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Realization of SR-Equivalents Using Generalized Shift Registers for
Secure Scan Design

Hideo FUJIWARA†a), Fellow and Katsuya FUJIWARA††, Member

SUMMARY We reported a secure scan design approach using shift reg-
ister equivalents (SR-equivalents, for short) that are functionally equivalent
but not structurally equivalent to shift registers [10] and also introduced
generalized shift registers (GSRs, for short) to apply them to secure scan de-
sign [11]–[13]. In this paper, we combine both concepts of SR-equivalents
and GSRs and consider the synthesis problem of SR-equivalent GSRs, i.e.,
how to modify a given GSR to an SR-equivalent GSR. We also consider
the enumeration problem of SR-equivalent GFSRs, i.e., the cardinality of
the class of SR-equivalent GSRs to clarify the security level of the secure
scan architecture.
key words: design-for-testability, scan design, generalized feedback/feed-
forward shift registers, security, scan-based side-channel attack

1. Introduction

Both testability and security of a chip have become funda-
mental to ensuring its reliability and protection from inva-
sion to access important information. To guarantee quality,
designers use design for testability (DFT) methods to make
digital circuits easily testable for faults. Scan design is a
powerful DFT technique that provides high controllability
and observability over a chip and yields high fault cover-
age [1]. However, it also allows reverse engineering, which
contradicts security. There is a demand to protect secret data
from side-channel attacks and other hacking schemes [2].
Hence, it is important to find an efficient DFT approach that
satisfies both security and testability. Various approaches to
secure scan design have been reported [3]–[9]. We reported
a secure and testable scan design approach by using ex-
tended shift registers called “SR-equivalents” that are func-
tionally equivalent but not structurally equivalent to shift
registers [10], where linear structured circuits were consid-
ered. We then expanded them into non-linear structured cir-
cuits and introduced two classes of generalized shift regis-
ters (GSRs, for short) which are generalized feed-forward
shift registers (GF2SRs, for short) [11], [12] and generalized
feedback shift registers (GFSRs, for short) [13], to consider
their application to secure scan design.

As for testability, the class of SR-equivalents is better
than GSRs. On the other hand, as for security, the class of

Manuscript received February 23, 2016.
Manuscript revised April 15, 2016.
Manuscript publicized May 16, 2016.
†The author is with Osaka Gakuin University, Suita-shi, 564–

8511 Japan.
††The author is with Akita University, Akita-shi, 010–8502

Japan.
a) E-mail: fujiwara@ogu.ac.jp

DOI: 10.1587/transinf.2016EDL8046

GSRs is better than SR-equivalents. In this paper, combin-
ing both concepts of SR-equivalents and GSRs, we propose
the class of SR-equivalent GSRs for secure and testable scan
design. We consider the synthesis problem of SR-equivalent
GSRs (GF2SRs and GFSRs), i.e., how to modify a given
GSR to an SR-equivalent GSR. We also clarify the cardi-
nality of each class of SR-equivalent GF2SRs and GFSRs to
estimate the security level.

2. SR-Equivalents and GSRs

Consider a k-stage shift register shown in Fig. 1. For the k-
stage shift register, the input value applied to x appears at z
after k clock cycles. Suppose a circuit C with a single input
x, a single output z, and k flip-flops as shown in Fig. 2. If
the input value applied to x of C appears at the output z of C
after k clock cycles, the circuit C behaves as if it is a k-stage
shift register.

A circuit C with a single input x, a single output z, and
k flip-flops is called functionally equivalent to a k-stage shift
register (or SR-equivalent) if the input value applied to x at
any time t appears at z after k clock cycles, i.e., z(t+k) = x(t)
for any time t.

Figure 3 (a) illustrates an example of 3-stage SR-
equivalent circuit R1. The table in Fig. 3 (b) can be ob-
tained easily by symbolic simulation. As shown in the ta-
ble, z(t + 3) = x(t), i.e., the input value applied to x appears
at z after k = 3 clock cycles, and hence the circuit is SR-
equivalent. Although the input/output behavior of R1 is the
same as that of the 3-stage shift register, the internal state
behavior of R1 is different from the shift register. Therefore,
without the information on the structure of R1 one cannot
control/observe the internal state of R1. From this observa-
tion, replacing the shift register with an SR-equivalent cir-
cuit makes the scan circuit secure.

In [11], [12], we introduced a class of generalized
shift registers called generalized feed-forward shift registers

Fig. 1 k-stage shift register SR.

Fig. 2 k-stage SR-equivalent circuit C.
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Fig. 3 Example of SR-equivalent circuit.

Fig. 4 Generalized feed-forward shift register (GF2SR).

Fig. 5 Symbolic simulation of R3.

(GF2SR), shown in Fig. 4 (a). In this figure, f0, f1, . . . , fk are
arbitrary logic functions. Figures 4 (b) and (c) show exam-
ples of 3-stage GF2SRs, R2 and R3. In [12], we proposed
strongly secure GF2SR as a more secure scan path structure.
R3 in Fig. 4 (c) is strongly secure. Generally, for any GF2SR
with k flip-flops, the output z at time t + k behaves in accor-
dance with the following equation.

z(t + k) = x(t) ⊕ f (x(t + 1), x(t + 2), . . . , x(t + k))

Consider a 3-stage GF2SR, R3, given in Fig. 4 (c). By
using symbolic simulation, we can obtain the output z(t +
3) = x(t) ⊕ x(t + 2)x(t + 1) as shown in Fig. 5.

In [13], we introduced another class of generalized shift

Fig. 6 Generalized feedback shift register (GFSR).

Fig. 7 Symbolic simulation of R5.

registers called generalized feedback shift registers (GFSR),
shown in Fig. 6 (a). Figures 6 (b) and (c) show examples
of 3-stage GFSRs, R4 and R5. In [13], we also proposed
strongly secure GFSR. R5 is strongly secure. The difference
between GFSR and GF2SR is whether the structure is feed-
back type or feed-forward type. From the feedback structure
of Fig. 6 (a), we can see that for any GFSR with k flip-flops,
the output z at time t + k behaves in accordance with the
following equation.

z(t + k) = x(t) ⊕ f (y1(t), y2(t), . . . , yk(t))

Consider a 3-stage GFSR, R5, given in Fig. 6 (c). By
using symbolic simulation, we can obtain the output z(t +
3) = x(t) ⊕ y1(t)y2(t) as shown in Fig. 7.

3. Synthesis Problem for SR-Equivalent GSRs

Let us consider the problem of modifying a given GSR
(GF2SR or GFSR) into an SR-equivalent. First, consider a
k-stage GF2SR shown in Fig. 4 (a). By symbolic simulation,
we can obtain the output z at time t + k as follows.

z(t + k) = x(t) ⊕ f (x(t + 1), x(t + 2), . . . , x(t + k))

To change this equation into z(t + k) = x(t) so that the
GF2SR becomes SR-equivalent, we add the same logic func-
tion f (x(t + 1), x(t + 2), . . . , x(t + k)) to this equation as fol-
lows.
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Fig. 8 Modified SR-equivalent GF2SR, R6.

z(t + k) = x(t) ⊕ f (x(t + 1), x(t + 2), . . . , x(t + k))

⊕ f (x(t + 1), x(t + 2), . . . , x(t + k))

= x(t)

To realize this modification on the given GF2SR, we need
to express the added logic function f by a logic function g
of variables x(t + k), y1(t + k), y2(t + k), . . ., and yk(t + k) as
follows.

f (x(t + 1), x(t + 2), . . . , x(t + k))

= g(x(t + k), y1(t + k), y2(t + k), . . . , yk(t + k))

This can be obtained from the outcome of symbolic simula-
tion. Then, we add the feed-forward logic g(x, y1, y2, . . . , yk)
to the output z of the circuit. The modified GF2SR be-
comes SR-equivalent. Note that if the given GF2SR has only
one feed-forward logic to the output z, the logic function is
equal to g(x, y1, y2, . . . , yk) and hence the modified GF2SR
becomes a k-stage shift register. We have the following the-
orem.

Theorem 1: Any k-stage GF2SR can be modified to a
GF2SR that is SR-equivalent by adding a feed-forward logic
function to the output.

As an example, consider a 3-stage GF2SR, R3, given
in Fig. 4 (c). By symbolic simulation illustrated in Fig. 5,
we obtain z(t + 3) = x(t) ⊕ x(t + 2)x(t + 1). We also get
x(t + 2) = y1(t + 3) and x(t + 1) = y2(t + 3). Hence, we can
see

z(t + 3) = x(t) ⊕ x(t + 2)x(t + 1)

= x(t) ⊕ y1(t + 3)y2(t + 3)

Then, we add the feed-forward logic g(y1, y2) = y1y2 to the
output z of the circuit as shown in Fig. 8. The modified cir-
cuit R6 is SR equivalent.

Next, let us consider a k-stage GFSR shown in
Fig. 6 (a). By symbolic simulation, we can get the output
z at time t + k as follows.

z(t + k) = x(t) ⊕ f (y1(t), y2(t), . . . , yk(t))

To change this equation into z(t + k) = x(t), we add function
f (y1(t), y2(t), . . . , yk(t)) to this equation as follows.

z(t + k) = x(t) ⊕ f (y1(t), y2(t), . . . , yk(t))

⊕ f (y1(t), y2(t), . . . , yk(t))

= x(t)

To do so, we modify the circuit by adding the feedback
logic f (y1, y2, . . . , yk) to the input x. The modified GFSR

Fig. 9 Modified SR-equivalent GFSR, R7.

is SR-equivalent. Note that if the given GFSR has only one
feedback logic to the input x, the logic function is equal to
f (y1(t), y2(t), . . . , yk(t)) and hence the modified GFSR be-
comes a k-stage shift register. We have the following theo-
rem.

Theorem 2: Any k-stage GFSR can be modified to a
GFSR that is SR-equivalent by adding a feedback logic
function to the input.

As an example, consider a 3-stage GFSR, R5, given in
Fig. 6 (c). By symbolic simulation illustrated in Fig. 7, we
get z(t + 3) = x(t) ⊕ y1(t)y2(t). Then, we modify R5 by
adding the feedback logic, y1y2, to the input x as shown in
Fig. 9. The modified circuit R7 is SR equivalent.

4. Security of SR-Equivalent GF2SR/GFSR

When we consider a secure scan design, we need to assume
what the attacker knows and how he can potentially make
the attack. Here, we assume that the attacker does not know
the detailed information in the gate-level design, and that
the attacker knows the presence of test pins (scan in/out,
scan, and reset) and modified scan chains. However, he does
not know the structure of extended scan chains. Based on
this assumption, we consider the security to prevent scan-
based attacks.

A circuit C with a single input, a single output, and k
flip-flops is called scan-secure if the attacker cannot deter-
mine the structure of C.

We have already reported that SR-equivalents, GF2SRs,
and GFSRs are scan-secure in [10]–[12], and [13], respec-
tively. The security level of the secure scan architecture
based on a class of extended shift registers is determined by
the probability that an attacker can guess right the structure
of the extended shift register used in the scan design, and
hence the attack probability approximates to the reciprocal
of the cardinality of the class of extended shift registers.

In [11] and [13], we clarified the cardinality of each
class of GF2SRs and GFSRs.
Theorem 3 [11]: The cardinality of the class of k-stage
GF2SRs is 2(2(k+1)−1) − 1.
Theorem 4 [13]: The cardinality of the class of k-stage GF-
SRs is 2(2(k+1)−1) − 1.

Here, let us consider the cardinality of each class of k-
stage GF2SRs and GFSRs that are SR-equivalent. First, we
have the following theorem for GF2SRs.

Theorem 5: The total number of k-stage GF2SRs that are
SR-equivalent is equal to the total number of (k-1)-stage
GF2SRs.
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Proof: For each (k-1)-stage GF2SR, add one flip-flop to the
right end and make it k-stage GF2SR. If this k-stage GF2SR
is not SR-equivalent, modify it to be SR-equivalent by us-
ing Theorem 1, i.e., by adding a feed-forward logic func-
tion to the output of the GF2SR. Note that the feed-forward
logic function to be added is uniquely determined, because
adding different feed-forward function implies different out-
put function. Therefore, the number of generated k-stage
GF2SRs that are SR-equivalent is equal to the total number
of (k-1)-stage GF2SRs.

On the other hand, for any k-stage GF2SR that is SR-
equivalent, there exists a (k-1)-stage GF2SR such that the k-
stage GF2SR is obtained by adding one flip-flop to the right
end of the (k-1)-stage GF2SR and by adding a feed-forward
logic function if necessary. Therefore, the total number of
k-stage GF2SRs that are SR-equivalent is equal to the total
number of (k-1)-stage GF2SRs. �

From Theorems 3 and 5, we can see that the following
theorem holds.

Theorem 6: The cardinality of the class of k-stage SR-
equivalent GF2SRs is 2(2k−1) − 1.

Similarly, we have the following theorem for GFSRs.

Theorem 7: The total number of k-stage GFSRs that are
SR-equivalent is equal to the total number of (k-1)-stage GF-
SRs.

From Theorems 4 and 7, we can see that the following
theorem holds.

Theorem 8: The cardinality of the class of k-stage SR-
equivalent GFSRs is 2(2k−1) − 1.

5. Conclusion

In our previous work, we reported a secure and testable scan
design approach by using SR-equivalents [10], generalized
feed-forward shift registers (GF2SRs) [11], [12], and gen-
eralized feedback shift registers (GFSRs) [13]. In this pa-
per, combining both concepts of SR-equivalents and gener-
alized shift registers (GSRs), we proposed the class of SR-
equivalent GSRs for secure and testable scan design. We
considered the synthesis problem of SR-equivalent GSRs
(GF2SRs and GFSRs), i.e., how to modify a given GSR to

an SR-equivalent GSR. We also clarified the cardinality of
each class of SR-equivalent GF2SRs and GFSRs to estimate
the security level.
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