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Synthesis and Enumeration of Generalized Shift Registers for
Strongly Secure SR-Equivalents
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SUMMARY In our previous work, we introduced new concepts of se-
cure scan design; shift register equivalent circuits (SR-equivalents, for
short) and strongly secure circuits, and also introduced generalized shift
registers (GSRs, for short) to apply them to secure scan design. In this
paper, we combine both concepts of SR-equivalents and strongly secure
circuits and apply them to GSRs, and consider the synthesis problem of
strongly secure SR-equivalents using GSRs. We also consider the enumer-
ation problem of GSRs that are strongly secure and SR-equivalent, i.e., the
cardinality of the class of strongly secure SR-equivalent GSRs to clarify
the security level of the secure scan architecture.
key words: design-for-testability, scan design, generalized feedback/feed-
forward shift registers, security, scan-based side-channel attack

1. Introduction

Scan design is a powerful design-for-testability (DFT) tech-
nique that warrants high controllability and observability
over a chip and yields high fault coverage [1]. However, this
also accommodates reverse engineering, which contradicts
security. There is a demand to protect secrete data from side-
channel attacks and other hacking schemes. Hence, it is im-
portant to find an efficient DFT approach that satisfies both
security and testability. Various approaches to secure scan
design have been reported [2]. We reported a secure and
testable scan design approach by using extended shift regis-
ters called “SR-equivalents” that are functionally equivalent
but not structurally equivalent to shift registers [3], [4]. In
[4], we considered a scan-based side-channel attack with re-
set called differential-behavior attack and proposed several
classes of SR-equivalent scan circuits using dummy flip-
flops in order to protect the scan-based differential behav-
ior attack. In [3], [4], linear structured circuits were con-
sidered. We then expanded them into non-linear structured
circuits and introduced two classes of generalized shift reg-
isters (GSRs, for short) which are generalized feed-forward
shift registers (GF2SRs, for short) [5], [6] and generalized
feedback shift registers (GFSRs, for short) [7], to consider
their application to secure scan design.

In [6], we introduced a more secure concept called
strong security such that no internal state of strongly se-
cure circuits leaks out, and presented how to design such
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strongly secure GSRs (GF2SRs [6] and GFSRs [7]). In
[8], we considered the synthesis problem of SR-equivalent
GSRs (GF2SRs and GFSRs), i.e., how to modify a given
GSR to an SR-equivalent GSR. We also clarified the cardi-
nality of each class of SR-equivalent GF2SRs and GFSRs to
estimate the security level [8].

SR-equivalent circuits have the property suited for scan
chains, i.e., the input sequence applied to a k-stage SR-
equivalent circuit appears at the output after k clock cy-
cles, and hence any test sequence can be easily propagated
through the SR-equivalent circuit to other parts of scan
chains without modifying the sequence [3], [4]. So, it is im-
portant to consider such circuits that are both strongly secure
and SR-equivalent in order to design secure and testable
scan chains. In this paper, combining both concepts of
SR-equivalents and strongly secure circuits, we apply them
to GSRs (GF2SRs and GFSRs), and consider the synthesis
problem of GF2SRs and GFSRs that are strongly secure and
SR-equivalent. We also consider the enumeration problem
of GSRs (GF2SRs and GFSRs) that are strongly secure and
SR-equivalent. We clarify the cardinality of each class of
strongly secure and SR-equivalent GF2SRs/GFSRs to clar-
ify the security level of each secure scan architecture.

2. SR-Equivalents and Generalized Shift Registers

Consider a k-stage shift register shown in Fig. 1. For the k-
stage shift register, the input value applied to x appears at z
after k clock cycles. Suppose a circuit C with a single input
x, a single output z, and k flip-flops as shown in Fig. 2. C is
called functionally equivalent to a k-stage shift register (or
SR-equivalent) if the input value applied to x at any time t
appears at z after k clock cycles, i.e., z(t + k) = x(t) for any
time t.

Figure 3 (a) illustrates an example of 3-stage SR-
equivalent circuit R1. The table in Fig. 3 (b) can be ob-
tained easily by symbolic simulation. As shown in the ta-
ble, z(t + 3) = x(t), i.e., the input value applied to x appears

Fig. 1 k-stage shift register SR.

Fig. 2 k-stage SR-equivalent circuit C.
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Fig. 3 Example of SR-equivalent circuit.

Fig. 4 Generalized feed-forward shift register (GF2SR).

Fig. 5 Symbolic simulation of R3.

at z after k = 3 clock cycles, and hence the circuit is SR-
equivalent. Although the input/output behavior of R1 is the
same as that of the 3-stage shift register, the internal state
behavior of R1 is different from the shift register. Therefore,
without the information on the structure of R1 one cannot
control/observe the internal state of R1. From this observa-
tion, replacing the shift register with an SR-equivalent cir-
cuit makes the scan circuit secure.

Figure 4 (a) shows a class of generalized shift regis-
ters (GSR) called generalized feed-forward shift registers
(GF2SR). In this figure, f0, f1, · · · , fk are arbitrary logic
functions. Figures 4 (b) and (c) show examples of 3-stage
GF2SRs, R2 and R3. Generally, for any GF2SR with k flip-
flops, the output z at time t + k behaves in accordance with
the following equation.

z(t + k) = x(t) ⊕ f (x(t + 1), x(t + 2), · · · , x(t + k))

Consider a 3-stage GF2SR, R3, given in Fig. 4 (c). By
using symbolic simulation, we can obtain the output z(t +
3) = x(t) ⊕ x(t + 2)x(t + 1) as shown in Fig. 5.

Figure 6 (a) shows another class of generalized shift
registers called generalized feedback shift registers (GFSR).
Figures 6 (b) and (c) show examples of 3-stage GFSRs, R4

and R5.

Fig. 6 Generalized feedback shift register (GFSR).

3. Security of Generalized Shift Registers

When we consider a secure scan design, we need to assume
what the attacker knows and how he can potentially make
the attack. Here, we assume that the attacker does not know
the detailed information in the gate-level design, and that
the attacker knows the presence of test pins (scan in/out,
scan, and reset) and modified scan chains. However, he does
not know the structure of extended scan chains. Based on
this assumption, we consider the security to prevent scan-
based attacks.

In [5]–[7], we introduced a concept called scan-secure
as follows. A circuit C with a single input x, a single output
z, and k flip-flops is called scan-secure if the attacker cannot
determine the structure of C. The security level of the secure
scan architecture based on those GSRs is determined by the
probability that an attacker can identify the structure of the
GSR used in the circuit, and hence the attack probability
approximates to the reciprocal of the cardinality of the class
of GSRs.

Although the structure of a GSR is hard to be identi-
fied, it may not be secure if part of the contents of the GSR
leak out. To avoid such leakage, we consider more secure
scan registers whose contents never leak out. First, we de-
fine several concepts in the following. Consider a circuit
C with a single input, a single output, and k flip-flops. C
is called to be scan-in secure if for any internal state of C a
transfer sequence (of length k) to the state (final state) can be
generated only from the connection information of C, inde-
pendently of the initial state, such that the transfer sequence
is always different from that of a k-stage shift register. C is
called to be scan-out secure if any present state (initial state)
of C can be identified only from the input-output sequence
(of length k) and the connection information of C, such that
the output sequence is always different from that of a k-stage
shift register. C is called to be strongly secure if C is scan-in
secure and scan-out secure.

4. Synthesis Problem for Strongly Secure SR-
Equivalent GSRs

In our previous work, we presented a method for making a
given GSR strongly secure [6], [7], and a method for making
it SR-equivalent [8].

Here let us now consider the problem of modifying a
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Fig. 7 Adding a dummy FF with two NOT gates.

given GSR (GF2SR or GFSR) into a strongly secure SR-
equivalent one. We can consider two approaches. One ap-
proach (Method A) is to make a given GSR SR-equivalent
first and then to make it strongly secure. The other approach
(Method B) is to make a given GSR strongly secure first and
then to make it SR-equivalent.

The first approach (Method A) consists of the follow-
ing three steps.

Method A: (1) Check if a given GSR is SR-equivalent or
not, by symbolic simulation. If it is not SR-equivalent,
make it SR-equivalent by adding feed-forward or feed-
back logic (using the method in [8]).

(2) Check if the modified GSR is strongly secure or not. If
it is not strongly secure, make it strongly secure (scan-
in secure and scan-out secure) by adding NOT gates
and a dummy FF if necessary (using the method in [6],
[7]).

(3) Check if the modified GSR is still SR-equivalent. If it is
not SR-equivalent, make it SR-equivalent without los-
ing strong security by adding NOT gates and a dummy
FF if necessary.

Note that step (3) is necessary because it may happen that
the modified GSR is not SR-equivalent anymore due to the
addition of NOT gates at step (2).

However, there is a straightforward method for mak-
ing an SR-equivalent GSR strongly secure without violat-
ing the SR-equivalence so that step (3) can be skipped. At
step (2), we add a dummy FF with two NOT gates to the
input or the output of the SR-equivalent GSR as illustrated
in Fig. 7. Obviously, the dummy FF with two NOT gates
makes the circuit strongly secure, and the whole circuit is
still SR-equivalent.

Next, let us consider the second approach (Method B)
which consists of the following two steps.

Method B: (1) Check if a given GSR is strongly secure or
not, by symbolic simulation. If it is not strongly se-
cure, make it strongly secure (scan-in secure and scan-
out secure) by adding NOT gates and a dummy FF if
necessary (using the method in [6], [7]).

(2) Check if the modified GSR is SR-equivalent or not, by
symbolic simulation. If it is not SR-equivalent, make
it SR-equivalent by adding feed-forward or feedback
logic (using the method in [8]).

Here, note that the modified SR-equivalent GSR after step
(2) is still strongly secure. To see this, let us consider the
following.

Consider an SR-equivalent circuit C with a single input
x, a single output z, and k flip-flops y1, y2, · · · , yk. Let x(t)
and z(t) be the input value and the output value at time t,

Fig. 8 Modified SR-equivalent GF2SR, R6.

and let (y1(t), y2(t), · · · , yk(t)) be the state of FFs at time t.
Suppose an input sequence x(t), x(t + 1), · · · , x(t + k − 1) is
applied to C. After this input sequence is applied, the state of
FFs becomes (y1(t + k), y2(t + k), · · · , yk(t + k)). The output
sequence of length k after time t + k are z(t + k), z(t + k +
1), · · · , z(t + 2k − 1), where z(t + k) = x(t), z(t + k + 1) =
x(t + 1), · · · , z(t + 2k − 1) = x(t + k − 1) because C is SR-
equivalent.

If C is not scan-in secure, there exists an input se-
quence x(t), x(t + 1), · · · , x(t + k − 1) such that x(t) =
yk(t + k), · · · , x(t + k − 1) = y1(t + k). Hence, z(t + k) =
yk(t + k), · · · , z(t + 2k − 1) = y1(t + k) which implies C is
not scan-out secure. Similarly, we can see that if C is not
scan-out secure, C is not scan-in secure. Then, we have the
following theorem.

Theorem 1: For any SR-equivalent circuit C, C is scan-in
secure if and only if C is scan-out secure.

For any GF2SR, adding a feed-forward logic to the out-
put z never violates the scan-in security. Similarly, for any
GFSR, adding a feed-back logic to the input x never vio-
lates the scan-out security. Therefore, from this observation
and Theorem 1, we can see that the modified SR-equivalent
GSR after step (2) is still strongly secure.

As an example, consider a 3-stage GF2SR, R2, given
in Fig. 4 (b). From symbolic simulation, we can see that R2

is neither scan-in secure nor scan-out secure. So, we apply
step (1) and get R3 shown in Fig. 4 (c), which is strongly
secure. From the symbolic simulation for R3 illustrated in
Fig. 5, we can see R3 is not SR-equivalent. We then apply
step (2), and get the modified circuit R6 that is SR equivalent
as shown in Fig. 8. R6 is still strongly secure.

5. Enumeration Problem for Strongly Secure SR-
Equivalent GSRs

The security level of the secure scan architecture based on
a class of generalized shift registers is determined by the
probability that an attacker can guess right the structure of
the extended shift register used in the scan design, and hence
the attack probability approximates to the reciprocal of the
cardinality of the class of generalized shift registers.

In [5] and [7], we clarified the cardinality of each class
of GF2SRs and GFSRs.
Theorem 2 [5]: The cardinality of the class of k-stage
GF2SRs is 2(2(k+1)−1) − 1.
Theorem 3 [7]: The cardinality of the class of k-stage
GFSRs is 2(2(k+1)−1) − 1.

In [8], we clarified the cardinality of each class of k-
stage GF2SRs and GFSRs that are SR-equivalent.
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Theorem 4 [8]: The cardinality of the class of k-stage SR-
equivalent GF2SRs is 2(2k−1) − 1.
Theorem 5 [8]: The cardinality of the class of k-stage SR-
equivalent GFSRs is 2(2k−1) − 1.

Here, let us consider the cardinality of each class of
k-stage GF2SRs and GFSRs that are SR-equivalent and
strongly secure. First, we have the following lemma for
GF2SRs.

Lemma 1: The total number of k-stage scan-in secure
GF2SRs that are SR-equivalent is equal to the total number
of (k−1)-stage scan-in secure GF2SRs.

Proof: For each (k−1)-stage scan-in secure GF2SR, add one
flip-flop to the right end and make it k-stage scan-in secure
GF2SR. If this k-stage scan-in secure GF2SR is not SR-
equivalent, modify it to be SR-equivalent by adding a feed-
forward logic function to the output of the GF2SR. Note
that the feed-forward logic function to be added is uniquely
determined, because adding different feed-forward function
implies different output function. Also, this addition does
not violate scan-in security, i.e., the augmented GF2SR is
SR-equivalent and scan-in secure. Therefore, the number
of generated k-stage scan-in secure GF2SRs that are SR-
equivalent is equal to the total number of (k−1)-stage scan-
in secure GF2SRs.

On the other hand, for any k-stage scan-in secure
GF2SR that is SR-equivalent, there exists a (k−1)-stage
scan-in secure GF2SR such that the k-stage scan-in secure
GF2SR is obtained by adding one flip-flop to the right end
of the (k−1)-stage scan-in secure GF2SR and by adding a
feed-forward logic function if necessary. Therefore, the to-
tal number of k-stage scan-in secure GF2SRs that are SR-
equivalent is equal to the total number of (k−1)-stage scan-
in secure GF2SRs. �

Next, let us consider the total number of k-stage scan-in
secure GF2SRs.

Lemma 2: The total number of k-stage scan-in secure
GF2SRs is at least half of the total number of k-stage
GF2SRs.

Proof: The class of k-stage GF2SRs can be partitioned into
two equal parts; one is a set of GF2SRs with NOT gate at
the input side and the other is a set of GF2SRs without NOT
gate at the input side. Then, it is obvious that all the k-stage
GF2SRs with NOT gate at the input side are scan-in secure.
Hence, the theorem holds. �

From Lemmas 1 and 2, we have the following theorem.

Theorem 6: The total number of k-stage scan-in secure
GF2SRs that are SR-equivalent is at least half of the total
number of (k−1)-stage GF2SRs.

From this theorem and Theorem 1, we have the follow-
ing theorem.

Theorem 7: The total number of k-stage strongly secure
GF2SRs that are SR-equivalent is at least half of the total

Fig. 9 Cover relation and cardinality.

number of (k−1)-stage GF2SRs.

From this theorem and Theorem 2, we have the follow-
ing theorem.

Theorem 8: The cardinality of the class of k-stage GF2SRs
that are SR-equivalent and strongly secure is larger than
(2(2k−1) − 1)/2.

Figure 9 illustrates the cover relation and cardinality in
Theorem 8.

So far, we have considered the class of GF2SRs. Sim-
ilarly to GF2SR, we can prove the following lemmas and
theorems for GFSRs.

Lemma 3: The total number of k-stage scan-out secure
GFSRs that are SR-equivalent is equal to the total number
of (k−1)-stage scan-out secure GFSRs.

Lemma 4: The total number of k-stage scan-out secure
GFSRs is at least half of the total number of k-stage GFSRs.

Theorem 9: The total number of k-stage scan-out secure
GFSRs that are SR-equivalent is at least half of the total
number of (k−1)-stage GFSRs.

Theorem 10: The cardinality of the class of k-stage
GFSRs that are SR-equivalent and strongly secure is larger
than (2(2k−1) − 1)/2.

6. Conclusion

In this paper, we considered the synthesis problem of
GF2SRs and GFSRs that are strongly secure and SR-
equivalent, i.e., how to modify a given GSR to an SR-
equivalent and strongly secure GSR. We also considered the
enumeration problem of GSRs (GF2SRs and GFSRs) that
are strongly secure and SR-equivalent, and clarified the car-
dinality of each class of strongly secure and SR-equivalent
GF2SRs/GFSRs to estimate the security level of each secure
scan architecture.
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