setminus n]^{<\omega} \cap H| = \aleph_0$ for every $H \in \mathcal{H}$ and $n \in \omega$.

We will construct $B \subset [A]^{<\omega}$ so that

(1) $|B \cap J| < \aleph_0$ for $J \in \mathcal{J}$.

(2) $|B \cap H| = \aleph_0$ for $H \in \mathcal{H}$.

In order to do so, define a forcing notion \mathbb{P} by $\langle F, n \rangle \in \mathbb{P}$ if $F \in [[A]^{<\omega}]^{<\omega}$ and $n \in \omega$ ordered by $\langle F, n \rangle \leq \langle G, m \rangle$ if $F \supset G$, $n \geq m$ and $\min(a) \geq m$ for $a \in F \setminus G$. Since $|\mathbb{P}| = \aleph_0$, $\mathbb{C} \cong \mathbb{P}$. Let $D_{H,n}$ and $E_J \subset \mathbb{P}$ for $H \in \mathcal{H}$, $n \in \omega$ and $J \in \mathcal{J}$ be defined by

$$D_{H,n} = \{ \langle F, m \rangle : \exists a \in F(\min(a) > n \text{ and } a \in H) \}.$$

$$E_J = \{ \langle F, m \rangle : m > \max(A \cap I_J) \}.$$

Then $D_{H,n}$ is dense for $H \in \mathcal{H}$ and $n \in \omega$, and E_J is dense for $J \in \mathcal{J}$. Since $\kappa < \operatorname{cov}(\mathcal{M})$, there is a $\{D_{H,n} : H \in \mathcal{H} \text{ and } n \in \omega\} \cup \{E_J : J \in \mathcal{J}\}$ -generic G. Let $A_G = \bigcup \{F : \langle F, n \rangle \in G\}$. Then

- (1) $|A_G \cap J| < \aleph_0$ for $J \in \mathcal{J}$ and
- (2) $|A_G \cap H| = \aleph_0$ for $H \in \mathcal{H}$.

So $\kappa < \operatorname{sep}(\mathcal{I}^{<\omega})$. Therefore

$$\min\{\widetilde{\mathsf{sep}}(\mathcal{I}),\mathsf{cov}(\mathcal{M})\} \le \min\{\mathsf{sep}(\mathcal{I}^{<\omega}),\mathsf{cov}(\mathcal{M})\}.$$

Corollary 2.8. For every ideal \mathcal{I} on ω ,

$$\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \begin{cases} \operatorname{sep}(\mathcal{I}) & \text{if } \mathcal{I}^* \text{ is an ultrafilter.} \\ \min\{\operatorname{sep}(\mathcal{I}^{<\omega}), \operatorname{cov}(\mathcal{M})\} & \text{if } \mathcal{I} \text{ is not an ultrafilter.} \end{cases}$$

3. Preservation properties of $M_{\mathcal{I}^*}$

The methods for studying properties of the forcing $\mathbb{L}_{\mathcal{I}^*}$ are well known (see [2, 7, 12]). Here we concentrate on the preservation properties of the forcings $\mathbb{M}_{\mathcal{I}^*}$. In [12] it is shown that a useful characterization for when $\mathbb{L}_{\mathcal{I}^*}$ preserves ω -hitting families. An analogous result also holds for $\mathbb{M}_{\mathcal{I}^*}$.¹

Theorem 3.1. Let \mathcal{I} be an ideal on ω . The following are equivalent:

- (1) $\forall X \in (\mathcal{I}^{<\omega})^+ \ \forall \mathcal{J} \leq_K \mathcal{I}^{<\omega} \upharpoonright X \ (\mathcal{J} \text{ is not } \omega\text{-hitting})$
- (2) $\mathbb{M}_{\mathcal{I}^*}$ strongly preserves ω -hitting families, and
- (3) $\mathbb{M}_{\mathcal{I}^*}$ preserves ω -hitting families.

Proof. From (1) to (2).

Suppose (2) doesn't hold. Let \dot{A} be $\mathbb{M}_{\mathcal{I}^*}$ -names witnessing the negation of (2), i.e., for every $(B_n : n \in \omega)$ there exists $B \in [\omega]^{\omega}$ such that $|B_n \cap B| = \aleph_0$ for every $n \in \omega$ and there exist $p_B = \langle s_B, F_B \rangle \in \mathbb{M}_{\mathcal{I}^*}$ and $m_B \in \omega$ such that $p_B \Vdash B \cap \dot{A} \subset m_B$.

Let \mathcal{B} be the family of all such B. By the assumption that \mathcal{B} is ω -hitting, there are $s \in [\omega]^{<\omega}$ and $m \in \omega$ such that $\mathcal{B}_0 = \{B \in \mathcal{B} : s_B = s \text{ and } m_B = m\}$ is ω -hitting (If an ω -hitting family is split into countably pieces, one of them is ω -hitting). Fix such $s \in [\omega]^{<\omega}$ and $m \in \omega$ and let

$$X_s = \{t \in [\omega]^{<\omega} : \exists k > m \exists F \in \mathcal{I}^* \left(\langle s \cup t, F \rangle \Vdash k \in \dot{A} \right) \}.$$

Claim 3.2. $X_s \in (\mathcal{I}^{<\omega})^+$.

Proof of Claim 3.2. Given $I \in \mathcal{I}$, there are $t \in [\omega \setminus I]^{<\omega}$, k > m and $F \in \mathcal{I}$ such that $\langle s \cup t, F \rangle \leq \langle s, \omega \setminus I \rangle$ and $\langle s \cup t, F \rangle \Vdash k \in \dot{A}$. Then $t \in X_s$ and $t \cap I = \emptyset$.

Define $f: X_s \to \omega$ by

$$f(t) = \begin{cases} \max\{k > m : \exists F \in \mathcal{I}^*(\langle s \cup t, F \rangle \Vdash k \in \dot{A})\} \\ \text{if there are finitely many such } k, \\ \min\{k > \max(t \cup \{m\}) : \exists F \in \mathcal{I}^*(\langle s \cup t, F \rangle \Vdash k \in \dot{A})\} \\ \text{otherwise.} \end{cases}$$

Claim 3.3. For every $k \in \omega$, $f^{-1}[\omega \setminus k] \in (\mathcal{I}^{<\omega})^+$.

¹A forcing \mathbb{P} strongly preserves ω -hitting families if given a \mathbb{P} -name \dot{A} for an infinite subset of ω there is a countable family \mathcal{H} of infinite subsets of ω such that whenever $B \subseteq \omega$ has an infinite intersection with every element of \mathcal{H} then $\Vdash_{\mathbb{P}}$ " $|\dot{A} \cap B| = \omega$ ".

So we can assume that for all but finitely many k > m, $f^{-1}(\{k\}) \in \mathcal{I}^{<\omega}$ or there exist infinitely many $k \in \omega$ such that $f^{-1}(\{k\}) \in (\mathcal{I}^{<\omega})^+$.

Claim 3.4. For all but finitely many k > m, $f^{-1}(\{k\}) \in \mathcal{I}^{<\omega}$.

Proof. Assume to the contrary that there are infinitely many k > msuch that $f^{-1}(\{k\}) \in (\mathcal{I}^{<\omega})^+$. Let $C = \{k > m : f^{-1}(\{k\}) \in (\mathcal{I}^{<\omega})^+\}$. Since \mathcal{B}_0 is ω -hitting, there exists $B \in \mathcal{B}_0$ such that $B \cap C$ is infinite. Let k > m such that $k \in C \cap B$ and $f^{-1}(\{k\}) \in (\mathcal{I}^{<\omega})^+$. Then $|[F_B]^{<\omega} \cap f^{-1}(\{k\})| = \aleph_0$. Let $t \in [F_B]^{<\omega} \cap f^{-1}(\{k\})$. Then there exists $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \Vdash k \in \dot{A} \cap B$. Since $t \in [F_B]^{<\omega}$, $\langle s, F_B \rangle$ is compatible with $\langle s \cup t, F \rangle$. However $\langle s, F_B \rangle \Vdash \dot{A} \cap B \subset m$, which is a contradiction. \Box

Claim 3.5. f witnesses that $\langle \mathcal{B}_0 \rangle \leq_K \mathcal{I}^{<\omega} \upharpoonright X$.

Proof. Assume to the contrary that there is a $B \in \mathcal{B}_0$ such that $f^{-1}[B] \in (\mathcal{I}^{<\omega})^+$. Since $F_B \in \mathcal{I}^*$ and $|[F_B]^{<\omega} \cap f^{-1}[B]| = \aleph_0$, there is a $t \in [F_B]^{<\omega} \cap f^{-1}[B]$ such that for some $F \in \mathcal{I}^*$ and k > m $\langle s \cup t, F \rangle \Vdash k \in A \cap B$.

Since $t \in [F_B]^{<\omega}$, $s \subset s \cup t \subset s \cup F_B$. So $\langle s, F_B \rangle$ is compatible with $\langle s \cup t, F \rangle$. However, $\langle s, F_B \rangle \Vdash A \cap B \subset m$, which is a contradiction. \Box

Since $\langle \mathcal{B}_0 \rangle$ is ω -hitting, (1) doesn't hold.

Obviously (2) implies (3).

We shall prove (3) implies (1). Assume to the contrary that there exists an ideal \mathcal{J} on ω such that there exist $X \in (\mathcal{I}^{<\omega})^+$ and $f: X \to \omega$ so that

- (1) For every $J \in \mathcal{J}, f^{-1}[J] \in \mathcal{I}^{<\omega}$ and
- (2) \mathcal{J} is ω -hitting.

Let \dot{a}_{gen} be the canonical name for the $\mathbb{M}_{\mathcal{I}^*}$ -generic subset of ω . We shall show that $\Vdash \mathcal{J}$ is not ω -hitting. Let \dot{X}_n be a $\mathbb{M}_{\mathcal{I}^*}$ -name such that

$$\Vdash \dot{X}_n = f\left[[\dot{a}_{gen} \setminus n]^{<\omega} \right].$$

Claim 3.6. $\Vdash X_n$ is infinite.

Proof of the Claim. If $\Vdash X_n$ were finite, then

$$\Vdash [\dot{a}_{gen} \setminus n]^{<\omega} \cap X \subset f^{-1}[\dot{X}_n] \in \mathcal{I}^{<\omega}.$$

However, $\Vdash \forall I \in \mathcal{I}(|\dot{a}_{gen} \cap I| < \aleph_0)$ and $\Vdash |[\dot{a}_{gen} \setminus n]^{<\omega} \cap X| = \aleph_0$ by genericity. So $\Vdash \forall I \in \mathcal{I} \forall n \in \omega \exists a \in [\dot{a}_{gen} \setminus n]^{<\omega} (a \cap I = \emptyset)$, which is a contradiction.

Claim 3.7. $\Vdash \forall J \in \mathcal{J} \exists n \in \omega(J \cap X_n = \emptyset).$

Proof. For every $J \in \mathcal{J}$ and $\langle s, F \rangle \in \mathbb{M}_{\mathcal{I}^*}$, pick $I \in \mathcal{I}$ such that $a \cap I \neq \emptyset$ for $a \in f^-[J]$, $G = F \cap (\omega \setminus I)$ and $n = \max(s)$. Then $\langle s, G \rangle \Vdash [\dot{a}_{gen} \setminus n]^{<\omega} \cap f^{-1}[J] = \emptyset$. So $\langle s, G \rangle \Vdash \dot{X}_n \cap J = \emptyset$.

So \mathcal{J} is not ω -hitting in the extension, contradiction.

Now, we turn our attention to the question of when does the forcing $\mathbb{M}_{\mathcal{I}^*}$ add a dominating real. This line of investigation was started by M. Canjar in [14], where he assuming $\mathfrak{d} = \mathfrak{c}$ constructed an ultrafilter \mathcal{U} such that $\mathbb{M}_{\mathcal{U}}$ doesn't add any dominating reals. He also noticed that such an ultrafilter has to be a P-point without rapid Rudin-Keisler predecessors (see e.g. [1] for definitions and more information) and asked whether the converse is also true. Here we give a simple combinatorial characterizations of ideals \mathcal{I} such that $\mathbb{M}_{\mathcal{I}^*}$ doesn't add any dominating reals.

We call an ideal \mathcal{J} a P^+ -*ideal* if for every decreasing sequence $\{X_n : n \in \omega\}$ of \mathcal{J} positive sets, there is an $X \in \mathcal{J}^+$ such that $X \subset^* X_n$ for all $n \in \omega$.

Theorem 3.8. The following are equivalent.

(1) M_{I*} adds a dominating real.
(2) I^{<ω} is not a P⁺-ideal.

Proof. (1) implies (2).

Let \dot{g} be a $\mathbb{M}_{\mathcal{I}^*}$ -name for a dominating real, i.e., $\forall f \in \omega^{\omega} \cap V (\Vdash f <^* \dot{g})$. In particular, for every $f \in \omega^{\omega} \cap V$, there are $s_f \in [\omega]^{<\omega}$, $F_f \in \mathcal{I}^*$ and $n_f \in \omega$ such that

$$\langle s_f, F_f \rangle \Vdash \forall n \ge n_f(f(n) < \dot{g}(n)).$$

If one partitions a dominating family into countably many pieces, one of the pieces is also dominating. So there are $s \in [\omega]^{<\omega}$ and $n \in \omega$ such that

$$\mathcal{F} = \{ f \in \omega^{\omega} : s_f = s \land n_f = n \}$$

is a dominating family. Fix such $s \in [\omega]^{<\omega}$ and $n \in \omega$ and let $X_s = \{t \in [\omega \setminus \max(s)]^{<\omega} : \exists F \in \mathcal{I}^* \exists m \ge n (\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}.$ Claim 3.9. $X_s \in (\mathcal{I}^{<\omega})^+.$

For each $t \in X_s$, let $z_t = \{m \ge n : \exists F \in \mathcal{I}^*(\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}$. Put $k_t, l_t \in \omega$ so that

$$k_t = \begin{cases} \max(z_t) & \text{if } |z_t| < \omega \\ \min(z_t \setminus \max(t)) & \text{otherwise.} \end{cases}$$

and there is an $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \Vdash \dot{g}(k_t) = l_t$. Then define $H: X_s \to \omega \times \omega$ by $H(t) = \langle k_t, l_t \rangle$.

Claim 3.10. For every $m \in \omega$, $H^{-1}[(\omega \setminus m) \times \omega] \in (\mathcal{I}^{<\omega})^+$.

Let $K = \{k_t : t \in X_s\}$. Then K is infinite and let $\{k_i : i \in \omega\}$ be its increasing enumeration. Put $K_i = \{l \in \omega : \langle k_i, l \rangle \in H[X_s]\}$.

Claim 3.11. There are infinitely many $i \in \omega$ such that K_i is infinite.

Proof of Claim 3.11. Assume to the contrary that for all but finitely many $i \in \omega$, K_i is finite. Then define $g : \omega \to \omega$ by

$$g(m) = \begin{cases} \max(K_i) & \text{if } m = k_i \text{ and } |K_i| < \aleph_0 \text{ for some } i \in \omega, \\ 0 & \text{otherwise.} \end{cases}$$

Since \mathcal{F} is a dominating family, there is an $f \in \mathcal{F}$ such that $g \leq^* f$. Let $m_0 \geq n$ be such that $g(m) \leq f(m)$ for $m \geq m_0$ and $k_i \geq m_0$ implies $|K_i| < \aleph_0$.

By Claim 3.10, $H^{-1}[(\omega \setminus m) \times \omega] \cap [F]^{<\omega} \in (\mathcal{I}^{<\omega})^+$ for $F \in \mathcal{I}^*$ and $m \in \omega$.

Let $t \in [F_f]^{<\omega} \cap H^{-1}[(\omega \setminus m_0) \times \omega]$. Then there is an $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \Vdash \dot{g}(k_t) = l_t \leq g(k_t) \leq f(k_t)$. However, $\langle s, F_f \rangle$ is compatible with $\langle s \cup t, F \rangle$ and $\langle s, F_f \rangle \Vdash f(k_t) < \dot{g}(k_t)$, which is a contradiction. \Box

Without loss of generality, we can assume that for every $i \in \omega$, K_i is infinite.

Let $Y_m = H^{-1}[\bigcup_{i>m} K_i]$ for $m \in \omega$. Then $Y_{m+1} \subset Y_m$. As Claim 3.10, we can prove the following.

Claim 3.12. $Y_m \in (\mathcal{I}^{<\omega})^+$ for $m \in \omega$.

Proof of Claim 3.12. Let $I \in \mathcal{I}$ and $m \in \omega$. We shall show that there exists $t \in Y_m$ such that $t \cap I = \emptyset$. Let $t \in [\omega \setminus I]^{<\omega}$ such that $\langle s \cup t, F \rangle \leq \langle s, \omega \setminus I \rangle$ decides $\dot{g}(k)$ for some k > m and $\max(t) > m$. By definition of $k_t, k_t \geq k > m$. Then $H(t) \in \bigcup_{i>m} K_i$. So $t \in Y_m$ and $t \cap I = \emptyset$.

Let $Y \subset^* Y_m$ for $m \ge n$. We shall show that $Y \in \mathcal{I}^{<\omega}$.

Assume to the contrary that $Y \in (\mathcal{I}^{<\omega})^+$.

Since $Y \subset^* Y_m$, $K_m \cap H[Y]$ is finite for every $m \in \omega$. Define a function h from ω to ω by

$$h(m) = \begin{cases} \max\{l_t : \exists t \in Y \cap Y_m\} \text{ if } Y \cap Y_m \neq \emptyset, \\ 0 \text{ otherwise.} \end{cases}$$

Then there are infinitely many m such that h(m) > 0.

Since \mathcal{F} is a dominating family, there is an $f \in \mathcal{F}$ such that $h \leq^* f$. Let $m_0 \geq n$ be such that $h(m) \leq f(m)$ for $m \geq m_0$. Since $Y \subset^* Y_m$, $F_f \in \mathcal{I}^*$ and $Y \in (\mathcal{I}^{<\omega})^+$, there is an $m \geq m_0$ such that $Y \cap Y_m \cap$ $[F_f]^{<\omega} \neq \emptyset$. Let $t \in Y \cap Y_m \cap [F_f]^{<\omega}$. Since $t \in Y$ there is an $F \in \mathcal{I}^*$ such that $\langle s \cup t, F \rangle \Vdash \dot{g}(m) \leq h(m)$. However, $\langle s, F_f \rangle \Vdash ``\forall m \geq n(f(m) < \dot{g}(m))$ " and $\langle s \cup t, F \rangle$ is compatible with $\langle s, F_f \rangle$, which is a contradiction. Therefore $Y \in \mathcal{I}^{<\omega}$. So $\mathcal{I}^{<\omega}$ is not P^+ -ideal.

(2) implies (1).

Let $\langle X_n : n \in \omega \rangle$ be a decreasing sequence of $\mathcal{I}^{<\omega}$ -positive sets without a pseudointersection in $(\mathcal{I}^{<\omega})^+$. Let $\langle a_k : k \in \omega \rangle$ be an enumeration of $[\omega]^{<\omega} \setminus \{\emptyset\}$ and let \dot{a}_{gen} be the canonical name for the $\mathbb{M}_{\mathcal{I}^*}$ -generic real. Define a $\mathbb{M}_{\mathcal{I}^*}$ -name \dot{g} for a function from ω to ω by

$$\Vdash \dot{g}(n) = \min\{k : a_k \subset [\dot{a}_{gen}]^{<\omega} \cap X_n \land \\ \max(\bigcup\{a_m : l < n \land m = \dot{g}(l)\}) < \min(a_k)\}.$$

We shall show that \dot{g} is a dominating real. Let $f \in \omega^{\omega} \cap V$ and $\langle s, F \rangle \in \mathbb{M}_{\mathcal{I}^*}$. Let $I_f = \{a_k \in [\omega]^{<\omega} \setminus \{\emptyset\} : \exists n \in \omega(a_k \in X_n \land k \leq f(n))\}$. Then $I_f \subset^* X_n$ for every $n \in \omega$. Therefore $I_f \in \mathcal{I}^{<\omega}$ by definition of X_n . Let $I \in \mathcal{I}$ such that $\forall a \in I_f(a \cap I \neq \emptyset)$. Then $F \setminus I \in \mathcal{I}^*$ and $[F \setminus I]^{<\omega} \cap I_f = \emptyset$.

Claim 3.13. Let $\langle t_n : n < \alpha \rangle$ be a sequence of finite subsets of ω such that

(1) $t_n \in [s \cup (F \setminus I)]^{<\omega} \cap X_n$ (2) $\max(t_n) < \min(t_{n+1})$ (3) $\exists k \in \omega(t_n = a_k \land k \le f(n))$

Then $\alpha \leq |s|$.

Proof of Claim. If $t \in [F \setminus I]^{<\omega}$, then $t = a_k$ and $t \in X_n$ implies k > f(n) by $[F \setminus I]^{<\omega} \cap I_f = \emptyset$. So by (2), $\alpha \leq |s|$.

Put |s|=m. Then $\langle s, F \setminus I \rangle \leq \langle s, F \rangle$ and

$$\langle s, F \setminus I \rangle \Vdash \forall n > m(f(n) < \dot{g}(n)).$$

Recently, using our characterizations, M. Hrušák and J. Verner showed that if \mathcal{I} is an F_{σ} P-ideal, then $\mathcal{P}(\omega)/\mathcal{I}$ adds an ultrafilter \mathcal{U} which is a *P*-point without rapid *RK*-predecessors, but \mathcal{U}^* is not a P^+ -ideal [17]. Thus this answers Canjar's question in the negative. Moreover, A. Blass, M. Hrušák and J. Verner [4] (also using our theorem) showed that $\mathbb{M}_{\mathcal{U}}$ doesn't add any dominating reals if and only if \mathcal{U} is strong *P*-point. 4. Concluding remarks and open problems.

It is still interesting to try to better understand ideals \mathcal{I} for which $\mathbb{M}_{\mathcal{I}^*}$ doesn't add any dominating reals. An interesting class of ideals in this respect are those generated by maximal almost disjoint (mad) families.

Theorem 4.1. [6] Assume $\mathfrak{b} = \mathfrak{c}$. Then there exists a mad family \mathcal{A} such that $\mathbb{M}_{\mathcal{I}(\mathcal{A})}$ adds a dominating real.

Question 4.2. [6] Is it consistent that there is no mad family \mathcal{A} such that $\mathbb{M}_{\mathcal{I}(\mathcal{A})}$ adds a dominating real?

As far as definable ideals are concern, J. Brendle has in [6] that an $\mathbb{M}_{\mathcal{I}^*}$ doesn't add any dominating reals for any F_{σ} -ideal \mathcal{I} . This follows directly from our characterization. However, it is not clear whether this characterizes F_{σ} -ideals among Borel ones:

Question 4.3. Is there a Borel ideal \mathcal{I} which is not F_{σ} , yet $\mathbb{M}_{\mathcal{I}^*}$ doesn't add any dominating reals?

However, we have the following useful approximation:

Theorem 4.4. Suppose \mathcal{I} is a Borel ideal. Then the following are equivalent.

- (1) \mathcal{I} can be extended to an ideal \mathcal{J} such that $\mathbb{M}_{\mathcal{J}^*}$ doesn't add any dominating reals.
- (2) \mathcal{I} can be extended to a P^+ -ideal.
- (3) \mathcal{I} can be extended to an F_{σ} -ideal.

Proof. (3) implies (1).

This is proved in Brendle's paper [6], but it also follows from our theorem using the following two simple observations:

(i) If \mathcal{I} is F_{σ} then $\mathcal{I}^{<\omega}$ is F_{σ} , and

(ii) every F_{σ} -ideal is P^+ .

(1) implies (2).

Suppose (2) doesn't hold. Then every \mathcal{J} extending \mathcal{I} is not P^+ .

Claim 4.5. If $\mathcal{J}^{<\omega}$ is P^+ , then \mathcal{J} is P^+ .

Proof of Claim. Let $\{Y_n : n \in \omega\}$ be a decreasing sequence of \mathcal{J}^+ . Put $Y_n^* = \{\{k\} : k \in Y_n\}$ for $n < \omega$. Then $Y_n^* \in (\mathcal{J}^{<\omega})^+$. By assumption, there exists $Y^* \in (\mathcal{J}^{<\omega})^+$ such that $Y^* \subset^* Y_n^*$ for $n < \omega$. Put $Y = \bigcup Y^*$. Then $Y \in \mathcal{J}^+$ and $Y \subset^* Y_n$ for $n < \omega$. So \mathcal{J} is P^+ . By this claim, $\mathcal{J}^{<\omega}$ is not P^+ . So $\mathbb{M}_{\mathcal{J}^*}$ adds a dominating real by our theorem.

(2) implies (3).

This follows from a theorem of D. Meza and M. Hrušák (see [16]).

This, in particular, shows that the ideal \mathcal{Z} of sets Banach density zero can not be extended to an ideal \mathcal{I} such that $\mathbb{M}_{\mathcal{I}^*}$ doesn't add any dominating reals, as it can not be extended to an F_{σ} -ideal.

Corollary 4.6. Let \mathcal{Z} be the density zero ideal. If $\mathcal{Z}^* \subset \mathcal{F}$, then $\mathbb{M}_{\mathcal{F}}$ adds a dominating real.

Proof. Recall that $\mathcal{Z} = \{A \subset \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$. Suppose $\mathcal{Z} \subset \mathcal{I}$. Let $X_n^j = \{k \cdot n! + j : k \in \omega\}$ for $n \ge 1$ and k < n!. Then $\{X_{n+1}^i : i < (n+1)! \text{ and } X_{n+1}^i \subset X_n^j\}$ is a partition of X_n^j into finitely many pieces. So if $X_n^j \in \mathcal{I}^+$, then there exists $X_{n+1}^i \in \mathcal{I}^+$ such that $X_{n+1}^i \subset X_n^j$ for some i < (n+1)!. By induction on n, we can construct a decreasing sequence $\{X_n^{j_n} : n \in \omega\}$ of \mathcal{I} -positive sets. Since $X \subset^* X_n^{j_n}$ implies

$$\lim_{k \to \infty} \frac{|X \cap k|}{k} \le \lim_{k \to \infty} \frac{|X_n^{j_n} \cap k|}{k} \le \frac{1}{n!},$$

every pseudointersection of $\{X_n^{j_n} : n \in \omega\}$ is in $\mathcal{Z} \subset \mathcal{I}$. Hence \mathcal{Z} cannot be extended to a P^+ -ideal. So \mathcal{Z} cannot be extended to an ideal \mathcal{J} such that $\mathbb{M}_{\mathcal{I}^*}$ adds a dominating real.

Question 4.7. Is there forcing notion \mathbb{P} which destroys \mathcal{Z} and doesn't add a dominating real?

Acknowledgment

We thank David Meza-Alcántara, Jörg Brendle, Hiroshi Sakai and Lyubomyr Zdomskyy for stimulating discussions.

References

- Tomek Bartoszyński and Haim Judah. Set theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995.
- [2] James E. Baumgartner and Peter Dordal. Adjoining dominating functions. Journal of Symbolic Logic, 50(1):94–101, 1985.
- [3] Aleksander Błaszczyk and Saharon Shelah. Regular subalgebras of complete boolean algebras. *Journal of Syumbolic Logic*, 66(2):792–800, 2001.
- [4] Andreas Blass, Michael Hrušák, and Jonathan Verner. On strong *p*-points. preprint.

- [5] Andreas Blass and Saharon Shelah. Ultrafilters with small generating sets. Israel Journal of Mathematics, 65(3):259–271, 1989.
- [6] Jörg Brendle. Mob families and mad families. Archive for Mathematical Logic, 37(3):183–197, 1997.
- [7] Jörg Brendle. Van douwen's diagram for dense sets of rationals. Annals of Pure and Applied Logic, 143(1-3):54–69, 2006.
- [8] Jörg Brendle. Algebra, Logic and Set Theory, volume 4 of Studies in Logic, chapter Independence for distributivity numbers, pages 63–84. College Publications, London, 2007.
- Jörg Brendle. Distinguishing groupwise density numbers. Monatshefte für Mathematik, 152(3):207–215, 2007.
- [10] Jörg Brendle. Mad families and ultrafilters. Acta Universitatis Carolinae. Mathematica et Physica, 48(2):19–35, 2007.
- [11] Jörg Brendle and Vera Fisher. Mad families, splitting families, and large continuum. The Journal of Symbolic Logic, 76(1):198–208, 2011.
- [12] Jörg Brendle and Michael Hrušák. Countable Fréchet boolean groups: Anindependence result. The Journal of Symbolic Logic, 74(3):1061– 1068, 2009.
- [13] Jörg Brendle and Saharon Shelah. Ultrafilters on ω —their ideals and their cardinal characteristics. Transactions of the American Mathematical Society, 351(1-2):143–161, 1999.
- [14] R. Michael Canjar. Mathias forcing which does not add dominating reals. Proceedings of the American Mathematical Society, 104(4):1239–1248, 1988.
- [15] Fernando Hernández-Hernández and Michael Hrušák. Cardinal invariants of analytic P-ideals. Canadian Journal of Mathematics, 59(3):575–595, 2007.
- [16] Michael Hrušák. Set theory and its applications, volume 533 of Contemporary Mathematics, chapter Combinatorics of filters and ideals, pages 29–69. Amer Mathematical Society, 2011.
- [17] Michael Hrušák and Jonathan L. Verner. Adding ultrafilters by definable quotients. preprint.
- [18] Alain Louveau. Sur un article de S. Sirota. Bulletin des Sciences Mathématiques. 2e Série, 96:3–7, 1972.
- [19] Dilip Raghavan. A model with no strongly separable almost disjoint families. *Israel Journal of Mathematics*, to appear.
- [20] Saharon Shelah. Two cardinal invariants of the continuum ($\mathfrak{d} < \mathfrak{a}$) and fs linearly ordered iterated forcing. *Acta Mathematica*, 192(2):187–223, 2004.
- [21] S. M. Sirota. A product of topological groups, and extremal disconnectedness. Matematicheskil Sbornik. Novaya Seriya, 79(121):179–192, 1969.

INSTITUTO DE MATEMÁTICAS, UNAM, APARTADO POSTAL 61-3, XANGARI, 58089, MORELIA, MICHOACÁN, MÉXICO.

E-mail address: michael@matmor.unam.mx

E-mail address: minami@kurt.scitec.kobe-u.ac.jp