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Abstract Regular structures of equal spheres on the triply

periodic minimal surfaces known as primitive (P), gyroid

(G) and diamond (D) surfaces are enumerated as obtained

through Monte Carlo simulations of hard spheres under-

going the Alder transition. Remarkably, there exist magic

numbers producing the regular structures, which are simply

explained by means of hexagulation numbers defined as

H ¼ h2 þ k2 � hk, in analogy with the Caspar and Klug’s

triangulation numbers, T ¼ h2 þ k2 þ hk for icosahedral

viruses, where h and k are equal to nonnegative integers.

Understanding the significance of symmetry of the sur-

faces, the total number of spheres per cubic unit cell N is

represented by N ¼ 8H, 16H, and 32H for P-, G- and

D-surfaces, respectively. Accordingly, these arrangements

are analyzed in terms of space groups, equivalent positions

(Wyckoff positions), and polygonal-tiling representations.

The key is that there is only a limited number of efficient

physical design possible even on the triply periodic mini-

mal surfaces.

Keywords Triply periodic minimal surfaces � Gyroid

surface � Triangulation number � Hard spheres � Alder

transition � Monte Carlo simulation

Introduction

On a flat surface, the hexagonal arrangement is a ubiqui-

tous regular arrangement of spherical particles, arising

from dense packing, space division, entropic ordering, or

interactions between particles [1]. What is the regular

arrangement of particles when the surface is curved? On a

spherical surface, this question was firstly raised by

Thomson [2], followed by Fejes Tóth [3] and Mackay et al.

[4]. For regular arrangements in particular, Goldberg [5]

elucidated regular polyhedra consisting of pentagonal and

hexagonal faces whose centers correspond to the positions

of particles, and later for biological icosahedral viruses,

Caspar and Klug proposed a construction principle of

regular arrangements inspired by Buckminster Fuller’s

geodesic dome [6–8].

In contrast, regular arrangements on a saddle-shaped

surface with negative Gaussian curvature have yet to be

fully elucidated [9–14]. Mackay and Terrones [15] pro-

posed a periodic tiling on the primitive surface inspired by

fullerenes, and several tilings have been investigated from

mathematical viewpoints [16, 17], and furthermore, a large

number of 3D networks have been enumerated [18, 19];

however, physical interactions have not been taken into

consideration. In this paper, we explore crystalline phases

on triply periodic minimal surfaces (TPMSs) using Monte

Carlo (MC) simulations of hard spheres. The TPMSs we

consider here are the most famous three, namely the Sch-

warz primitive (P) and diamond (D) surfaces, and the

Schoen gyroid (G) surface, which are abundant in various

soft materials such as biological lipids, butterfly wings,

surfactants, mesoporous materials, and block copolymers

[20–29].

It is well known that spherical virus capsids employ

efficient designs using the icosahedral symmetry, leading
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to the regularity of the numbers of subunits on the

spherical surface, which was explained by Caspar and

Klug using the concept of the triangulation number

T [6, 7]. Surprisingly, we have found only discrete

numbers undergoing clear fluid–solid transitions in our

MC simulations for the TPMSs. For cubic symmetry in

particular, we unravel these magic numbers in terms of a

similar number, the hexagulation number H, which is the

main result of the present paper. Future applications of

such regular arrangements are to construct complex

membranes using the concepts of bijels, colloidosomes,

and polymersomes [30–33].

The paper is organized as follows: Section ‘‘Monte

Carlo simulations’’ briefly explains the Monte Carlo

method and presents results of simulations. We list the

magic numbers and their space group symmetries and

polygonal tilings. All coordinates of regular arrangements

are provided in terms of Wyckoff positions of the space

groups. In ‘‘Hexagulation Number,’’ we first review the

triangulation number and then define the hexagulation

number to explain the magic numbers on TPMSs. Here, we

will focus regular arrangements with original space groups

of TPMSs or their cubic subgroups exhibiting a strong

similarity with the icosahedral viruses. Finally, discussion

is given in the last section.

Monte Carlo simulations

It is widely known that even a purely hard-sphere system

undergoes a fluid–solid transition, called the Alder transi-

tion, producing the hexagonal arrangement [34], whose

entropy-driven ordering mechanism turns out to be uni-

versal in soft materials [35]. Above a certain critical den-

sity, the solid phase in the hexagonal arrangement gains

more entropy than the fluid phase. Do regular arrangements

emerge in the solid phase on the TPMSs?

Motivated by this possibility, we began an investigation

on the G-surface and indeed found the Alder transition, but

only for specific numbers of spheres [14]. To provide

further insight into the regular arrangement and establish a

unified framework, we have extended our MC simulations

to the P- and D-surfaces in this study.

The well-known approximate forms [36, 37] of the

surfaces are described as

P : sðqÞ ¼ cos xþ cos yþ cos z ¼ 0;

G : sðqÞ ¼ sin x cos yþ sin y cos zþ sin z cos x ¼ 0;

D : sðqÞ ¼ sin x sin y sin zþ sin x cos y cos z

þ cos x sin y cos zþ cos x cos y sin z ¼ 0;

where q ¼ ðx; y; zÞ and the lattice constant is taken to be

unity; 2p is omitted in the expressions.

In practice, the centers of spheres are confined between

boundaries sðqÞ ¼ �0:1 (green) and sðqÞ ¼ 0:1 (red) as

shown in Fig. 1a–c. We assign Na to the number of spheres

per cubic unit cell of the surfaces. a stands for P, G, and D.

We begin with a random state having a sufficiently small

radius of spheres on the TPMSs, perform a MC run without

any symmetry input, then increase the radius r with a small

increment, and repeat the process. Details of the method of

the simulations were given in Ref. [14].

The order parameter h(r) as a function of sphere radius r

is defined as

hðrÞ ¼ 1

M

XM

i¼1

fhklðqiÞ
* +

;

where the sum is taken over positions of all sphere centers

qi, and h� � �i implies the MC average. The function fhklðqÞ
is an invariant function under the operations of the space

groups, ex. Im�3m for the P-surface [38]:

fhklðqÞ ¼
X

q2C3

cosðhxÞ cosðkyÞ cosðlzÞ; ð1Þ

where (h, k, l) is a set of integers and C3 is a group of all

cyclic permutations of (x, y, z). Suitable choices of (h, k, l)

for each Na give large absolute values of h(r) in the ordered

phase.

Figure 1d shows a snapshot of an ordered structure for a

NP ¼ 72 system on the P-surface, in which alignments are

observed in x, y, and z directions despite undulations. To

find clear phase behavior, we have employed simulation

boxes consisting of multiple cells, here for instance, 3 �
3 � 2 cells with periodic boundary conditions; accordingly,

the number of spheres is 1296 for NP ¼ 72. The existence

of the fluid–solid transition is judged firstly by whether

there exists a discontinuous jump or not in the acceptance

ratio (AR) curve representing the movable probability of

MC trial moves of spheres. If not, the simulation ends up

with a frozen random state with a continuous single curve.

For NP ¼ 72, Fig. 1e exhibits discontinuous jumps and

accordingly a hysteresis loop, indicating clear evidence of

the first-order transition. Similarly, in Fig. 1f, the order

parameter h(r) is plotted, where f045ðqÞ is chosen in Eq. (1).

The transition points are exactly the same as those in

Fig. 1e, implying that the ordered phase near the transition

region has more movable spaces for spheres than in the

disordered phase, and the ordered phase is, therefore, a

high entropy phase. We have examined several system

sizes to check the results.

Our observation indicates that the number of spheres in

a unit cell having a definite fluid–solid transition shows

discrete integers. For the P-surface, we find magic numbers

NP ¼ 20, 32, 56, 72, and 96; for the G-surface, we find

NG ¼ 40, 48, 64, 112, and 144; and for the D-surface,
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ND ¼ 96, 128, and 224 are obtained. They can be best

classified according to the hexagulation numbers H, which

will be discussed in the next section.

Table 1 summarizes regular structures obtained from

MC simulations, where we focus our attention on struc-

tures with cubic symmetry, since the TPMSs have

inherent cubic space group symmetries, Im�3m, Ia�3d, and

Pn�3m for P-, G- and D-surfaces, respectively. Several

symmetry operations of the original space groups are

broken in some cases, and the ordered arrangements are

accordingly assigned to subgroups. For the NP ¼ 72 sys-

tem, for instance, the arrangement is assigned to the space

group Pm�3n � Im�3m. We should mention that the H ¼ 4

class denotes hypothetical structures, while the H ¼ 4

class is obtained from simulations. They are very similar

and the difference of the positions on the surfaces is very

small, but the H ¼ 4 class is more symmetric than that of

H ¼ 4. Because the distances between spheres are more

equivalent in H ¼ 4, and consequently in simulations, the

symmetry of H ¼ 4 is broken into the entropically more

favorable H ¼ 4.

For eager readers, in Table 2 we explicitly provide the

values of coordinates of spheres obtained by our MC

simulations. One can consult Wyckoff positions in Inter-

national Tables for Crystallography and evaluate all coor-

dinates. Note that the Wyckoff position 96h of F43c for

ND ¼ 96 in the International Tables is not convenient

because of the different choices of the origin for symmetry

operation. A part of 192h of Fd3c is more useful to

reproduce our data, which are presented in Table 3.

Polygonal tilings are constructed from the center posi-

tions of spheres, represented in Fig. 2a–i. Since the magic

numbers are larger for the G- and D-surfaces, we render

five results for the P-surface and two for the G- and D-

surfaces. The set of integers (n1; n2; n3; . . .; n4; n5; n6; . . .;)

denotes a tiling of multiple vertex types in the way that n1-

gon, n2-gon, and n3-gon, � � � meet consecutively on each

vertex, and superscripts are employed to abbreviate when

Fig. 1 Triply periodic minimal

surfaces: a P-surface; b G-

surface; c D-surface. d Snapshot

of self-organized spheres with

radii r ¼ 0:089 on the P-surface

for a NP ¼ 72 system, where NP

is the number of spheres in a

unit cell. Plots of e the

acceptance ratio (AR) and f an

order parameter h(r) for the

NP ¼ 72 system as functions of

sphere radius: Solid line, up;

dashed line, down (Color

figure online)

Struct Chem

123



Table 1 Regular tessellations

of hard spheres on the P-, G-,

and D-surfaces, classified by the

hexagulation number H, the

total number of spheres in a unit

cell Na

H-number Surface (Na) Space group Wyckoff p. Tiling

H� ¼ 3 P (20) Im�3m (No. 229) 8c; 12d ð36; 38Þ
G (40) Ia3d (No. 230) 16a; 24d ð36; 38Þ

H ¼ 3 G (48) I43d (No. 220) 48e ð33:4:3:4Þ
D (96) F43c (No. 219) 96h ð33:4:3:4Þ

H ¼ 4 P (32) Pn3 (No. 201) 4b; 4c; 24h ð36; 37Þ
G (64) Ia3 (No. 206) 8a; 8b; 48e ð36; 37Þ
D (128) Fd3 (No. 203) 16c; 16d; 96g ð36; 37Þ

H ¼ 4 P (32) Im�3m (No. 229) 8c; 24h ð36; 32:4:32:4Þ
G (64) Ia3d (No. 230) 16a; 48g ð36; 32:4:32:4Þ
D (128) Fd3c (No. 228) 32c; 96g ð36; 32:4:32:4Þ

H ¼ 7 P (56) Pn�3n (No. 222) 8c; 48i ð36; 35:4Þ
G (112) Ia3d (No. 230) 16a; 96h ð36; 35:4Þ
D (224) Fd3c (No. 228) 32c; 192h ð36; 35:4Þ

H ¼ 9 P (72) Pm�3n (No. 223) 24j 9 2; 24k ð36; 35:4; 35:4Þ
G (144) I43d (No. 220) 48e 9 3 ð36; 35:4; 35:4Þ

H ¼ 12 P (96) I�43m (No. 217) 24g 9 2; 48h ð36; 36; 35:4Þ

Notice that NP ¼ 8H, NG ¼ 16H and ND ¼ 32H, and subscripts stand for the P-, G-, and D-surfaces. Space

groups of the ordered structures are presented. Wyckoff positions are denoted as mw, representing mul-

tiplicity m and Wyckoff letter w corresponding to the space groups and polygonal tilings indicated by

vertex. Some remarks: 1) Special cases in which spheres occupy the vertices of hexagonal patches, then we

replace H with H ¼ H� � 1=2. 2) H ¼ 4 class illustrates the hypothetical high-symmetry structures

explained in the text. 3) P (32) with Pn3 is slightly broken from high symmetry Im3

Table 2 Explicit coordinates in

terms of Wyckoff positions for

the regular tessellations shown

in Table 1

H-number Surface (Na) Space group Wyckoff p. x y z

H ¼ 3 G (48) I43d (No. 220) 48e 0.576 0.386 0.554

D (96) F43c (No. 219) 96h� 0.583 0.417 0.501

H ¼ 4 P (32) Pn3 (No. 201) 24h 0.002 0.656 0.323

G (64) Ia3 (No. 206) 48e 0.067 0.655 0.147

D (128) Fd3 (No. 203) 96g 0.038 0.375 0.126

H ¼ 7 P (56) Pn�3n (No. 222) 48i 0.080 0.380 0.727

G (112) Ia3d (No. 230) 96h 0.039 0.144 0.411

D (224) Fd3c (No. 228) 192h 0.047 0.171 0.350

H ¼ 9 P (72) Pm3n (No. 223) 24j – 0.405 –

24j – 0.173 –

24k – 0.378 0.705

G (144) I43d (No. 220) 48e 0.011 0.064 0.550

48e 0.010 0.650 0.604

48e 0.064 0.339 0.355

H ¼ 12 P (96) I�43m (No. 217) 24g 0.180 – 0.589

24g 0.212 – 0.329

48h 0.104 0.454 0.224

Note that special points having exact values given in International Tables for Crystallography are omitted.

For 96h� of F43c, see Wyckoff positions in Table 3
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Table 3 Wyckoff positions for

96h� of F43c (No. 219) for

ND ¼ 96

Coordinates þð0; 0; 0Þ þ ð0; 1
2
; 1

2
Þ þð1

2
; 0; 1

2
Þ þ ð1

2
; 1

2
; 0Þ

(x, y, z) ðxþ 1
4
; yþ 3

4
; zþ 1

2
Þ ðxþ 3

4
; yþ 1

2
; zþ 1

4
Þ ðxþ 1

2
; yþ 1

4
; zþ 3

4
Þ

(z, x, y) ðzþ 1
2
; xþ 1

4
; yþ 3

4
Þ ðzþ 1

4
; xþ 3

4
; yþ 1

2
Þ ðzþ 3

4
; xþ 1

2
; yþ 1

4
Þ

(y, z, x) ðyþ 3
4
; zþ 1

2
; xþ 1

4
Þ ðyþ 1

2
; zþ 1

4
; xþ 3

4
Þ ðyþ 1

4
; zþ 3

4
; xþ 1

2
Þ

ðyþ 1
4
; xþ 3

4
; zÞ ðyþ 1

2
; xþ 1

2
; zþ 1

2
Þ ðyþ 3

4
; x; zþ 1

4
Þ ðy; xþ 1

4
; zþ 3

4
Þ

ðxþ 1
4
; zþ 3

4
; yÞ ðx; zþ 1

4
; yþ 3

4
Þ ðxþ 1

2
; zþ 1

2
; yþ 1

2
Þ ðxþ 3

4
; z; yþ 1

4
Þ

ðzþ 1
4
; yþ 3

4
; xÞ ðzþ 3

4
; y; xþ 1

4
Þ ðz; yþ 1

4
; xþ 3

4
Þ ðzþ 1

2
; yþ 1

2
; xþ 1

2
Þ

This is different from usual presentation in International Tables for Crystallography due to the different

choice of the origin for symmetry operation. A part of 192h of Fd3c shown here is more useful to reproduce

our MC data. Coordinates are x ¼ 0:583, y ¼ 0:417, and z ¼ 0:501

(a) NP = 20 (H* = 3)

(d) NP = 32 (H = 4)

(c) NP = 96 (H = 12)

(e) NG = 64 (H = 4) (f) ND = 128 (H = 4)

(36; 38 3() 6; 36; 35.4)

(36; 35.4) (36; 35.4) (36; 35.4)

(36; 37) (36; 37) (36; 37)

(b) NP = 72 (H = 9)

(36; 35.4; 35.4)

(g) NP = 56 (H = 7) (h) NG = 112 (H = 7) (i) ND = 224 (H = 7)

Fig. 2 Polygonal tiling

connecting sphere centers. Na is

the number of vertices (spheres)

per cubic unit cell, and

subscripts, P, G, and D stand for

the P-, G- and D-surfaces,

respectively. H� ¼ 3, H ¼ 9,

and H ¼ 12 produce a (36; 38)

tiling with NP ¼ 20, b (36; 35:4;

35:4) tiling with NP ¼ 72, c (36;

36; 35:4) tiling with NP ¼ 96,

respectivley; H ¼ 4 generates

(36; 37) tilings with d NP ¼ 32,

e NG ¼ 64, and f ND ¼ 128;

H ¼ 7 generates (36; 35:4)

tilings with g NP ¼ 56, h
NG ¼ 112, and i ND ¼ 224.

Double cubic unit cells are

rendered for the P- and

G-surfaces, while a single cubic

unit cell is rendered for the

D-surface (Color figure online)
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possible. A set of integers like (36; 37) denotes a tiling

composed of two vertex types 36 and 37, for instance.

The tilings are composed of triangles and quadrangles,

where length of all sides is almost equal within a few

percent and where quadrangles are not always flat. Unlike

the hexagonal arrangement (36) on a flat plane, it should be

noticed that vertices are not equivalent, as is the cases with

icosahedral viruses. The first number of the Wyckoff

positions listed in Table 1 represents the multiplicity of

corresponding vertex types. All these tilings whose Euler

characteristic v per cubic unit cell is -4, -8, and -16 for

P-, G-, and D-surfaces, respectively, are hyperbolic

extensions of the flat plane tessellation (36) with v ¼ 0. We

finally point out strong similarity for the same H classes as

shown in Fig. 2d–f (H ¼ 4) and Fig. 2g–i (H ¼ 7).

Hexagulation number

Caspar and Klug showed that icosahedral shells can be

constructed from twenty triangles with the triangulation

number T adopting the particular integer values

1; 3; 4; 7; 9; 12; . . .; described by

T ¼ h2 þ k2 þ hk

with h, k equal to nonnegative integers. See Fig. 3a dis-

playing T-diagram. A lattice point denoted as (h, k)

(L ¼ he1 þ ke2) in the oblique coordinate system spanned

by basis vectors e1 and e2 on the triangular lattice indicates

circled numbers T defined as half the number of lattice

points (or equivalently the number of triangles) inside the

triangle whose side connects the origin and the point (h, k).

Considering the large triangle indicated by the solid line

and points occupying the vertices of the triangle in par-

ticular, the number of spheres N for the total shell is given

by N ¼ 10T þ 2.

By the same token, we define the hexagulation number

H as the number of dashed hexagons inside a large hexagon

(solid line) on H-diagram as shown in Fig. 3b. Let L ¼
he1 þ ke2 be a vector along an edge of the large hexagon,

where e1 and e2 are basis vectors of the oblique coordinate

system. Then, we can easily derive H ¼ jLj2. Therefore,

we have

H ¼ h2 þ k2 � hk; ð2Þ

generating 1; 3; 4; 7; 9; 12; . . .; from sets of integers (h, k).

Note that the difference between T and H is just the plus or

minus sign of the third term.

According to the space group symmetries, the TPMSs

can be constructed from 8, 16, and 32 hexagonal patches

per conventional cubic unit cell for P-, G-, and D-surfaces,

respectively. Therefore, Na is given by

NP ¼ 8H; NG ¼ 16H; or; ND ¼ 32H ð3Þ

for the P-, G-, or D-surfaces, respectively. The regular

structures listed in Table 1 obey these equations. For the

special case described by H� ¼ 3 in which spheres occupy

the vertices of hexagonal patches, we should replace H by

H� � 1=2 in Eq. (3) as shown in Table 1.

It has been discussed in the literature that hyperbolic

geometries on the Poincaré disk can be conformally map-

ped upon the TPMSs [18, 21, 39]. See Fig. 4a–d. The

dodecagonal region within twelve thick curves in Fig. 4b, d

covers the area of a unit cell, a half, and one-fourth areas of

a cubic unit cell of the P-, G-, and D-surfaces, respectively.

The relation between the hexagon on the H-diagram and

(b)(a)

k
k

h

h
27

9

9

13

12 19

16

7

1

3

4

19

21

12

13

16

7

94

3

1
1 2 3 41 2 3 4

1

2

3

4

1

2

3

e1
e2

L
e1

e2 L

Fig. 3 a T-diagram for counting the triangulation number T and b H-

diagram for counting the hexagulation number H. Lattice points

denoted as (h, k) (L ¼ he1 þ ke2) with h, k nonnegative integers in

two oblique coordinate systems indicate circled numbers T ¼ h2 þ

k2 þ hk and H ¼ h2 þ k2 � hk: T is half the number of lattice points

inside a triangle (solid line), while H is the number of dashed

hexagons inside a hexagon (solid line). Shown here are T ¼ 13 with

(3, 1) and H ¼ 7 with (3, 1)
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the dodecagonal region is clearly visible in Fig. 4a–d. Blue

dashed hexagons in Fig. 4a, c correspond to blue dashed

hexagonal regions at the center of Fig. 4b, d, respectively.

On the TPMSs, four hexagonal patches are connected edge

to edge around a vertex position of the hexagonal patches

making negative curvatures, whose property is rendered on

the Poincaré disk (Fig. 4b, d). The radii of circles on the

Poincaré disk are constant in each figure, even though they

look smaller as it approaches the circumferences. Fig-

ure 4a, b displays a system with NP ¼ 56, ðh; kÞ ¼ ð3; 1Þ
and H ¼ 7; blue (36) and red (35:4) circles correspond to 8c

and 48i Wyckoff positions of the space group Pn�3n, con-

structing a polygonal tiling in Fig. 2g. Figure 4c, d illus-

trates a system with NP ¼ 96, ðh; kÞ ¼ ð4; 2Þ and H ¼ 12.

Blue (36), yellow (36), and red (35:4) circles correspond to

24g, 24g, and 48h of I�43m, forming a polygonal tiling in

Fig. 2c, respectively.

Discussion

We have found that hard spheres on the TPMSs are

entropically self-organized when the number of spheres

takes some magic numbers N. In analogy with the trian-

gulation number for icosahedral viruses, we have proposed

the hexagulation number explaining the magic numbers

associated with cubic symmetry. With few exceptions

(H� ¼ 3 class), N is easily evaluated by H in a unified

scheme Eq. (3).

From this scheme, we expect P-G-D triplets, which

actually holds for H ¼ 4 and H ¼ 7. However, the first and

the second rows of Table 1 appear to be incomplete. In the

first row, NP ¼ 20 and NG ¼ 40 are shown, but ND ¼ 80 is

missing; any sign of a transition for ND ¼ 80 has not been

observed. For NP ¼ 20, the distance between two hard

spheres is equidistant (0.3536) and a transition has been

found. For NG ¼ 40, the distance is 0.2795 or 0.3062

forming isosceles triangles, whose 8.7 % difference does

not matter to undergo a clear transition [14]. However, for

ND ¼ 80, the corresponding distance is 0.2165 or 0.2500,

whose difference is too large to induce an Alder transition.

This incompleteness of the P–G–D triplet indicates that the

property of (almost) equidistance between two hard spheres

seems to be indispensable to physical ordering even on the

curved background.

In the second row of Table 1, we list NG ¼ 48 and

ND ¼ 96, but not NP ¼ 24. The physical arrangement is

more complex than we expected; surprisingly, for NP ¼ 24

we have had a clear transition, but the unit cell is a double-

cell superstructure (N ¼ 192) with rhombohedral symme-

try. We have seen a transition to a cubic structure in a

simulation box with an odd number of the unit cells in a

direction; however, the jump in the acceptance ratio is

smaller than that of the transition to the double-cell

superstructure, implying that the cubic structure is an

artifact by the periodic boundary conditions. This exem-

plifies the difficulty in simulations, and several box sizes

should be tested.

On a sphere, complicated arrangements with lower

symmetries have been elucidated [40]. Likewise, our

ongoing investigation indeed suggests that there exist

complicated regular arrangements with lower symmetries

even on the TPMSs. Moreover, not only NP ¼ 24, but also

several unprecedented superstructures for other N have

been found. They are beyond the scope of the present paper

and will be discussed elsewhere.
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(c)(a)

(d)(b)

7

h

k

12

h

k

Fig. 4 H-diagram and a Poincaré disk representing hyperbolic

geometry, on which tessellation of NP (¼ 8H) spheres is illustrated.

a H-diagram for H ¼ 7 (NP ¼ 56) and b hyperbolic tiling (36; 35:4)

on the Poincaré disk for (a). c H-diagram for H ¼ 12 (NP ¼ 96) and

d hyperbolic tiling (36; 36; 35:4) tiling on the Poincaré disk for (c).

Blue dashed hexagons in (a) and (c) correspond to blue dashed

hexagonal regions at the center of (b) and (d), respectively. Then four

hexagons connected edge to edge around a vertex of the dashed

hexagons are visible on the Poincaré disk. The radii of circles on the

Poincaré disk are constant in each figure. Figure 4a, b displays a

system with NP ¼ 56, ðh; kÞ ¼ ð3; 1Þ and H ¼ 7; In (b), blue (36) and

red (35:4) circles correspond to 8c and 48i Wyckoff positions of the

space group Pn�3n, respectively, forming a tiling shown in Fig. 2g. In

(d), blue (36), yellow (36), and red (35:4) circles correspond to 24g,

24g, and 48h of I�43m, respectively, forming a tiling shown in Fig. 2c

(Color figure online)
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