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Abstract. We study the Mathias-Prikry and Laver-Prikry forc-
ings associated with filters on ω. We give a combinatorial charac-
terization of Martin’s number for these forcing notions and present
a general scheme for analyzing preservation properties for them. In
particular, we give a combinatorial characterization of those filters
for which the Mathias-Prikry forcing does not add any dominating
reals.

Introduction

In recent years, a variety of consistency results have been given using
the Mathias-Prikry and the Laver-Prikry forcing associated with filters.

Let F be a filter on ω. The Mathias-Prikry forcing associated with
F , denoted by MF consists of pairs 〈s, A〉 such that s ∈ [ω]<ω, A ∈ F
and s ∩ A = ∅. The ordering 〈s, A〉 ≤ 〈t, B〉 if s ⊃ t, A ⊂ B and
s \ t ⊂ B.

We will refer to the union of the first coordinates of conditions in
the generic filter as the generic subset of ω, and denote it by ȧgen.

The Laver-Prikry forcing associated with F , denoted by LF consists
of subtrees T ⊂ ω<ω which have a stem s ∈ T (denoted by stem(T ))
such that for every t ∈ T either t ⊂ s or s ⊂ t and for every t ∈ T
extending s the set

SuccT (t) = {n ∈ ω : t_〈n〉 ∈ T} ∈ F .
The order on LF is given by inclusion.

These forcing notions play a significant role in the use of the matrix
iteration introduced by Blass and Shelah [5] and further developed and
used by Shelah [20], Brendle [10] and Brendle and Fischer [11].

The Laver-Prikry forcing was used to separate variants of the group-
wise density number and the distributivity numbers by Brendle in
[7, 8, 9] and by Brendle and Hrušák to show it is relatively consis-
tent that every countable FUfin space of weight ℵ1 is metrizable [12].

The research of first and second authors was partially supported by PAPIIT
grant IN101608 and CONACYT grant 46337.
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2 MICHAEL HRUŠÁK AND HIROAKI MINAMI

In [19], Raghavan constructs a model of ZFC without strongly separable
almost disjoint families by using a similar technique.

In this paper, we shall study the relation between combinatorial
properties of an ideal I and the forcing properties of the Mathias-Prikry
and the Laver-Prikry type forcings associated with the dual-filter I∗
(denoted by MI∗ and LI∗ respectively) often expressed in terms of the
Katětov order, paying special attention to definable (Borel, analytic)
ideals.

Both forcing notions are clearly c.c.c, in fact, σ-centered. Also LI∗
adds a dominating real (the generic function ḟgen is dominating).

In section 1, we give a combinatorial characterization of the Mar-
tin number of MI∗ and LI∗ and introduce the separating number of
the corresponding ideal. In section 2, we investigate the relationship
between preservation statements for MI∗ and LI∗ and combinatorial
properties of I. Finally, in section 3, we give a characterization of
those ideals I such that MI∗ does not add any dominating reals.

For a set X, we call I ⊂ P(X) an ideal on X if

(1) for A,B ∈ I, A ∪B ∈ I,
(2) for A,B ⊂ X, A ⊂ B and B ∈ I implies A ∈ I and
(3) X 6∈ I.

We assume that all ideals on X contain [X]<ω, all finite subsets of X.
If I is an ideal on X, I∗ is the dual filter, consisting of complements of
the sets in I. I+ denotes the collection of I-positive set, i.e., subsets of
X which are not in I. We say that an ideal I on the set of all natural
numbers ω is tall if for each A ∈ [ω]ω there is a I ∈ I such that I ∩ A
is infinite. If I is an ideal on ω and Y ∈ I+, we denote by I � Y the
ideal {I ∩ Y : I ∈ I} on Y .

The topology of P(ω) is induced by identifying each subset of ω
with its characteristic function, where 2ω is equipped with the product
topology. We call an ideal I on ω a Borel ideal if I is Borel in this
topology.

Given a tall ideal I on ω and a forcing notion P, we say that the
forcing P destroys I if there is a P-name ẋ for en element of [ω]ω such
that

P ∀I ∈ I ∩ V (|I ∩ ẋ| < ℵ0).

We say that a family K ⊂ [ω]ω is countably tall (or ω-hitting) if
given (An : n ∈ ω) ⊂ [ω]ω there is an K ∈ K such that for n ∈ ω,
|K ∩ An| = ℵ0.

The Katětov order on ideals is defined as follows: Suppose I and J
are ideals on countable sets X and Y respectively. Then I ≤K J if
there exists a function f : Y → X such that for each I ∈ I, f−1[I] ∈ J .
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When dealing with ideals on countable sets, we often use the follow-
ing cardinal invariants [15]:

add∗(I) = min{|A| : A ⊂ I ∧ (∀X ∈ I)(∃A ∈ A)(A 6⊂∗ X)}.
cov∗(I) = min{|A| : A ⊂ I ∧ (∀X ∈ [ω]ω)(∃A ∈ A)(|A ∩X| = ℵ0)}.
non∗(I) = min{|X | : X ⊂ [ω]ω ∧ (∀I ∈ I)(∃X ∈ X )(|I ∩X| < ℵ0)}.
cof∗(I) = min{|A| : A ⊂ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊂∗ A)}1.

1. Martin numbers of MI∗ and LI∗

Recall that the Martin number m(P) of a partial order P is the min-
imal size of a family of dense open subsets of P such that no filter on
P intersects with them all.

In this section, we shall give a combinatorial characterization of the
cardinal invariants m(LI∗) and m(MI∗).

Both forcings MI∗ , and LI∗ destroy the ideal I. In fact, they do
more than that. MI∗ and LI∗ separate I and I+, that is, they add
a set agen ⊂ ω which is almost disjoint from every I ∈ I, and have
infinite intersection with every X ∈ I+ ∩ V . It is useful to introduce
the corresponding cardinal invariant, the separating number of an ideal
I.

Let I be an ideal on ω. Let G ⊂ I, H ⊂ I+ and A ⊂ ω. We say A
separates G from H if

(1) |A ∩ I| < ℵ0 for I ∈ G and
(2) |A ∩X| = ℵ0 for X ∈ H.

For an ideal I, the separating number sep(I) is

sep(I) = min{|G|+ |H| : G ⊂ I ∧H ⊂ I+∧
∀A ⊂ ω∃I ∈ G∃X ∈ H (|A ∩ I| = ω or |A ∩X| < ω)}.

It is clear from the definition that add∗(I) ≤ sep(I) ≤ cov∗(I) for
every tall ideal I and that sep(I) = cov∗(I) if I is a maximal ideal.

Proposition 1.1. [15] Let I and J be ideals on ω. Suppose I is
below J in the Rudin-Kiesler order, that is, there exists f : ω → ω
such that for every A ⊂ ω, A ∈ I if and only if f−1[A] ∈ J . Then
sep(I) ≤ sep(J ).

1In [13], Brendle and Shelah introduced cardinal invariants p(F) and πp(F)
associated with an ultrafilter F . For all tall ideals I, add∗(I) = p(I∗), cov∗(I) =
πp(I∗), non∗(I) = πχ(I∗) and cof∗(I) = χ(I∗).
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Brendle and Shelah characterized the Martin number of the Mathias-
Prikry and Laver-Prikry type for ultrafilters in [13].

Theorem 1.2. [13] Let U be an ultrafilter. Then

(1) m(MU) = cov∗(U∗).
(2) m(LU) = min{b, cov∗(U∗)}2.

We will prove analogous results for arbitrary filter/ideal.

1.1. Martin number of LI∗. Recall that an ultrafilter U on ω is
nowhere dense if for every function f : ω → R there is a U ∈ U such
that f [U ] is a nowhere dense subset of R. It is known (see [3]) that the
Laver-Prikry forcing with U adds a Cohen real if and only if U is not
a nowhere dense ultrafilter.

The following was announced in [15].

Theorem 1.3. For every ideal I on ω,

m(LI∗) =

{
min{b, sep(I)} if I∗ is a nowhere dense ultrafilter,
min{add(M), sep(I)} otherwise.

Proof. (i) If I∗ is a nowhere dense ultrafilter, then the required state-
ment holds by Theorem 1.2 (2) as sep(U∗) = cov∗(U∗) for every ultra-
filter U .

Suppose that I∗ is not a nowhere dense ultrafilter. First we shall
show m(LI∗) ≤ min{add(M), sep(I)}.

Since LI∗ adds a dominating real, m(LI∗) ≤ b. Since I∗ is not a
nowhere dense ultrafilter, LI∗ adds a Cohen real (see [3]). So m(LI∗) ≤
cov(M). Since add(M) = min{b, cov(M)}, m(LI∗) ≤ add(M).

To see that m(LI∗) ≤ sep(I), suppose that κ < m(LI∗) and let
J ⊂ I and H ⊂ I+ such that |J |+ |H| ≤ κ. For J ∈ J , put

DJ = {T ∈ LI∗ : ∀t ∈ T (stem(T ) ⊂ t→ SuccT (t) ∩ J = ∅)}.
For H ∈ H and n ∈ ω, define

EH,n = {T ∈ LI∗ : rang(stem(T )) ∩H \ n 6= ∅}.
Then DJ and EH,n are dense for J ∈ J , H ∈ H and n ∈ ω.

Let G ⊂ LI∗ be a {DJ : J ∈ J } ∪ {EH,n : H ∈ H ∧ n ∈ ω}-generic.
Let fG =

⋃{stem(T ) : T ∈ G}. By genericity, rang(fG)∩ J is finite for
J ∈ J and rang(fG) ∩H is infinite for H ∈ H. So rang(fG) separates
J from H. Therefore κ < sep(I).

(ii) min{add(M), sep(I)} ≤ m(LI∗).
0Brendle and Shelah investigated cardinal invariants of ideals `0U and r0

U asso-
ciated with an ultrafilter U . For all ideals I, cov(`0I∗) = m(LI∗) and cov(r0

I∗) =
m(MI∗).
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Suppose κ < add(M), sep(I). Let {Dα : α < κ} be a family of dense
open subsets of LI∗ .

For each α < κ, let {T nα : n ∈ ω} be a maximal antichain of Dα. Let
Inα,t = ω\SuccTnα (t) ∈ I for α < κ, n ∈ ω and t ∈ T nα with t ⊃ stem(T nα ).

Fix α < κ. Define a rank function rkα : ω<ω → Ord by

(1) rkα(t) = 0 if ∃n ∈ ω (t ∈ T nα and t ⊃ stem(T nα )).
(2) rkα(t) ≤ β if Hα

t = {n ∈ ω : rkα(t_〈n〉) < β} ∈ I+.

Claim 1.4. [12, Lemma 4] For all t ∈ ω<ω, rkα(t) is defined.

Since κ < sep(I), there is an A ∈ [ω]ω such that for every α < κ,
n ∈ ω, t ∈ T nα and s ∈ ω<ω,

∣∣A ∩ Inα,t
∣∣ < ℵ0, i.e., A ⊂∗ SuccTnα (t) and

|A ∩Hα
s | = ℵ0.

Let Lfin(A)∗ be the Laver-Prikry forcing on A associated with the
ideal fin(A) of finite subsets of A. Let

D′α = {T ∩ A<ω : T ∈ Dα ∧ T ∩ A<ω ∈ Lfin(A)∗}.
Claim 1.5. {T nα ∩ A<ω : n ∈ ω and T nα ∩ A<ω ∈ Lfin(A)∗} is predense
in Lfin(A)∗. Therefore, D′α is dense in Lfin(A)∗.

Proof of Claim 1.5. Fix α < κ. Let S ∈ Lfin(A)∗ and s = stem(S).
Then rkα(s) <∞. Since {n ∈ ω : s_〈n〉 ∈ T} ∈ fin(A)∗ and Hα

s ∩A
is infinite, Hα

s ∩ {n ∈ ω : t_〈n〉 ∈ T} 6= ∅.
By induction on rank, there exists t ∈ S such that t ⊃ s = stem(S)

and rkα(t) = 0, that is, t ∈ T nα and t ⊃ stem(T nα ) for some n ∈ ω. Fix
such n ∈ ω.

Since t ∈ A<ω, stem(T nα ) ∈ A<ω. For every u ∈ T nα with u ⊃
stem(T nα ), A ⊂∗ {n ∈ ω : u_〈n〉 ∈ T nα }. So T nα ∩ A<ω ∈ Lfin(A)∗ and
T nα ∩A<ω is compatible with S. Hence {T nα ∩A<ω : n ∈ ω∧T nα ∩A<ω ∈
Lfin(A)∗} is predense. �

Let T n′α = T nα ∩ A<ω. For each α < κ and n ∈ ω with T n′α ∈ Lfin(A)∗ ,
define gαn : A<ω → ω by

gαn(s) =

{
min{n : A \ n ⊂ SuccTn′α (s)} if s ∈ T n′α and s ⊃ stem(T n′α ),

0 otherwise.

Notice that when Stem(T nα ) 6∈ A<ω, T n′α 6∈ Lfin(A)∗ and gαn is undefined.
Since κ < add(M) ≤ b, there exists g : A<ω → ω such that for α < κ

and n ∈ ω, for almost all t ∈ A<ω, gαn(t) ≤ g(t). Define S ∈ Lfin(A)∗ so
that

(1) ∅ ∈ S and
(2) if s ∈ S, then s_〈k〉 ∈ S if and only if k > g(s) and k ∈ A.
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For each α < κ, put

D′′α = {t ∈ S : ∃n ∈ ω (t ∈ T n′α , T n′α ∈ Lfin(A)∗ and

∀s ∈ S(s ⊃ t→ g(s) ≥ gnα(s)))}.
Let Mα = {f ∈ [S] : ∀n ∈ ω(f � n 6∈ D′′α)}. Then Mα is nowhere dense
in [S]. Since κ < add(M) ≤ cov(M), there exists f ∈ [S] such that
f 6∈Mα for every α < κ.

Claim 1.6. For every α < κ, there exists T ∈ Dα such that f ∈ [T ].

Proof. For α < κ, let n ∈ ω such that f � n ∈ D′′α. Then there exists
m ∈ ω such that f � n ∈ Tm′α and for s ∈ S whenever s ⊃ f � n,
g(s) ≥ gmα (s). By definition of gmα , Sf�n ⊂ Tm′α . Hence f ∈ [Tm′α ]. So
f ∈ [T ] for some T ∈ Dα. �

By construction of f , f is a {Dα : α < κ}-generic real, i.e., {T : f ∈
[T ]} is a filter intersecting with Dα for all α < κ. �
Corollary 1.7. For every ideal I on ω,

m(LI∗) =

{
min{b, sep(I)} if I∗ is ultrafilter
min{add(M), sep(I)} otherwise.

1.2. Martin number of MI∗. It seems that the rank argument does
not work for the Mathias-Prikry type forcings. However, they can be
investigated by studying the ideal I<ω on [ω]<ω \ {∅} associated to an
ideal I on ω.

Definition 2. Given ideal I on ω, let

I<ω = {A ⊂ [ω]<ω \ {∅} : ∃I ∈ I∀a ∈ A(a ∩ I 6= ∅)}.
This ideal was considered by Sirota [21] and Louveau [18] in the

construction of an extremely disconnected topological group. Recall
that an ultrafilter U on ω is selective if for every partition {In : n ∈ ω}
of ω either there is an n such that In ∈ U or there is a U ∈ U such that
|In ∩ U | ≤ 1 for every n ∈ ω.

Theorem 2.1. For every ideal I on ω,

m(MI∗) =

{
sep(I) if I∗ is a selective ultrafilter.
min{sep(I<ω), cov(M)} otherwise.

If I∗ is a selective ultrafilter, then m(MI∗) = cov∗(I) by Theorem
1.2 (1).

To prove the rest of this theorem, we will first introduce two vari-
ations of sep(I). Define s̃ep(I) by κ < s̃ep(I) if for J ⊂ I and
H ⊂ (I<ω)+ with |J |+ |H| ≤ κ, there exists A ⊂ ω such that
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(1) |A ∩ J | < ℵ0 for J ∈ J and
(2) |[A]<ω ∩H| = ℵ0 for H ∈ H.

Define ˜̃sep(I) by κ < ˜̃sep(I) if for J ⊂ I and H ⊂ (I<ω)+ with
|J |+ |H| ≤ κ, there exists A ⊂ ω such that

(1) |A ∩ J | < ℵ0 for J ∈ J and
(2) |[A \ n]<ω ∩H| = ℵ0 for H ∈ H and n ∈ ω.

Claim 2.2. s̃ep(I) = ˜̃sep(I).

Proof of Claim 2.2. By definition, it is clear that ˜̃sep(I) ≤ s̃ep(I). We

shall show ˜̃sep(I) ≥ s̃ep(I).
Let J ⊂ I and H ⊂ (I<ω)+ with |J | + |H| < s̃ep(I). Let H∗ =
{Hn : H ∈ H, n ∈ ω and Hn = H ∩ [ω \ n]<ω}. Since |J | + |H∗| =
|J |+ |H| < s̃ep(I), we can pick A ⊂ ω so that

(1) |A ∩ J | < ℵ0 for J ∈ J and
(2) |[A]<ω ∩H| = ℵ0 for H ∈ H∗.

Since [A]<ω∩Hn = [A]<ω∩ [ω\n]<ω∩H = [A\n]<ω∩H for H ∈ H and
n ∈ ω, |A ∩ J | < ℵ0 for J ∈ J and |[A \ n]<ω ∩H| = ℵ0 for H ∈ H
and n ∈ ω. Therefore ˜̃sep(I) ≥ s̃ep(I).

�
Lemma 2.3. If I is not a selective ultrafilter, then

m(MI∗) = min{s̃ep(I), cov(M)}.
Proof of Lemma 2.3. We shall show that m(MI∗) = min{ ˜̃sep(I), cov(M)}.
(i) m(MI∗) ≥ min{ ˜̃sep(I), cov(M)}.

Let κ < ˜̃sep(I), cov(M). Let {Dα : α < κ} be a family of open dense
subsets of MI∗ . Let {〈snα, F n

α 〉 : n ∈ ω} be a maximal antichain in Dα.
Let Inα = ω \ F n

α ∈ I for n ∈ ω and α < κ. Let

Hα
s = {t ∈ [ω]<ω : ∃n ∈ ω(snα ⊂ s ∪ t ⊂ snα ∪ F n

α )}.
Claim 2.4. Hα

s ∈ (I<ω)+ for all s ∈ [ω]<ω and α < κ.

Proof of Claim 2.4. Let s ∈ [ω]<ω, α < κ and I ∈ I. Then 〈s, ω \
(I ∪ s)〉 ∈ MI∗ . Since {〈snα, F n

α 〉 : n ∈ ω} is a maximal antichain,
〈s, ω\(I∪s)〉 is compatible with some 〈snα, F n

α 〉. So there are n ∈ ω, t ∈
[ω\(I∪s)]<ω and F ∈ I∗ such that 〈s∪ t, F 〉 ≤ 〈snα, F n

α 〉, 〈s, ω\(I∪s)〉.
Since 〈s ∪ t, F 〉 ≤ 〈snα, F n

α 〉, snα ⊂ s ∪ t ⊂ snα ∪ F n
α . Since 〈s ∪ t, F 〉 ≤

〈s, ω \ (I ∪ S)〉, t ∩ I = ∅. Hence for each I ∈ I, there exists t ∈ Hα
s

such that t ∩ I = ∅. Therefore Hα
s ∈ (I<ω)+. �

As κ < ˜̃sep(I), there is an A ⊂ ω such that
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(1) |A ∩ Inα | < ℵ0 for every n ∈ ω and α < κ and
(2) |[A \ n]<ω ∩Hα

s | = ℵ0 for every n ∈ ω, s ∈ [ω]<ω and α < κ.

Let Aα = {〈snα, F n
α ∩A〉 : snα ⊂ A and n ∈ ω} ⊂Mfin(A)∗ , where Mfin(A)∗

is the Mathias-Prikry forcing associated with the ideal fin(A) of finite
subsets of A and Mfin(A)∗ consists of pairs 〈s,B〉 such that s ∈ [A]<ω,
B ∈ fin(A)∗ and s ∩B = ∅.
Claim 2.5. Aα is predense in Mfin(A)∗.

Proof of Claim 2.5. Let 〈s,B〉 ∈ Mfin(A)∗ . Let n ≥ max(s) such that
B \ n = A \ n. Since |[A \ n]<ω ∩Hα

s | = ℵ0, pick t ∈ [A \ n]<ω ∩Hα
s .

Then there is an n ∈ ω such that snα ⊂ s ∪ t ⊂ snα ∪ (F n
α ∩ A). So

〈s∪t, (F n
α \s∪t)∩A〉 ≤ 〈snα, F n

α ∩A〉 and 〈s∪t, (F n
α \s∪t)∩A〉 ∈Mfin(A)∗ .

Since t ∈ [A \ n]<ω = [B \ n]<ω, 〈s ∪ t, B \ (s ∪ t)〉 ≤ 〈s,B〉. So 〈s,B〉
is compatible with 〈snα, F n

α ∩ A〉 for some n ∈ ω. �
Let D′α = {〈s, F ∩ A〉 : s ⊂ A,F ∩ A ∈ fin(A)∗ and 〈s, F 〉 ∈ Dα}.

Then D′α is dense open subset of Mfin(A)∗ . Since
∣∣Mfin(A)∗

∣∣ = ℵ0,
Mfin(A)∗

∼= C. Since κ < cov(M), there exists Agen such that for every
α < κ there is 〈s, F ∩A〉 ∈ D′α so that s ⊂ Agen ⊂ s∪ (F ∩A). Hence,
for every α < κ there exists 〈s, F 〉 ∈ Dα such that s ⊂ Agen ⊂ s ∪ F .

(ii) m(MI∗) ≤ min{s̃ep(I), cov(M)}.
Suppose κ < m(MI∗). Let J ⊂ I and H ⊂ (I<ω)+ with |J | +

|H| ≤ κ. Let DJ = {〈s, F 〉 ∈ MI∗ : F ∩ J = ∅} for J ∈ J , and let
En
H = {〈s, F 〉 ∈ MI∗ : |[s]<ω ∩H| ≥ n} for H ∈ H and n ∈ ω. Since
J ⊂ I and H ⊂ (I<ω)+, DJ and En

H are dense subsets of MI∗ for
J ∈ J , H ∈ H and n ∈ ω. Let A ⊂ ω be a {DJ : J ∈ J } ∪ {En

H :
H ∈ H ∧ n ∈ ω}-generic real. Then |A ∩ J | < ℵ0 for J ∈ J and
|A ∩H| = ℵ0 for H ∈ H. So κ < s̃ep(I).

Since I∗ is not selective ultrafilter, MI∗ adds a Cohen real (see [3]).
Therefore κ < cov(M). �
Lemma 2.6.

min{s̃ep(I), cov(M)} = min{sep(I<ω), cov(M)}.
Proof. To prove min{s̃ep(I), cov(M)} ≥ min{sep(I<ω), cov(M)}, we
shall show that s̃ep(I) ≥ sep(I<ω).

Claim 2.7. sep(I<ω) ≤ s̃ep(I) ≤ sep(I).

Proof of Claim 2.7. Suppose κ < sep(I<ω). Let J ⊂ I and H ⊂
(I<ω)+ with |J |+|H| ≤ κ. For J ∈ J , put Ĵ = {a ∈ [ω]<ω : a∩J 6= ∅}.
Then Ĵ ∈ I<ω.

Let A ⊂ [ω]<ω be such that
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(1)
∣∣∣A ∩ Ĵ

∣∣∣ < ℵ0 for J ∈ J and

(2) |A ∩H| = ℵ0 for H ∈ H.

Then |⋃A ∩ J | < ℵ0, and since A ⊂ [
⋃
A]<ω,

⋃
A satisfies

(1) |⋃A ∩ J | < ℵ0 for J ∈ J and
(2) |[⋃A]<ω ∩H| = ℵ0 for H ∈ H.

Hence κ < s̃ep(I). Therefore sep(I<ω) ≤ s̃ep(I).
s̃ep(I) ≤ sep(I) follows from the fact when H ∈ I+, H∗ = {{n} :

n ∈ H} ∈ (I<ω)+. �

To finish the proof of the theorem, we shall show min{s̃ep(I), cov(M)} ≤
min{sep(I<ω), cov(M)}.

Suppose κ < s̃ep(I), cov(M). Let J ⊂ I<ω and H ⊂ (I<ω)+ with
|J |+ |H| ≤ κ. For J ∈ J , fix IJ ∈ I so that a ∩ IJ 6= ∅ for a ∈ J .

Let A ⊂ ω be such that

(1) |A ∩ IJ | < ℵ0 for all J ∈ J .
(2) |[A \ n]<ω ∩H| = ℵ0 for every H ∈ H and n ∈ ω.

We will construct B ⊂ [A]<ω so that

(1) |B ∩ J | < ℵ0 for J ∈ J .
(2) |B ∩H| = ℵ0 for H ∈ H.

In order to do so, define a forcing notion P by 〈F, n〉 ∈ P if F ∈
[[A]<ω]<ω and n ∈ ω ordered by 〈F, n〉 ≤ 〈G,m〉 if F ⊃ G, n ≥ m and
min(a) ≥ m for a ∈ F \ G. Since |P| = ℵ0, C ∼= P. Let DH,n and
EJ ⊂ P for H ∈ H, n ∈ ω and J ∈ J be defined by

DH,n = {〈F,m〉 : ∃a ∈ F (min(a) > n and a ∈ H)}.
EJ = {〈F,m〉 : m > max(A ∩ IJ)}.

Then DH,n is dense for H ∈ H and n ∈ ω, and EJ is dense for J ∈ J .
Since κ < cov(M), there is a {DH,n : H ∈ H and n ∈ ω} ∪ {EJ :

J ∈ J }-generic G. Let AG = ∪{F : 〈F, n〉 ∈ G}. Then

(1) |AG ∩ J | < ℵ0 for J ∈ J and
(2) |AG ∩H| = ℵ0 for H ∈ H.

So κ < sep(I<ω). Therefore

min{s̃ep(I), cov(M)} ≤ min{sep(I<ω), cov(M)}.
�

Corollary 2.8. For every ideal I on ω,

m(MI∗) =

{
sep(I) if I∗ is an ultrafilter.
min{sep(I<ω), cov(M)} if I is not an ultrafilter.



10 MICHAEL HRUŠÁK AND HIROAKI MINAMI

3. Preservation properties of MI∗

The methods for studying properties of the forcing LI∗ are well
known (see [2, 7, 12]). Here we concentrate on the preservation prop-
erties of the forcings MI∗ . In [12] it is shown that a useful characteri-
zation for when LI∗ preserves ω-hitting families. An analogous result
also holds for MI∗ .1

Theorem 3.1. Let I be an ideal on ω. The following are equivalent:

(1) ∀X ∈ (I<ω)+ ∀J ≤K I<ω � X (J is not ω-hitting,)
(2) MI∗ strongly preserves ω-hitting families, and
(3) MI∗ preserves ω-hitting families.

Proof. From (1) to (2).
Suppose (2) doesn’t hold. Let Ȧ beMI∗-names witnessing the negation
of (2), i.e., for every (Bn : n ∈ ω) there exists B ∈ [ω]ω such that
|Bn ∩B| = ℵ0 for every n ∈ ω and there exist pB = 〈sB, FB〉 ∈ MI∗
and mB ∈ ω such that pB  B ∩ Ȧ ⊂ mB.

Let B be the family of all such B. By the assumption that B is
ω-hitting, there are s ∈ [ω]<ω and m ∈ ω such that B0 = {B ∈ B :
sB = s and mB = m} is ω-hitting (If an ω-hitting family is split into
countably pieces, one of them is ω-hitting). Fix such s ∈ [ω]<ω and
m ∈ ω and let

Xs = {t ∈ [ω]<ω : ∃k > m∃F ∈ I∗
(
〈s ∪ t, F 〉  k ∈ Ȧ

)
}.

Claim 3.2. Xs ∈ (I<ω)+.

Proof of Claim 3.2. Given I ∈ I, there are t ∈ [ω \ I]<ω, k > m and
F ∈ I such that 〈s ∪ t, F 〉 ≤ 〈s, ω \ I〉 and 〈s ∪ t, F 〉  k ∈ Ȧ. Then
t ∈ Xs and t ∩ I = ∅. �

Define f : Xs → ω by

f(t) =





max{k > m : ∃F ∈ I∗(〈s ∪ t, F 〉  k ∈ Ȧ)}
if there are finitely many such k,

min{k > max(t ∪ {m}) : ∃F ∈ I∗(〈s ∪ t, F 〉  k ∈ Ȧ)}
otherwise.

Claim 3.3. For every k ∈ ω, f−1[ω \ k] ∈ (I<ω)+.

1A forcing P strongly preserves ω-hitting families if given a P-name Ȧ for an
infinite subset of ω there is a countable family H of infinite subsets of ω such
that whenever B ⊆ ω has an infinite intersection with every element of H then
P “|Ȧ ∩B| = ω”.
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So we can assume that for all but finitely many k > m, f−1({k}) ∈
I<ω or there exist infinitely many k ∈ ω such that f−1({k}) ∈ (I<ω)+.

Claim 3.4. For all but finitely many k > m, f−1({k}) ∈ I<ω.

Proof. Assume to the contrary that there are infinitely many k > m
such that f−1({k}) ∈ (I<ω)+. Let C = {k > m : f−1({k}) ∈ (I<ω)+}.
Since B0 is ω-hitting, there exists B ∈ B0 such that B ∩ C is infinite.
Let k > m such that k ∈ C ∩ B and f−1({k}) ∈ (I<ω)+. Then
|[FB]<ω ∩ f−1({k})| = ℵ0. Let t ∈ [FB]<ω ∩ f−1({k}). Then there
exists F ∈ I∗ such that 〈s ∪ t, F 〉  k ∈ Ȧ ∩ B. Since t ∈ [FB]<ω,
〈s, FB〉 is compatible with 〈s ∪ t, F 〉. However 〈s, FB〉  Ȧ ∩ B ⊂ m,
which is a contradiction. �
Claim 3.5. f witnesses that 〈B0〉 ≤K I<ω � X.

Proof. Assume to the contrary that there is a B ∈ B0 such that
f−1[B] ∈ (I<ω)+. Since FB ∈ I∗ and |[FB]<ω ∩ f−1[B]| = ℵ0, there
is a t ∈ [FB]<ω ∩ f−1[B] such that for some F ∈ I∗ and k > m
〈s ∪ t, F 〉  k ∈ Ȧ ∩B.

Since t ∈ [FB]<ω, s ⊂ s ∪ t ⊂ s ∪ FB. So 〈s, FB〉 is compatible with
〈s∪ t, F 〉. However, 〈s, FB〉  Ȧ∩B ⊂ m, which is a contradiction. �

Since 〈B0〉 is ω-hitting, (1) doesn’t hold.

Obviously (2) implies (3).

We shall prove (3) implies (1). Assume to the contrary that there
exists an ideal J on ω such that there exist X ∈ (I<ω)+ and f : X → ω
so that

(1) For every J ∈ J , f−1[J ] ∈ I<ω and
(2) J is ω-hitting.

Let ȧgen be the canonical name for the MI∗-generic subset of ω. We

shall show that  J is not ω-hitting. Let Ẋn be a MI∗-name such that

 Ẋn = f [[ȧgen \ n]<ω] .

Claim 3.6.  Ẋn is infinite.

Proof of the Claim. If  Ẋn were finite, then

 [ȧgen \ n]<ω ∩X ⊂ f−1[Ẋn] ∈ I<ω.
However,  ∀I ∈ I(|ȧgen ∩ I| < ℵ0) and  |[ȧgen \ n]<ω ∩X| = ℵ0 by
genericity. So  ∀I ∈ I∀n ∈ ω∃a ∈ [ȧgen \ n]<ω(a ∩ I = ∅), which is a
contradiction. �
Claim 3.7.  ∀J ∈ J∃n ∈ ω(J ∩ Ẋn = ∅).
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Proof. For every J ∈ J and 〈s, F 〉 ∈ MI∗ , pick I ∈ I such that
a ∩ I 6= ∅ for a ∈ f−[J ], G = F ∩ (ω \ I) and n = max(s). Then
〈s,G〉  [ȧgen \ n]<ω ∩ f−1[J ] = ∅. So 〈s,G〉  Ẋn ∩ J = ∅. �

So J is not ω-hitting in the extension, contradiction. �
Now, we turn our attention to the question of when does the forcing

MI∗ add a dominating real. This line of investigation was started by
M. Canjar in [14], where he assuming d = c constructed an ultrafilter U
such that MU doesn’t add any dominating reals. He also noticed that
such an ultrafilter has to be a P-point without rapid Rudin-Keisler pre-
decessors (see e.g. [1] for definitions and more information) and asked
whether the converse is also true. Here we give a simple combinatorial
characterizations of ideals I such thatMI∗ doesn’t add any dominating
reals.

We call an ideal J a P+-ideal if for every decreasing sequence {Xn :
n ∈ ω} of J positive sets, there is an X ∈ J + such that X ⊂∗ Xn for
all n ∈ ω.

Theorem 3.8. The following are equivalent.

(1) MI∗ adds a dominating real.
(2) I<ω is not a P+-ideal.

Proof. (1) implies (2).
Let ġ be a MI∗-name for a dominating real, i.e., ∀f ∈ ωω∩V ( f <∗

ġ). In particular, for every f ∈ ωω ∩ V , there are sf ∈ [ω]<ω, Ff ∈ I∗
and nf ∈ ω such that

〈sf , Ff〉  ∀n ≥ nf (f(n) < ġ(n)).

If one partitions a dominating family into countably many pieces,
one of the pieces is also dominating. So there are s ∈ [ω]<ω and n ∈ ω
such that

F = {f ∈ ωω : sf = s ∧ nf = n}
is a dominating family. Fix such s ∈ [ω]<ω and n ∈ ω and let

Xs = {t ∈ [ω \max(s)]<ω : ∃F ∈ I∗∃m ≥ n (〈s ∪ t, F 〉 decides ġ(m))}.
Claim 3.9. Xs ∈ (I<ω)+.

For each t ∈ Xs, let zt = {m ≥ n : ∃F ∈ I∗(〈s∪t, F 〉 decides ġ(m))}.
Put kt, lt ∈ ω so that

kt =

{
max(zt) if |zt| < ω
min(zt \max(t)) otherwise.

and there is an F ∈ I∗ such that 〈s ∪ t, F 〉  ġ(kt) = lt.
Then define H : Xs → ω × ω by H(t) = 〈kt, lt〉.
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Claim 3.10. For every m ∈ ω, H−1[(ω \m)× ω] ∈ (I<ω)+.

Let K = {kt : t ∈ Xs}. Then K is infinite and let {ki : i ∈ ω} be its
increasing enumeration. Put Ki = {l ∈ ω : 〈ki, l〉 ∈ H[Xs]}.
Claim 3.11. There are infinitely many i ∈ ω such that Ki is infinite.

Proof of Claim 3.11. Assume to the contrary that for all but finitely
many i ∈ ω, Ki is finite. Then define g : ω → ω by

g(m) =

{
max(Ki) if m = ki and |Ki| < ℵ0 for some i ∈ ω,

0 otherwise.

Since F is a dominating family, there is an f ∈ F such that g ≤∗ f .
Let m0 ≥ n be such that g(m) ≤ f(m) for m ≥ m0 and ki ≥ m0

implies |Ki| < ℵ0.
By Claim 3.10, H−1[(ω \m) × ω] ∩ [F ]<ω ∈ (I<ω)+ for F ∈ I∗ and

m ∈ ω.
Let t ∈ [Ff ]<ω∩H−1[(ω\m0)×ω]. Then there is an F ∈ I∗ such that

〈s ∪ t, F 〉  ġ(kt) = lt ≤ g(kt) ≤ f(kt). However, 〈s, Ff〉 is compatible
with 〈s∪t, F 〉 and 〈s, Ff〉  f(kt) < ġ(kt), which is a contradiction. �

Without loss of generality, we can assume that for every i ∈ ω, Ki is
infinite.

Let Ym = H−1[
⋃
i>mKi] for m ∈ ω. Then Ym+1 ⊂ Ym. As Claim

3.10, we can prove the following.

Claim 3.12. Ym ∈ (I<ω)+ for m ∈ ω.

Proof of Claim 3.12. Let I ∈ I and m ∈ ω. We shall show that there
exists t ∈ Ym such that t∩I = ∅. Let t ∈ [ω\I]<ω such that 〈s∪t, F 〉 ≤
〈s, ω \ I〉 decides ġ(k) for some k > m and max(t) > m. By definition
of kt, kt ≥ k > m. Then H(t) ∈ ⋃i>mKi. So t ∈ Ym and t ∩ I = ∅.

�
Let Y ⊂∗ Ym for m ≥ n. We shall show that Y ∈ I<ω.
Assume to the contrary that Y ∈ (I<ω)+.
Since Y ⊂∗ Ym, Km ∩ H[Y ] is finite for every m ∈ ω. Define a

function h from ω to ω by

h(m) =





max{lt : ∃t ∈ Y ∩ Ym} if Y ∩ Ym 6= ∅,

0 otherwise.

Then there are infinitely many m such that h(m) > 0.
Since F is a dominating family, there is an f ∈ F such that h ≤∗ f .

Let m0 ≥ n be such that h(m) ≤ f(m) for m ≥ m0. Since Y ⊂∗ Ym,
Ff ∈ I∗ and Y ∈ (I<ω)+, there is an m ≥ m0 such that Y ∩ Ym ∩
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[Ff ]<ω 6= ∅. Let t ∈ Y ∩ Ym ∩ [Ff ]
<ω. Since t ∈ Y there is an F ∈ I∗

such that 〈s ∪ t, F 〉  ġ(m) ≤ h(m). However, 〈s, Ff〉  “∀m ≥
n(f(m) < ġ(m))” and 〈s ∪ t, F 〉 is compatible with 〈s, Ff〉, which is a
contradiction. Therefore Y ∈ I<ω. So I<ω is not P+-ideal.

(2) implies (1).
Let 〈Xn : n ∈ ω〉 be a decreasing sequence of I<ω-positive sets with-

out a pseudointersection in (I<ω)+. Let 〈ak : k ∈ ω〉 be an enumeration
of [ω]<ω \ {∅} and let ȧgen be the canonical name for the MI∗-generic
real. Define a MI∗-name ġ for a function from ω to ω by

 ġ(n) = min{k : ak ⊂ [ȧgen]<ω ∩Xn∧
max(

⋃
{am : l < n ∧m = ġ(l)}) < min(ak)}.

We shall show that ġ is a dominating real. Let f ∈ ωω∩V and 〈s, F 〉 ∈
MI∗ . Let If = {ak ∈ [ω]<ω \ {∅} : ∃n ∈ ω(ak ∈ Xn ∧ k ≤ f(n))}. Then
If ⊂∗ Xn for every n ∈ ω. Therefore If ∈ I<ω by definition of Xn.
Let I ∈ I such that ∀a ∈ If (a ∩ I 6= ∅). Then F \ I ∈ I∗ and
[F \ I]<ω ∩ If = ∅.
Claim 3.13. Let 〈tn : n < α〉 be a sequence of finite subsets of ω such
that

(1) tn ∈ [s ∪ (F \ I)]<ω ∩Xn

(2) max(tn) < min(tn+1)
(3) ∃k ∈ ω(tn = ak ∧ k ≤ f(n))

Then α ≤ |s|.
Proof of Claim. If t ∈ [F \ I]<ω, then t = ak and t ∈ Xn implies
k > f(n) by [F \ I]<ω ∩ If = ∅. So by (2), α ≤ |s|. �

Put |s|=m. Then 〈s, F \ I〉 ≤ 〈s, F 〉 and

〈s, F \ I〉  ∀n > m(f(n) < ġ(n)).

�

Recently, using our characterizations, M. Hrušák and J. Verner showed
that if I is an Fσ P-ideal, then P(ω)/I adds an ultrafilter U which is
a P -point without rapid RK-predecessors, but U∗ is not a P+-ideal
[17]. Thus this answers Canjar’s question in the negative. Moreover,
A. Blass, M. Hrušák and J. Verner [4] (also using our theorem) showed
that MU doesn’t add any dominating reals if and only if U is strong
P -point.
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4. Concluding remarks and open problems.

It is still interesting to try to better understand ideals I for which
MI∗ doesn’t add any dominating reals. An interesting class of ideals
in this respect are those generated by maximal almost disjoint (mad)
families.

Theorem 4.1. [6] Assume b = c. Then there exists a mad family A
such that MI(A) adds a dominating real.

Question 4.2. [6] Is it consistent that there is no mad family A such
that MI(A) adds a dominating real?

As far as definable ideals are concern, J. Brendle has in [6] that an
MI∗ doesn’t add any dominating reals for any Fσ-ideal I. This follows
directly from our characterization. However, it is not clear whether
this characterizes Fσ-ideals among Borel ones:

Question 4.3. Is there a Borel ideal I which is not Fσ, yet MI∗ doesn’t
add any dominating reals?

However, we have the following useful approximation:

Theorem 4.4. Suppose I is a Borel ideal. Then the following are
equivalent.

(1) I can be extended to an ideal J such that MJ ∗ doesn’t add any
dominating reals.

(2) I can be extended to a P+-ideal.
(3) I can be extended to an Fσ-ideal.

Proof. (3) implies (1).
This is proved in Brendle’s paper [6], but it also follows from our

theorem using the following two simple observations:

(i) If I is Fσ then I<ω is Fσ, and
(ii) every Fσ-ideal is P+.

(1) implies (2).
Suppose (2) doesn’t hold. Then every J extending I is not P+.

Claim 4.5. If J <ω is P+, then J is P+.

Proof of Claim. Let {Yn : n ∈ ω} be a decreasing sequence of J +.
Put Y ∗n = {{k} : k ∈ Yn} for n < ω. Then Y ∗n ∈ (J <ω)+. By
assumption, there exists Y ∗ ∈ (J <ω)+ such that Y ∗ ⊂∗ Y ∗n for n < ω.
Put Y =

⋃
Y ∗. Then Y ∈ J + and Y ⊂∗ Yn for n < ω. So J is

P+. �
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By this claim, J <ω is not P+. So MJ ∗ adds a dominating real by
our theorem.

(2) implies (3).
This follows from a theorem of D. Meza and M. Hrušák (see [16]).

�

This, in particular, shows that the ideal Z of sets Banach density
zero can not be extended to an ideal I such that MI∗ doesn’t add any
dominating reals, as it can not be extended to an Fσ-ideal.

Corollary 4.6. Let Z be the density zero ideal. If Z∗ ⊂ F , then MF
adds a dominating real.

Proof. Recall that Z = {A ⊂ ω : lim
n→∞

|A ∩ n|
n

= 0}. Suppose Z ⊂ I.

Let Xj
n = {k · n! + j : k ∈ ω} for n ≥ 1 and k < n!. Then {X i

n+1 : i <
(n+ 1)! and X i

n+1 ⊂ Xj
n} is a partition of Xj

n into finitely many pieces.
So if Xj

n ∈ I+, then there exists X i
n+1 ∈ I+ such that X i

n+1 ⊂ Xj
n for

some i < (n + 1)!. By induction on n, we can construct a decreasing
sequence {Xjn

n : n ∈ ω} of I-positive sets. Since X ⊂∗ Xjn
n implies

lim
k→∞

|X ∩ k|
k

≤ lim
k→∞

|Xjn
n ∩ k|
k

≤ 1

n!
,

every pseudointersection of {Xjn
n : n ∈ ω} is in Z ⊂ I. Hence Z cannot

be extended to a P+-ideal. So Z cannot be extended to an ideal J
such that MJ ∗ adds a dominating real.

�
Question 4.7. Is there forcing notion P which destroys Z and doesn’t
add a dominating real?
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