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1: Introduction

• In this talk, we would analyze how 
mathematical diagrams works in proofs 
of  De quadratura arithmetica circuli ellipseos
et hyperbolae cujus corollarium est trigonometria
sine tabulis (DQA)

• DQA is thought as the masterpiece of  
Leibniz’s mathematical study in Paris.

• In DQA, Leibniz succeeded a 
quadrature of  the areas of  curvilinear 
figures.



• DQA contains 51 propositions and 16 pictures. Almost half  of  all 
propositions utilize diagrams. So, DQA is a good material for understanding 
Leibniz’s method of  using diagrams.

• So far, DQA has been regarded as a philosophical source of  foundation of  
infinitesimals.

• In fact, many scholars concentrate proposition 6 and 7, which do not utilize 
explicitly infinitesimals to determinate the area and claims that we could find 
the fictionalism of  infinitesimals in DQA.

• Some scholars of  history of  mathematics criticize this tendency. (Blåsjö 2017)

• The importance of  DQA is not limited to the foundational issue. For example, 
Grosholz maintains that DQA is an example of  Leibniz's use of  various 
representations, including geometric diagrams, algebraic equations, and tables 
(Grosholz 2007 pp.214-5). 



• By discussing DQA in viewpoint of  how diagrams are used, it is possible 
to support to getting an idea of  what Leibniz’s mathematical practice was 
like.

• Such research will help to clarify the use of  diagrams by European 
mathematicians in the 17th century and characterize the mathematical 
practice of  this period.

• In this talk, we would make use of  some results of  philosophy of  
mathematical practice.



2: ‘Practical’ turn in the philosophy of  mathematics

• Recently, some philosophers of  mathematics focus on and analyze 
practices of  mathematicians. (see Mancosu 2008)

• Various topics are discussed in the philosophy of  mathematical practice. 
For example: cognitive feature of  mathematical symbols, beauty of  
mathematical proof, social aspect of  mathematics, and so on.

• In this talk, we would focus on roles of  diagrams in proof.

• For a long time, philosophers and mathematicians have been wary of  
using diagrams in mathematical proof. One of  the reasons is that using 
diagrams leads to inaccurate inferences. (Leibniz was one of  those 
critics!)



Exactness/Co-exactness distinction

• However, recently, some philosophers begin to acknowledge of  the positive 
roles of  diagrams in proofs. 

• cf. Formalization of  proof  of  Euclid’ Elements. (Avigad et al 2010)

• Manders’s distinction of  Exactness/Co-exactness.(Manders 2008)

• Exactness: Quantitative properties such as the length of  a line segment or the 
bisector of  an angle. It is not possible, in a strict sense, to represent these 
properties using diagrams that always contain minute distortions.

• Co-exactness: Positional or topological relationships between diagram such as 
intersections and contacts. These can be adequately described by diagrams.



• Diagrams do not need to be drawn strictly as long as the positional 
relationship between diagrams can be expressed. 

• The quantitative properties of  diagrams (length of  lines, size of  angles) 
are specified by the text. 

• When we do mathematics, we see texts and diagrams by associating them.

• Mathematics is “a workable cross-reference system between discursive 
text and diagram”(Manders 2008 p.108)



3: Diagrams in DQA

• DQA is one of  the desirable text of  Leibniz‘s mathematical study in that 
it contains much proofs and diagrams. Moreover, there are related texts 
of  DQA, so focusing of  DQA and its drafts, we could understand better 
the development of  Leibniz’s practice of  mathematics. (Crippa 2019 
pp.99-100)



• DQA’s diagrams

• LH 35 2 1 38r 



• DISSERTATIONIS DE 
ARITHMETICA CIRCULI 
QUADRATURA 
PROPOSITIONES SEPTEM 

• Spring, 1676

• A VII 6 N.14

• LH, 35, 2, 1, 85r



• Quadraturae Circuli
Arithmeticae pars prima
April -July 1676 

• A VII 6 N.20

• LH 35, 2, 1, 159v



4: Proof  of  proposition 6 

c



• Proposition 6 and 7 achieve the quadrature of  certain curve by using the 
method of  exhaust and reductio proof. 

• As mentioned earlier, these two propositions are interpreted as a 
philosophical basis of  infinitesimals. (Arthur, Levey, Rabouin,…)

• However, rather, from these two, we could know more about Leibniz’s 
practice of  mathematics.



• Proposition 6:“Continue to construct quadrilaterals, staircase figures, and 
polygons, and rigorously prove that the difference between them and 
between a curve and those diagrams can be smaller than a given quantity 
(which is often assumed by other authors)” (A.VII,6,521)

• Leibniz thinks that this proof  could be skipped for the beginner.

• ‘Reading this proposition can be omitted if  one does not wish a rigorous 
proof of  Proposition 7. And it would be better to ignore it at first and 
read it after one has understood the whole, lest its rigor exhaust the 
immature mind and keep it away from the other attractive parts. ’(A VII, 
6, 527)

• Leibniz seems to think that the proof  of  proposition 6 is less attractive?



Reorganize and analyze proof  of  proposition 6

• Proof  of  proposition 6 consists of  8 steps. But now, we would 
reorganize this proof  as 4 steps:

• 1st step: Drawing (1)

• 2nd step: Diagrammatic reasoning (2-4)

• 3rd step: Generalization (5-6)

• 4th step: Drawing (in imagination) (7-8)



1st step: Drawing

• Proposition 6 
demonstrates that the 
difference between 
B1D1D2D3B3B1 and 
B1N1P1N2P2B3B1 
can be smaller than 
any given quantity.
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1st step: Drawing
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2nd step: Diagrammatic reasoning 
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2nd step: Diagrammatic reasoning 
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2nd step: Diagrammatic reasoning 

• |B1B2D2D1 - B1B2P1N1| < | D1αD2E1|

• This relation is demonstrated by relying on co-exactness properties.



3rd step: generalization
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• |W1 +W2| - |ER1 + ER2| < |W1 +W2 - (ER1 + ER2)| < |W1 - 
ER1| + |W2 - ER2|

• Leibniz relies on |A|-|B| < |A - B|, which is equivalent to the result of  
proposition 3.

• This generalization can be restated as follows: 

1: Case B1 and C1 is demonstrated.

2: The same procedure which conducts the result for case B1 and 

C1 can be utilized for case B2 and C2. 

3: This transit of  procedure can be repeated infinitely to conclude 

the intended result.



• |W1 +W2| - |ER1 + ER2| < |W1 +W2 - (ER1 + ER2)| < |W1 - 
ER1| + |W2 - ER2|

• Leibniz relies on |A|-|B| < |A - B|, which is equivalent to the result of  
proposition 3.

• This generalization can be restated as follows: 

1: Case B1 and C1 is demonstrated.

2: The same procedure which conducts the result for case B1 and 

C1 can be utilized for case B2 and C2. 

3: This transit of  procedure can be repeated infinitely to conclude 

the intended result.
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4th step: drawing (in imagination)

• The sum of  the areas of  CRn is evaluated. 

• The heights BiBj of  each CR are taken not to be equal, but if  the heights 
of  all CR are equal, then the sum of  all the base EiDi+1 multiplied by the 
height is equal to CR. 

• If  the heights are different, then the greatest height multiplied by the 
sum of  the base is equal to or greater than CR.

• So, if  the value obtained by multiplying the maximum height by the sum 
of  the base is H, CR = CR1 + CR2 + CR3 … < H is obtained.



4th step: drawing (in imagination)

• From above, we can claim that |W1 +W2| - |ER1 + ER2| < |W1 +W2 - (ER1 + 
ER2)| < |W1 - ER1| + |W2 - ER2|+ …< CR1 + CR2 +…<H .

• H is the sum of  the base multiplied by the maximum height of  CR, but by making 
the curve segment finer, the 'maximum height' can also be made smaller. 

• Therefore, the value of  H can also be made smaller. This results that the difference 
between the sum of  the ER and the area of  linear and curve can be reduced to any 
extent.

• By continuing the division of  the curve indefinitely, the difference between the sum 
of  ER and the area of  W can be reduced to zero. 

• In other words, it can be concluded that the sum of  ER and the area of  W are equal.

• What makes this generalization possible?



Which is more productive?

B, (B), ((B)), (((B))),….. B1, B2, B3, B4….



• ‘Semper ergo summa horum rectangulorum adeoque et differentia spatii gradiformis
et mixtilinei novi,quae ipsa minor ostensa est, erit quantitas aliqua quantumlibet parva, 
adeoque qualibet assignata minor reddi potest. Quod ostendendum erat./Si curva
aliqua transire intelligeretur, per omnia puncta N (N) ((N)) adhuc facilius id 
demonstrabitur, quia et summa exiguorum Triangulorum ut NP(N) etiam quavis data 
quantitate minor eodem modo reddi potest. 

• [If  it were understood that a certain curve should pass through all the points N (N) 
((N)) it would still be more easily demonstrated, because the sum of  small triangles 
such as NP(N) can also be rendered smaller by any given quantity in the same way]’ 
(A VII 6 140)

• This draft says that it it the role of  the text that guarantees that recursive procedure is 
possible. 

• In DQA, this guarantee made by diagrams and parameter.



5: Visualization of  proof  procedure

• We claim that diagram in proof  6 has a function that visualizing a 
recursive procedure.

• Leibniz utilizes not only diagrams, but also index of  symbols to 
determinate the area bounded by curve by finite procedure. 

• More specifically, firstly the proof  is made based on diagrammatic 
reasoning, then goes to generalization by letting the reader draw 
imaginatively the same procedure.



• It is visually shown that if  the same operation is continued, the 
difference will be zero.

• “The earlier objects used in the method are interpreted as special cases 
of  new objects”. (Knobloch 2016 p.103)

• Notation of  B1, B2, B3, B4…., not B, (B), ((B)), (((B))),….. could be 
thought as an assist to such generalization.



With or without loss of  generality?

• It is true that Leibniz utilized diagrams effectively in mathematical proof, 
however, the question of  whether this really worked remains.

• For example: the problem of  generality. Relying diagrams in a proof  may 
lose generality. 

• As for the proof  of  proposition 6, Leibniz keep generality of  procedure, 
that is, he made possible to transit from an earlier step to a newer step 
based on diagrams and parameter.

• Of  course, this method itself  does not always work. In the letter to 
Bodenhausen in 5. Nov. 1690 , Leibniz confesses that his method in 
DQA is overcome by his new differencial calculus. (A III 4 637, cf. 
Knobloch 2016)



6: Conclusion

• We analyze the proof  of  proposition 6 in DQA from viewpoint of  
philosophy of  mathematical practice.

• Leibniz uses diagram and parameter to prove that the procedure which 
used for a particular case can be repeated infinitely to determinate the 
area. 

• Some change of  symbolic notation from the draft of  DQA to DQA 
shows that we could see some development of  ideas of  how diagrams 
are used in Leibniz’s mathematics.

• By conducting such analysis more broadly, we could reveal more detailed 
of  the mathematical practice of  Leibniz.
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