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I.  INTRODUCTION 

(1) The essential problem in dynamical machine vision is how to de-
termine the position and the shape of a moving rigid body from 
knowledge of the associated optical flow. 

(2) A perspective dynamical system arises from such a machine vi-
sion problem, and this essential problem is described as the state 
estimation and parameter identification problem for such a system 
based on perspective observation (optical flow). 

What is perspective observation? 
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(3) A perspective linear system we introduce in this paper is de-
scribed as 

(1.1)         




=
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tCxhty
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A simplified 3-dimensional machine vision problem has an ob-
servation of the form 

)(:][][ 323121 Cxhxxxxyyy TT === , 
where  and  (the identity matrix). Therefore, 
y  is represented as a perspective observation of the form (1.1). 

 2,3 == mn 3IC =

(4) This problem has been formulated and studied in a number of ap-
proaches. One of the interesting approaches is to formulate such a 
problem by introducing a notion of implicit observation.  

(5) In the present paper, we propose a Luenberger-Type nonlinear 
observer for perspective linear systems without using the notion 
of implicit observation, and investigate its convergence problem. 
More precisely, it is shown that, under suitable conditions on a 
given perspective linear systems, including 

(a) System (1.1) is Lyapunov stable, 
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(b) it satisfies some sort of detectability condition, 
it is possible to construct a nonlinear observer of Luenberger-type 
whose estimation error converges exponentially to zero. 

(6) Finally, using some simple examples appearing in machine vision, 
some numerical results are presented to illustrate the proposed 
nonlinear observer. The numerical results show that the observer 
proposed works well. 
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II.  PRELIMINARIES 

BASIC NOTATIONS 
CR, : the fields of real and complex numbers, respectively. 

nn CR ,  : the Euclidean vector spaces with norm x .  

For a matrix  or , nmM ×∈R nmM ×∈C

(2.1)         }1max{: == xMxM , 

*M : the conjugate transpose of . M
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 )
)or(),0[: CR→∞f

FUNCTION SPACES 

The Lebesgue space is the set of functions 
 with the norm given by 

,0[ ∞pL

1
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







∞=∞∈

∞∈








= ∫
∞

.    },),0[)(sup{

),1[        ,)(
: 0

pttf

pdttf
f

pp

p  
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Similarly  is defined.  ),0[ ∞×nm
pL
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In particular, the following norms are used later: 

(2.4)          
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GENERALIZED EIGENSPACES 

For a complex matrix , let 
)(M

nmM ×∈C
σ  : the set of all the eigenvalues of , 

C⊂= },,{ λλ
M

)( 1 qMσ L , 
n

kW C⊂ : the generalized eigenspace with respect to .  kλ
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Then, it is well known that 
(a)  is a set of linearly independent subspaces,  

 

},,{ 1 qWW L

(b) , n
qWW C=⊕⊕L1

(c)  is A-invariant, i.e., .  kW kk WAW ⊂

Next, for a matrix , let nnA ×∈C

(2.5) }0Re)({:)( <∈= λσλσ ｜AAs , }0Re)({:)( ≥∈= λσλσ ｜AAus . 

uss WW , : the generalized eigenspaces corresponding to 
)(),( AA σ ussσ , respectively, 

uss ππ ,  : the matrix representations of the projection operators 
n , n  along with , respec-

tively. 
sW→C usW→C sus WW ,
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Then: 
(a) ,  uss

n WW ⊕=C
(b) sss WW ⊂π , ususus WW ⊂π , 
(c)  and . AA ss ππ = AA usus ππ =
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NNEECCEESSSSAARRYY  LLEEMMMMAASS  

(2.6) LEMMA. Let , and consider  nnA ×∈C
nxxtAxtx C∈== 0)0(    ),()(& .             (＊) 

Then:  
(i)   System (＊) is asymptotically stable 

nn× *⇔ Q∈∀ C
0* >= P

 with ,  with  
 satisfying the Lyapunov equation 

∗

0>= QQ nnP ×∈∃ C
P

QPAPA −=+ . 
(ii) System (＊) is Lyapunov stable 

nn× *⇔∃P∈C  with  satisfying 0>= PP
0≤+ ∗PAPA . 
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(iii) (1) is Lyapunov stable 

0>∀⇒ a ,  satisfying  and 
*∗

nnP ×∈∃ C 0* >= PP

ssaPAPA ππ−≤+ .                  (4) 
□ 

Notice that  is a nonnegative and Hermitian matrix. nn
ssaQ ×∈= Rππ *:
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(2.7) LEMMA. Let  and assume that  is continu-
ously differentiable. Let  and consider 

)()( RnnLA ×
∞∈⋅
R∈0t

)(tA

nxtxtxtAtx R∈== 00 )(    ),()()(& .            (＊) 
Then: 

System (＊) is exponentially stable, i.e.,  and  such 
that and n  

0>∃α 0>∃β
00 ≥∀t tx R∈∀ )( 0

)
0

(
0 ,)()( 0 ttetxtx tt ≥∀≤ −−αβ  

⇔   such that 0>∃γ
2

0
2 )()(

0
txdttx

t
γ≤∫

∞
,   and .  □ 00 ≥∀t ntx R∈∀ )( 0
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III.  NONLINEAR OBSERVERS OF THE LUENBERGER-TYPE 

In this section, we propose and study an observer for 

(1.1)          




=
∈=+=

))(()(
)0(),()()( 0

tCxhty
xxtvtAxtx nR&

Notice that a full-order state observer for (1.1) generally has the form 

(3.1)       nxxtytvtxtx
dt
d R∈== 0ˆ)0(ˆ    )),(),(),(ˆ()(ˆ ϕ  

and it must satisfy that for any  )(・v

0),()(ˆ)0()0(ˆ ≥∀=⇒= ttxtxxx . 
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Thus, we may assume that ),,ˆ( yvxϕ  has the form 

),ˆ(ˆ),,ˆ( yxrvxAyvx ++=ϕ  

where  is any function satisfying  
ther, as such a function ),ˆ( yxr , we may take  

),ˆ( yxr nxCxhxr R∈∀= ,0))(,( . Fur-

)]ˆ()[ˆ,(),ˆ( xChyxyKyxr −= , 

where  is any sufficiently smooth function. )ˆ,( xyK
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These choices of functions lead to a nonlinear observer of the Luen-
berger-type (D. G. Luenberger, An introduction to observers, IEEE 
Trans. Automatic Control, Vol. AC-16, 569-603, 1971): 

(3.2) 
nxxtxChtytxtyKtvtxAtx

dt
R∈=−++= 0ˆ)0(ˆ))],(ˆ()())[(ˆ),(()()(ˆ)(ˆd  

where  is a suitably chosen matrix-valued function, called an 
observer gain matrix.  

 

ˆ

)ˆ,( xyK

In what follows, let us consider a suitable form of the gain matrix 
),( xyK . 
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First, noticing that 
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we easily obtain 

(3.3) 
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where  

(3.4)             [ ]




−=
∈−= +×

.ˆ:
:)( )1(

xx
yIyB mm

m

ρ
R

The structure of (3.3) suggests a gain matrix  of the form )ˆ,( xyK

(3.5)            , )(ˆ)ˆ,( **1
1 yBCPxCxyK m

−
+=

so that the Luenberger-Type nonlinear observer becomes 

(3.6) 
n

m xxtxChtyyBCPxC

tvtxAtx
dt
d

R∈=−+

+=

−
+ 0

**1
1 ˆ)0(ˆ))],(ˆ()()[(ˆ              

)()(ˆ)(ˆ
 

where  is an appropriately chosen free parameter matrix. nnP ×∈R
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Now, we make various conditions on System (1.1), which seem to be 
necessary and/or reasonable from the viewpoint of machine vision. 

(3.7) ASSUMPTION. 
(i)  System (1.1) is Lyapunov stable, i.e., 

)()()( AAA uss σσσ ∪=  
where 

)(Asσ :  the set of eigenvalues with strictly negative real part 

)(Ausσ : the set of eigenvalues with zero real part. 

(ii)   is a continuous and bounded function, that is, )(ty

),0[),0[)( ∞∩∞∈ ∞
mm LCy・ . 
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(iii) Let 
n

uss WW C⊂, : the generalized eigenspaces corresponding to 
)(Asσ  and )(Ausσ  respectively, 

W r][ 1 rusE ξξ L= : a basis matrix for  with . us usWdim:=

Then,  and  such that 0>∃T 0>∃ε

  . 0   ,))(())((**
0

* *
≥∀≥++∫ tIdECetyBtyBCeE rus

AT A
us ετττ ττ

□ 
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(3.8) REMARK. All the conditions given in Assumption (3.7) are rea-
sonable requirements from the viewpoint of machine vision. 

(i)  The condition (i) is imposed to ensure that if  then the 
motion of a moving body take places within a bounded region. 

0)( ≡tv

(ii)  The condition (ii) is imposed to ensure that the motion  de-
scribed by (1) is smooth enough and takes place inside a conical 
region centered at the camera so as to produce a continuous and 
bounded measurement )(ty  on the image plane. In particular, it is 
assumed that the motion never crosses the plane 0=xC , and 
hence takes place only on one side of the camera.  

)(tx

1+m

(iii)  The condition (iii) ensures some sort of detectability of the per-
spective system (1.1), and further the external input being identi-
cally zero. These facts will be cited in Proposition 3.9.  □ 
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)(()(,)0(),()()(     (1.1)
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If
 (3.9) PROPOSITION.  Assume that System (1.1) is Lyapunov stable, let 
A  denote the unstable part of the matrix A and set CEC =: .   
Assumption 3.7 (iii) is satisfied, then the following statements hold true. 

),( AC ),( AC

us usus

(i)  is a detectable pair, that is, the unstable part  
of )A  is observable. 

usus
,(C

(ii) The external input  is never identically zero.  □ )(tv
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MAIN THEOREM 
(3.10) THEOREM (LUENBERGER-TYPE NONLINEAR OBSERVERS). 
Assume that System (1.1) satisfies Assumption 3.7 and consider a 
nonlinear observer of the Luenberger-type, that is, 

d

nxx

txChtytxtyKtvtxAtx
dt

R∈=

−++=

0ˆ)0(ˆ                                                         

))],(ˆ()())[(ˆ),(()()(ˆ)(ˆ
      (1) 

where the gain matrix is given by 

[ ] )1(**1
1 :)(),(ˆ:)ˆ,( +×−
+ ∈−== mm

mm yIyByBCPxCxyK R .   (2) 

Further, let 
C:π s

n
s W→  denote the projection operator, 

nnP ×∈R  be a symmetric positive definite matrix satisfying 
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0,** >−≤+ aaPAPA ssππ .                 (3) 

Then, the following statements hold. 
(i)  The estimation error 

)(ˆ)(:)( txtxt −=ρ                      (4) 

satisfies the differential equation 
d ntCtyBtyBCPAt
dt

R∈−= ∗− )0(),(]))(())(([)( *1 ρρρ .   (5) 

(ii)  converges exponentially to zero, that is, there exist 
0, >β

)(tρ
0>α  such that 

0,)0()(ˆ)(:)( ≥∀≤−= − tetxtxt t ρβρ α .        (6) 
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SKETCH OF PROOF: The statement (i) can be easily verified. Therefore, 
only the statement (ii) is briefly proved.  

To prove (ii), it suffices to show by virtue of Lemma 2.7 that 
22 )0()(

0
ργρ ≤∫

∞ dttt                   (7) 

where 0>γ  is a constant, independent of . )0(ρ
Using the notations in Theorem 3.10, define 

0         ),(:)(    ),(:)( ≥∀== ttttt ususss ρπρρπρ .      (8) 

Then, since , one has uss
n WW ⊕=C

)()()( ttt uss ρρρ += ,                   (9) 

which together with (5), (3) and (9) easily gives 
22 )())((2)( ))()(( tCtyBtatPt

dt
d

s ρρρρ −−≤∗ . 
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Hence, for any , 0≥t

,)())((2)()0()0(

)()(0

0
2

0
2

∫∫ −−≤

≤
∗

∗

tt
s dssCsyBdssaP

tPt

ρρρρ

ρρ
 

which leads to the following inequalities: 










≥∀≤

≥∀≤

≥∀≤

∗

∗

∗∗

∫

∫

.0),0()0()())((2

0),0()0()(

0),0()0()()(

0
2

0
2

tPdssCsyB

tPdssa

tPtPt

t

t
s

ρρρ

ρρρ

ρρρρ

      (10) 

Now one can easily obtain from (10) that 

22
0

2 )0(:)0()( ργρρ ss a
P

dtt =≤∫
∞ ,          (11) 
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 where 0>sγ  is a constant, independent of . Further, after lengthy 
and cumbersome technical arguments, one can also obtain a similar 
inequality for )(tρ , which is given as 

)0(ρ

us
2

0
2 )0()( ργρ usus dtt ≤∫

∞ ,               (12) 

where 0>usγ  is again a constant, independent of . Thus it fol-
lows from (9), (11) and (12) that 

)0(ρ

2222
0 0

22
0

2

)0(:)0()(2)0(2)0(2                    

)(2)(2)(

ργργγργργ

ρρρ

=+=+≤

+≤ ∫ ∫∫
∞ ∞∞

ussuss

uss dttdttdtt

0> where γ  is a constant, independent of . □ )0(ρ
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IV.  COMPUTER SIMULATIONS 
Some simple examples are used to illustrate the result obtained.  The 
simulation result seems to indicate the proposed nonlinear observer 
works quite well. 

For the example we consider is the system with the following data: 

                       , 















=








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





−

−
=

100
110
101

,
001
001
110

CA

                         
[ ]

[ ] .211

0)2cos()2sin(2)(

0
T

T

x

tttv

=

−= πππ
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Then, the state trajectory  and the perspective observation trajectory 
)(ty  are given as follows:  

)(tx

-2
-1

0
1

2

0

1

2

3
0.5

1

1.5

2

X 1

The moving of point in 3-dimensional space

X 2

X
 3

initial state 

-0.5 0.5 1.5 2.5
1

2

3

4
The moving of 3-dimensional space point in image plane

Y 1

Y
 2

  

where      [ ]Ttxtxtxtxtxtxty )())()(()())()(()( 332331 ++= . 
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Next, for the observer, we set the following data: 

[ ]Tx 655ˆ0 = , . { }30,30,30diag1 =−P

0 50 100 150 200
0

2

4

6

8

t                                        t*0.05 sec

X
 3

0 50 100 150 200
0

2

4

6

8

X
 2

0 50 100 150 200
-5

0

5

X
 1

True state     
Estimated state
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IV.  CONCLUDING REMARKS 

This paper discussed a nonlinear observer for perspective linear sys-
tems arising in machine vision. 

(1) A Luenberger-type nonlinear observer was proposed, and under 
some reasonable assumptions on a perspective system, it was shown 
that it is possible to construct a nonlinear observer whose estimation 
error converges exponentially to zero. 

(2) Further, computer simulations using typical examples in machine 
vision were performed, and the results indicate that the proposed 
nonlinear observer works well. 

(3) There are several future problems to be studied. 

(a) First, although Assumption (3.7) (iii) is obviously related to the 
detectability condition, the detail should be investigated. Fur-
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thermore, how to check the condition (iii) is an important future 
problem to be studied.  

(b) Further, in constructing the proposed nonlinear observer, there is a 
free matrix parameter 0>P  to be chosen. This parameter seems 
to essentially determine the speed of error convergence of the 
observer, but no explicit discussion has been given to this prob-
lem. 

(c) Another important future problem is to investigate the sensitivity 
of the proposed observer to noisy observation. 

(d) Finally, it is natural to consider the problem of extending the pro-
posed observer to a perspective linear time-varying system of the 
form 



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