NONLINEAR OBSERVERS APPEARING IN DYNAMICAL MACHINE VISION

HIROSHI INABA

DIRECTOR OF THE RESEARCH INSTITUTE OF SCIENCE AND TECHNOLOGY
COE CONTROL GROUP LEADER AND
TOKYO DENKI UNIVERSITY

Presented at Dalian Institute of Technology 29 March 2004

CONTENTS

- I. INTRODUCTION
- II. PERSPECTIVE LINEAR SYSTEMS
- III. LUENBERGER-TYPE NONLINEAR OBSERVERS
- IV. COMPUTER SIMULATIONS
- V. CONCLUDING REMARKS

I. INTRODUCTION

The essential problem in *dynamical machine vision* is how to determine the position and the shape of a moving rigid body from knowledge of the associated *optical flow*.

A *perspective dynamical system* arises from such a *machine vision problem*, and this essential problem is to estimate the unknown state and to identify the unknown parameters for such a system based on *perspective observation* (optical flow).

This talk presents a generalization of our previous result on nonlinear observers for perspective linear systems with a *single observing point* to those with a *multiple observing points*.

II. PERSPECTIVE LINEAR SYSTEMS

What is *perspective observation*?

What is a *perspective linear system*?

Consider the following simple example in which only one point is observed:

Fig. 2. A two-degree-of-freedom system

Introduce the state vector $x = [x_1 \cdots x_5]^T$ as

$$X_1 := \xi_1, X_2 := \dot{\xi}_1, X_3 := \xi_2, X_4 := \dot{\xi}_2, X_5 := \eta_1 = \eta_2 \equiv \eta_c.$$

Then this system can be described in the form

PLS:
$$\begin{cases} \dot{x}(t) = Ax(t) + v(t), & x(0) = x_0 \in \mathbb{R}^5 \\ y(t) = h(Cx(t)) \end{cases}$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & 0 & \frac{k_1}{m_1} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \frac{k_2}{m_2} & 0 & -\frac{k_2}{m_2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad v(t) = \begin{bmatrix} 0 \\ \frac{k_1}{m_1} \\ 0 \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$C = \begin{bmatrix} \hat{C} \\ \tilde{C} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cos \theta & 0 & -\sin \theta \\ 0 & 0 & \sin \theta & 0 & \cos \theta \end{bmatrix},$$

and the observation obtained by the CCD is one-dimensional, and is given as a rational function of the state variables x_1, \dots, x_5 of the form

$$y = h(Cx) = \frac{\hat{C}x}{\tilde{C}x} = \frac{x_3 \cos \theta - x_5 \sin \theta}{x_3 \sin \theta + x_5 \cos \theta}.$$

Such a system is called a perspective linear system.

Now consider a *perspective linear system* with multiple observing points on a moving body. Then assuming that the motion of the moving body is described as a linear differential equation, our *perspective linear system* with *p* observing points is described as

PLSM:
$$\begin{cases} \dot{x}(t) = Ax(t) + v(t), & x(0) = x_0 \in \mathbb{R}^n \\ y(t) = H(Cx(t)) \in \mathbb{R}^{2p} \end{cases}$$

where

 $x(t) \in \mathbb{R}^n$: the entire state of the moving bodies

 $v(t) \in \mathbb{R}^n$: the external input, and $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{(3p) \times n}$

 $y(t) \in \mathbb{R}^{2p}$: the *perspective observation vector*

 $H: \mathbb{R}^n \to \mathbb{R}^{2p}$: a function of the form

$$y(t) = H(Cx(t)) = \begin{bmatrix} h(C^{(1)}x(t)) \\ \vdots \\ h(C^{(p)}x(t)) \end{bmatrix} = \begin{bmatrix} y^{(1)}(t) \\ \vdots \\ y^{(p)}(t) \end{bmatrix} \in \mathbb{R}^{2p},$$

each $y^{(k)}(t) = h(C^{(k)}x(t))$ representing the perspective observation generated by the k-th observing point, and

$$h(\xi) := \begin{bmatrix} \frac{\xi_1}{\xi_3} & \frac{\xi_2}{\xi_3} \end{bmatrix}^T, \quad \xi = \begin{bmatrix} \xi_1 & \xi_2 & \xi_3 \end{bmatrix}^T, \quad \xi_3 \neq 0$$

$$C = \begin{bmatrix} C^{(1)T} & \cdots & C^{(p)T} \end{bmatrix}^T \text{ with } C^{(k)} \in \mathbb{R}^{3 \times n}.$$

The objective of this talk is to show that, under suitable conditions on a given perspective linear system PLSM, including

- (i) PLSM is Lyapunov stable,
- (ii) PLSM satisfies some sort of detectability condition,

it is possible to construct a *Luenberger-type nonlinear observer* whose estimation error converges *exponentially to zero*.

III. LUENBERGER-TYPE NONLINEAR OBSERVERS

Now, consider a full-order *observer* for a perspective linear system of the form

PLSM:
$$\begin{cases} \dot{x}(t) = Ax(t) + v(t), & x(0) = x_0 \in \mathbb{R}^n \\ y(t) = H(Cx(t)) \in \mathbb{R}^{2p} \end{cases}$$

First, notice that a full-order state observer for PLS generally has the form

$$\frac{d}{dt}\hat{x}(t) = \varphi(\hat{x}(t), v(t), y(t)), \quad \hat{x}(0) = \hat{x}_0 \in \mathbb{R}^n$$

which satisfies that for any $V(\cdot)$

$$\hat{x}(0) = x(0) \Rightarrow \hat{x}(t) = x(t), \quad \forall t \geq 0.$$

Thus, we may assume that $\varphi(\hat{x}, v, y)$ has the form

$$\varphi(\hat{x}, v, y) = A\hat{x} + v + r(\hat{x}, y)$$

where $r(\hat{x}, y)$ is any function satisfying $r(x, h(Cx)) = 0, \forall x \in \mathbb{R}^n$. Further, for such a function $r(\hat{x}, y)$, we may take

$$r(\hat{x}, y) = K(y, \hat{x})[y - h(C\hat{x})]$$

where $K(y, \hat{x})$ is any sufficiently smooth matrix-valued function.

These choices of functions lead to a *nonlinear observer of the Luen-berger-type*:

NLO:
$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + v(t) + K(y(t), \hat{x}(t))[y(t) - h(C\hat{x}(t))],$$

where $\hat{x}(0) = \hat{x}_0 \in \mathbb{R}^n$ and $K : \mathbb{R}^{2p} \times \mathbb{R}^n \to \mathbb{R}^{n \times (2p)}$ is called an *observer gain matrix*.

In what follows, let us consider a suitable form of the gain matrix $K(y, \hat{x})$. First, introducing the following notations

$$Cx = \begin{bmatrix} C^{(1)} \\ \vdots \\ C^{(p)} \end{bmatrix} x$$

$$= \begin{bmatrix} \xi_1^{(1)} & \xi_2^{(1)} & \xi_3^{(1)} & \cdots & \xi_1^{(p)} & \xi_2^{(p)} & \xi_3^{(p)} \\ \hline = (C^{(1)}x)^T & & = (C^{(p)}x)^T \end{bmatrix}^T,$$

$$= \xi \in \mathbb{R}^{3p}$$

and similarly $C\hat{x} =: \hat{\xi} \in \mathbb{R}^{3p}$, and use them to simplify the term $y - H(C\hat{x})$ as follows:

$$y - H(C\hat{x}) = H(Cx) - H(C\hat{x})$$

$$\begin{bmatrix} \frac{\xi_{1}^{(1)}}{\xi_{3}^{(1)}} - \frac{\hat{\xi}_{1}^{(1)}}{\hat{\xi}_{3}^{(1)}} \\ \frac{\xi_{1}^{(1)}}{\xi_{3}^{(1)}} - \frac{\hat{\xi}_{1}^{(1)}}{\hat{\xi}_{3}^{(1)}} \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\hat{\xi}_{1}^{(1)}} \\ \frac{1}{\hat{\xi}_{3}^{(1)}} \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{\xi_{1}^{(1)}}{\xi_{3}^{(1)}} \\ 0 & 1 & -\frac{\xi_{2}^{(1)}}{\xi_{3}^{(1)}} \end{bmatrix} \begin{bmatrix} \xi_{1}^{(1)} - \hat{\xi}_{1}^{(1)} \\ \xi_{2}^{(1)} - \hat{\xi}_{2}^{(1)} \\ \xi_{3}^{(1)} - \hat{\xi}_{3}^{(1)} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\frac{\xi_{1}^{(p)}}{\xi_{3}^{(p)}} \\ \frac{1}{\hat{\xi}_{3}^{(p)}} - \frac{\hat{\xi}_{1}^{(p)}}{\hat{\xi}_{3}^{(p)}} \end{bmatrix} \begin{bmatrix} \frac{\xi_{1}^{(p)} - \hat{\xi}_{1}^{(p)}}{\xi_{3}^{(p)}} \end{bmatrix} \begin{bmatrix} \xi_{1}^{(p)} - \hat{\xi}_{1}^{(p)} \\ \xi_{2}^{(p)} - \hat{\xi}_{2}^{(p)} \\ \xi_{3}^{(p)} - \hat{\xi}_{3}^{(p)} \end{bmatrix}$$

Dalian Institute of Technology 29 March 2004

$$= \begin{bmatrix} \frac{1}{\hat{\xi}_{3}^{(1)}} \begin{bmatrix} I_{2} & -y^{(1)} \end{bmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\hat{\xi}_{3}^{(p)}} \begin{bmatrix} I_{2} & -y^{(p)} \end{bmatrix} \end{bmatrix} (\xi - \hat{\xi})$$

$$= E(\hat{x})B(y)C\rho$$

where I_2 indicates the 2×2 identity matrix and

$$E(\hat{x}) \coloneqq \begin{bmatrix} \frac{1}{C_3^{(1)}\hat{x}}I_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{C_3^{(p)}\hat{x}}I_2 \end{bmatrix} \in \mathbb{R}^{2p}$$

$$B(y) \coloneqq \begin{bmatrix} I_2 & -y^{(1)} \end{bmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \begin{bmatrix} I_2 & -y^{(p)} \end{bmatrix} \end{bmatrix} \in \mathbb{R}^{(2p)\times(3p)}$$

$$\rho \coloneqq x - \hat{x}.$$

Then one obtains

$$K(y,\hat{x})[y-H(C\hat{x})] = K(y,\hat{x})E(\hat{x})B(y)C\rho$$

and hence to eliminate from this expression all the denominators $C_3^{(k)}\hat{x}$ appearing in $E(\hat{x}(t))$, one can choose a gain matrix $K(y,\hat{x})$ of the form:

$$K(y,\hat{x}) = P^{-1}C^*B^*(y)E^{-1}(\hat{x})$$

where C^* indicates the complex conjugate transpose of C and $P \in \mathbb{R}^{n \times n}$ is an appropriately chosen matrix, which is considered to be a *free parameter* for the gain matrix. And with this choice for $K(y, \hat{x})$, the Luenberger-type nonlinear observer becomes

NLO:
$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + v(t) + P^{-1}C^*B^*(y(t))E^{-1}(\hat{x}(t))[y(t) - H(C\hat{x}(t))],$$
$$\hat{x}(0) = \hat{x}_0 \in \mathbb{R}^n$$

where $P \in \mathbb{R}^{n \times n}$ is an appropriately chosen *free parameter matrix*.

Now, for what follows, introduce the following notations:

 $\sigma_s(A) := \{\lambda \in \sigma(A) | \operatorname{Re} \lambda < 0\}, \ \sigma_{us}(A) := \{\lambda \in \sigma(A) | \operatorname{Re} \lambda \ge 0\},$

 W_s , W_{us} : the generalized eigenspaces corresponding to $\sigma_s(A)$, $\sigma_{us}(A)$, respectively

 $\pi_s: \mathbb{C}^n \to W_s$: the projection operator along W_{us}

 $\pi_{us}: \mathbb{C}^n \to W_{us}:$ the projection operator operators along W_s .

Next, we make various conditions on PLSM, which seem to be necessary and/or reasonable from the viewpoint of machine vision.

ASSUMPTION.

(i) PLSM is *Lyapunov stable*, i.e.,

$$\sigma(A) = \sigma_{S}(A) \cup \sigma_{US}(A)$$

where

 $\sigma_s(A)$: the set of eigenvalues with strictly negative real part $\sigma_{us}(A)$: the set of eigenvalues with zero real part.

(ii) y(t) is a *continuous and bounded function*, that is,

$$y(\cdot) \in C^m[0,\infty) \cap L_\infty^m[0,\infty).$$

(iii) Let

 W_s , $W_{us} \subset \mathbb{C}^n$: the generalized eigenspaces corresponding to $\sigma_s(A)$ and $\sigma_{us}(A)$ respectively,

 $E_{us} = [\xi_1 \quad \cdots \quad \xi_r]$: a basis matrix for W_{us} with $r := \dim W_{us}$.

Then, $\exists T > 0$ and $\exists \varepsilon > 0$ such that

$$\int_0^T E_{us}^* e^{A^*\tau} C^* B^* (y(t+\tau)) B(y(t+\tau)) C e^{A\tau} E_{us} d\tau \geq \varepsilon I_r, \quad \forall t \geq 0.$$

REMARK. All the conditions given in Assumption are reasonable requirements from the viewpoint of machine vision.

- (i) Assumption (i) is imposed to ensure that if $v(t) \equiv 0$ then the motion of a moving body take places within *a bounded region*.
- (ii) Assumption (ii) is imposed to ensure that the motion x(t) described by PLS is smooth enough and takes place inside *a conical* region centered at the camera so as to produce a continuous and bounded measurement y(t) on the image plane. In particular, it is assumed that the motion never crosses the plane $C_{m+1}x = 0$, and hence takes place only on one side of the camera.
- (iii) Assumption (iii) ensures *some sort of detectability* of the perspective system PLS, and *the external input being not identically zero*. These facts will be cited in the following proposition.

PROPOSITION. Assume that PLSM is Lyapunov stable, let A_{us} denote the unstable part of the matrix A and $setC_{us} := CE_{us}$. If Assumption (iii) is satisfied, then the following statements hold true.

- (i) (C, A) is a detectable pair, that is, the unstable part (C_{us}, A_{us}) of (C, A) is observable.
- (ii) The external input v(t) is *never identically zero*.

MAIN THEOREM

THEOREM (LUENBERGER-TYPE NONLINEAR OBSERVERS).

Assume that PLSM satisfies the Assumption and consider a nonlinear observer of the Luenberger-type, i.e.,

NLO:
$$\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + v(t) + P^{-1}C^*B^*(y(t))E^{-1}(\hat{x}(t))[y(t) - H(C\hat{x}(t))],$$
$$\hat{x}(0) = \hat{x}_0 \in \mathbb{R}^n$$

and the differential equation for the estimation error $\rho(t) := x(t) - \hat{x}(t)$, i.e.,

$$\frac{d}{dt}\rho(t) = [A - P^{-1}C^*B^*(y(t))B(y(t))C]\rho(t),$$
$$\rho(0) = x(0) - \hat{x}(0) \in \mathbb{R}^n.$$

Further, let $\pi_-: \mathbb{C}^n \to W_-$, $\pi_0: \mathbb{C}^n \to W_0$ denote the matrix representations of the projection operators along W_0 , W_- , respectively, and $P \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix satisfying the Lyapunov inequality

$$A^*P + PA \le -a\pi_-^*\pi_-$$

where a > 0 is a constant.

Then, $\rho(t)$ converges exponentially to zero, that is, there exist $\alpha > 0, \beta > 0$ such that

$$\|\rho(t)\| := \|x(t) - \hat{x}(t)\| \le \beta e^{-\alpha t} \|\rho(0)\|, \ \forall t \ge 0.$$

IV. COMPUTER SIMULATIONS

EXAMPLE 1.

The first example we consider is the system with the following data:

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$
 $V(t) = 2\pi \begin{bmatrix} -\sin(2\pi t) & \cos(2\pi t) & 0 \end{bmatrix}^T$
 $X_0 = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$.

Then, the trajectories of the state x(t) and the perspective observation y(t) given as

$$y(t) = [y_1(t) \ y_2(t)]^T = [(x_1(t) + x_3(t))/x_3(t) \ (x_2(t) + x_3(t))/x_3(t)]^T$$
 are depicted below:

Next, for the observer, we set the following data:

$$\hat{x}_0 = \begin{bmatrix} 5 & 5 & 6 \end{bmatrix}^T$$
, $P^{-1} = \text{diag} \{ 30, 30, 30 \}$.

The result is depicted below:

EXAMPLE 2.

The second we consider is the following two-degree-of freedom system:

Fig. 2. A two-degree-of-freedom system

Introduce the state vector $x = [x_1 \cdots x_5]^T$ as

$$x_1 \coloneqq \xi_1, x_2 \coloneqq \dot{\xi}_1, x_3 \coloneqq \xi_2, x_4 \coloneqq \dot{\xi}_2, x_5 \coloneqq \eta_1 = \eta_2 \equiv \eta_c.$$

Then this system can be described in the form

$$\begin{cases} \dot{x}(t) = Ax(t) + v(t), & x(0) = x_0 \in \mathbf{R}^5 \\ y(t) = h(Cx(t)) \end{cases}$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & 0 & \frac{k_1}{m_1} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \frac{k_2}{m_2} & 0 & -\frac{k_2}{m_2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & \cos\theta & 0 & -\sin\theta \\ 0 & 0 & \sin\theta & 0 & \cos\theta \end{bmatrix}, v(t) = \begin{bmatrix} 0 \\ \frac{k_1}{m_1} \\ 0 \\ 0 \\ 0 \end{bmatrix} u(t)$$

and the observation is given in the form

$$y = h(Cx) = \frac{x_3 \cos \theta - x_5 \sin \theta}{x_3 \sin \theta + x_5 \cos \theta}.$$

Next, the numerical values for simulation are set as follows: For the perspective system,

$$m_1 = 2$$
, $m_2 = 1$, $k_1 = 2$, $k_2 = 1$, $\theta = 0.5$ [rad], $\omega = 1$ [rad], $q = 1$, $x(0) = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.1 & 0.5 \end{bmatrix}^T$

and for the observer,

$$\hat{x}(0) = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \end{bmatrix}^{T}$$

$$P^{-1} = \begin{bmatrix} 1.1665 & -0.0000 & -0.6905 & 0.0000 & 0 \\ -0.0000 & 2.0950 & -0.0000 & -1.8571 & 0 \\ -0.6905 & -0.0000 & 1.6425 & -0.0000 & 0 \\ 0.0000 & -1.8571 & -0.0000 & 2.3330 & 0 \\ 0 & 0 & 0 & 0 & 0.2562 \end{bmatrix}$$

where P is a suitably chosen solution of the matrix equation $A^*P + PA = 0$. The time evolutions of each component of the estimation error $\rho(t) = x(t) - \hat{x}(t)$ are depicted in Fig. 3, and the results show that the observer works well.

It should be noted that theoretically the matrix P above can be replaced with any matrix of the form μP with $\mu > 0$ to obtain a different convergence property of the estimation error, and further that it can be also replaced with any solution of the Lyapunov inequality $A^*P + PA \leq 0$. However, various numerical simulation results with different $\mu > 0$ show that either case $\mu \gg 1$ or $0 < \mu \ll 1$ does not seem to provide a nicer convergence property. Thus more details of this point should be studied as a future problem.

V. CONCLUDING REMARKS

This paper studied the state estimation problem for a *perspective linear* system with multiple observing points arising in machine vision.

- (1) A Luenberger-type nonlinear observer was proposed, and it was shown that under some reasonable assumptions on a perspective system it is possible to construct such a nonlinear observer whose estimation error converges exponentially to zero.
- (2) There are several *future problems* to be studied.
 - (a) First, although Assumption (iii) is obviously related to the *detect-ability condition*, the detail should be investigated. Furthermore, *how to check the condition (iii)* is an important future problem to be studied.
 - (b) Further, in constructing the proposed nonlinear observer, there is a

free matrix parameter P > 0 to be chosen. This parameter seems to essentially determine the *speed of error convergence* of the observer, but no explicit discussion has been given to this problem.

- (c) Another important future problem is to investigate the sensitivity of the proposed observer to *noisy observation*.
- (d) Finally, it is natural to consider the problem of extending the proposed observer to a perspective *time-varying* linear system of the form

$$\begin{cases} \dot{x}(t) = A(t)x(t) + v(t), & x(0) = x_0 \in \mathbf{R}^n \\ y(t) = h(C(t)x(t)). \end{cases}$$

REFERENCES

- [1] R. Abdursul, H. Inaba and B. K. Ghosh, Nonlinear observers for perspective time-invariant linear systems, *Automatica*, vol. 40, Issue 3, pp. 481-490, 2004.
- [2] R. Abdursul and H. Inaba, Nonlinear observers for perspective time-varying linear systems, *WSEAS Transactions on Systems*, vol. 3, pp.182-188, 2004.
- [3] R. Abdursul, H. Inaba and B. K. Ghosh, Luenberger-type observers for perspective linear systems, *Proceedings of the European Control Conference*, *CD-ROM*, Porto, Portugal, September 2001.
- [4] B. K. Ghosh and E. P. Loucks, A perspective theory for motion and shape estimation in machine vision, *SIAM Journal on Control and Optimization*, vol.35, pp.1530-1559, 1995.
- [5] B. K. Ghosh, M. Jankovic and Y. T. Wu, Perspective problems in system theory and its applications to machine vision, *Journal of*

- Mathematical Systems, Estimation and Control, vol.4, pp.3-38, 1994.
- [6] B. K. Ghosh, H. Inaba and S. Takahashi, Identification of Riccati dynamics under perspective and orthographic observations, *IEEE Transactions on Automatic Control*, vol. 45, pp. 1267-1278, 2000.
- [7] W. P. Dayawansa, B. K. Ghosh, C. Martin and X. Wang, A necessary and sufficient condition for the perspective observability problem, *Systems and Control Letters*, vol.25, pp.159-166, 1993.
- [8] H. Inaba, A. Yoshida, R. Abdursul and B. K. Ghosh, Observability of perspective dynamical systems, *IEEE Proceedings of Conference on Decision and Control*, pp.5157-5162, Sydney, Australia, December 2000.
- [9] A. Matveev, X. Hu, R. Frezza and H. Rehbinder, Observers for systems with implicit output, *IEEE Transactions on Automatic Control*, vol. 45, pp.168-173, 2000.

- [10] S. Soatto, R. Frezza and P. Perona, Motion estimation via dynamic vision, *IEEE Transactions on Automatic Control*, vol. 41, pp.393-413, 1996.
- [11] M. Jankovic and B. K. Ghosh, Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer, *Systems and Control Letters*, vol. 25, pp. 63-73, 1995.
- [12]B. K. Ghosh and J. Rosenthal, A generalized Popov-Belevitch-Hautus test of observability, *IEEE Transactions on Automatic Control*, vol. 40, pp.176-1180, 1995.
- [13] R. F. Curtain and H. J. Zwart, *An Introduction to Infinite-Dimensional Linear Systems Theory*, Springer- Verlag, 1995.