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|. INTRODUCTION

(1) The essential problem in dynamical machine vision is how to de-
termine the position and the shape of a moving rigid body from
knowledge of the associated optical flow.

(2) A perspective dynamical system arises from such a machine vi-
sion problem, and this essential problem is described as the state
estimation and parameter identification problem for such a system
based on perspective observation (optical flow).

What is perspective observation?
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PERSPECTIVE OBSERVATION
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(3) A perspective linear system we introduce in this paper is de-
scribed as

(1.1) { X(t) = AX(t) +v(t), x(0) =Xy €R"
y(t) = h(Cx(1))

where x(t) e R"is the sate, v(t)e R" the externa input,
y(t)e R™ the (generalized) perspective  observation,
Ac R™ CeRMDN e matrices with m<n, and finaly
h: R™! 5 R™ jsafunction of the form

f T
& £
h(£) = oSm e 20,
ay " {fmﬂ émj om0,
 e=[& o Em Emal eR™
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A simplified 3-dimensional machine vision problem has an ob-
servation of the form
y=[1 Yal' =[%/%s  %/%s]" =h(CX),
where n=3 m=2 and C=15 (the identity matrix). Therefore,
y IS represented as a perspective observation of the form (1.1).
(4) This problem has been formulated and studied in a number of ap-

proaches. One of the interesting approaches is to formulate such a
problem by introducing a notion of implicit observation.

(5) In the present paper, we propose a Luenberger-Type nonlinear
observer for perspective linear systems without using the notion
of implicit observation, andinvestigate its convergence problem.

More precisdly, it is shown that, under suitable conditions on a
given perspective linear systems, including

(@) System (1.1) isLyapunov stable,
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(b) It satisfies some sort of detectability condition,

It IS possible to construct a nonlinear observer of Luenberger-type
whose estimation error converges exponentially to zero.

(6) Finally, using some simple examples appearing in machine vision,
some numerical results are presented to illustrate the proposed
nonlinear observer. The numerical results show that the observer
proposed wor ks well.

7/39



KAIST
15 October 2002

ll. PRELIMINARIES

BASIC NOTATIONS

R,C: thefields of real and complex numbers, respectively.
R",C" : the Euclidean vector spaces with norm |x|.

Foramatrix M e R™" or M eC™"

(2.1) M| = max{[Mx[| [x =3,

M~ the conjugate transpose of M .
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FUNCTION SPACES

The Lebesgue space L,[0,) is the set of functions
f :[0,00) > R(orC) with the norm given by

o p P
(2.2) fp;H{L'HU m} . pellowo)
\SUP{‘ f(t)|te[0,0)}, p=oo.

The m-dimensional Lebesgue space s denoted by Lj[0,0), i. €.,
g ,
(2.3) Lp[0,0):=qf =| i || fy e Lp[0,00),k=1,---,mp.

'

fm

Similarly Ly"[0,00) isdefined.
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In particular, the following norms are used later:

" 1
o0 | fzzz{jg’uf(t)uzdt}z, f & L7[0,00)
f =supf[f@®),  feLlP0,0).
L t>0

GENERALIZED EIGENSPACES

For acomplex matrix M € C™", let
o(M): theset of all theeigenvaluesof M,

o(M)={4, "+, 44} = C,
W, < C": the generalized eigenspace with respect to 4.
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Then, it iswell known that
(@ {W,--- Wy} Isasetof linearly independent subspaces,
(b) W, ®---®@W, =C",
(c) W IsA-invariant, i.e., AW, cW,.

Next, for amatrix Ae C™", let

(25) o;(A)={1e0c(A RedA<(, o,(A)={1ec(A) Reld=0}.
W,,W,: the generalized eigenspaces corresponding to
os(A), oy (A), respectively,
T, Ty - the matrix representations of the projection operators

C" >W,, C" >W, aong with W, W,, respec-
tively.
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Then:
(@ C"=W,®W,_,
(b) 7 Ws =Ws, 7y Wis =W,
(c) Arg=n A and Ary =m A
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NECESSARY LEMMAS

(2.6) LEMMA. Let A C™" and consider
X(t) = AX(t), x(0)=x,eC". ()
Then:
(1) System( )isasymptotically stable
o VQeC™ with Q =Q>0 , IPeC™™ with
P =P>0 satisfying the Lyapunov equation
PA+ AP =-Q.
(i) System( ) isLyapunov stable
&3IPeC™ with P =P >0 satisfying
PA+ AP <O.
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(i) (1) isLyapunov stable

—Va>0, 3IPeC™" satisfying P =P >0 and
PA+ AP < -argrs. (4)
[]

Noticethat Q:=ar. 7 € R™" isanonnegative and Hermitian matrix.
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(2.7) LEMMA. Let A() e LX™(R) and assume that A(t) is continu-

00

oudly differentiable. Let t; € R and consider
X(t) = AX(), X(to) =%p € R". ()
Then:
System () is exponentially stable, i.e., 3 >0 and 34 >0 such
that Vty>0and Vvx(ty) € R"
Ix(t)| < BIx(to)| e * ) vt >t

< dy >0 suchthat

_‘;ZOHX('[)HZdt < 7/HX('[O) 2’ Vip >0 and Vx(t;) e R". O
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[11. NONLINEAR OBSERVERSOF THE LUENBERGER-TYPE

In this section, we propose and study an observer for
{ K(t) = AX(t) + V(t), X(0) =X € R"
y(t) = h(Cx(t))
Notice that afull-order state observer for (1.1) generally has the form

(3.1) %ﬁ(t>=co<ﬁ<t),v<t>,y(t)>, %(0) = % < R"

and it must satisfy that for any v()

(1.1)

%(0) = x(0) = K(t) = x(t), Vt>0.
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Thus, we may assumethat ¢(X,v,y) hastheform

o(X,V,y) = AX+V+T1(X,Y)

where r(%,y) is any function satisfying r(x,h(Cx))=0,vxe R". Fur-
ther, as such afunction r(X,y), we may take

r(X,y) = K(y,X)[y—h(CX)],

where K(y,X) isany sufficiently smooth function.
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These choices of functions lead to a nonlinear observer of the Luen-
berger-type (D. G. Luenberger, An introduction to observers, |EEE
Trans. Automatic Control, Vol. AC-16, 569-603, 1971):

(3.2)
%ﬁ(t) = AR(t) + V(t) + K (y(t), X)) y(t) = h(CX(t))], R(0) = X, € R"

where K(y,X) Is a suitably chosen matrix-valued function, called an
observer gain matrix.

In what follows, let us consider a suitable form of the gain matrix
K(y,X%).
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First, noticing that
I 61 _ | 621 ) i Cy |
=] |=cx E=| ) |=c& C=| [ |eRMmdN
'”:»Cm fm Cm
_'”fm+1_ _§m+1_ _Cm+1_

we easlly obtain

(33) y-h(CR)=h(Cx)-h(C)=| : |-| : |=
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where
" _ mx(m4-1)
0 =X-X
The structure of (3.3) suggestsagain matrix K(y,X) of theform
(3.5) K(y,%) = C,, %P IC B (y),

so that the Luenberger-Type nonlinear observer becomes

(3.6) %)A((t) = AX(t) + v(t)

+CraXPIC B (Y)[y(t) —h(CX(t))], KX(0) =%y e R"

where P e R™" isan appropriately chosen free parameter matrix.
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Now, we make various conditions on System (1.1), which seem to be
necessary and/or reasonable from the viewpoint of machine vision.

(3.7) ASSUMPTION.
(1) System (1.1) isLyapunov stable, i.e.,
o(A)=os(AVoys(A
where
os(A): the set of eigenvalues with strictly negetive real part

oys(A): the set of eigenvalues with zero real part.

(i) y(t) isacontinuousand bounded function, that is,

y() e C™M0,0) N LT[0, ).
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(ili) Let
W,, W, = C": the generalized eigenspaces corresponding to
os(A) and o (A) respectively,
Es=[& - & ] abassmatrix for W, with r:=dimW.

Then, 3T >0 and F¢ >0 such that
T * * * *
jo E..e”7C B (y(t+7))B(y(t+7))Ce*Edr>4d,, Vt=0.

[
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(3.8) REMARK. All the conditions given in Assumption (3.7) are rea
sonabl e requirements from the viewpoint of machine vision.

(1)

(1)

(iii)

The condition (i) Is imposed to ensure that if v(t) =0 then the
motion of amoving body take places within a bounded region.

The condition (1) Is imposed to ensure that the motion x(t) de-

scribed by (1) is smooth enough and takes place inside a conical
region centered at the camera so as to produce a continuous and
bounded measurement y(t) on the image plane. In particular, it is

assumed that the motion never crosses the plane C,.1x=0, and
hence takes place only on one side of the camera.

The condition (iii) ensures some sort of detectability of the per-
gpective system (1.1), and further the external input being identi-

cally zero. These facts will be cited in Proposition 3.9. [
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Assumption 3.7
(1) Sytem (1.1)isLyapunov stable(i.e., AisLyapunov stable).
(i1) Theper spectiveobservation y(t) iscontinuousand bounded.

(111) Somesort of detectability issatisfied on thetrajectory x(t).
(1.1) x(t) = Ax(t)+v(t), x(0)=x,€R", y(t)=h(Cx(t)

=

A Conical Region

Thelmage Plane
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(3.9) PROPOSITION. Assumethat System (1.1) is Lyapunov stable, let
A, denote the unstable part of the matrix A and set C ¢ =CE. If

Assumption 3.7 (iii) is satisfied, then the following statements hold true.
(i) (C,A) isa detectable pair, that is, the unstable part (C s, Ax)
of (C,A) isobservable.

(i) Theexternal input v(t) isnever identically zero. O
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MAIN THEOREM
(3.10) THEOREM (LUENBERGER-TYPE NONLINEAR OBSERVERS).

Assume that System (1.1) satisfies Assumption 3.7 and consider a
nonlinear observer of the Luenberger-type, that is,

% K(t) = AR(L) + V(t) + K (y(t), X)) y(t) — h(CR(1))],

%(0) = %, € R"

1)

where the gain matrix is given by
K(Y,8)=Cpru&P'C'B'(Y), B(Y)=[ly, -y]eR™™Y. (2

Further, let
n:C" - W, denote the projection operator,

Pe R™" beasymmetric positive definite matrix satisfying
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A P+PA<-arrs, a>0. (3)

Then, the following statements hold.
(1) The estimation error

p(t) = X(t) = X(1) (4)

satisfies the differential equation
%pa) =[A-P7'C"B’ (y())B(Y(t))Clp(t), p(0)eR". (5

(i) p(t) converges exponentially to zero, that is, there exist
a >0, >0 suchthat

@)= |x(t) - R(t)| < pe|p(0)), Vt=>0O. (6)

28/39



KAIST
15 October 2002

SKETCH OF PROOF: The statement (i) can be easily verified. Therefore,
only the statement (ii) is briefly proved.

To prove (i), it suffices to show by virtue of Lemma 2.7 that
ol “dt < 7/p(0)] (7)

where ¥ >0 isaconstant, independent of p(0).
Using the notations in Theorem 3.10, define

ps(t) =7zsp(t),  pus(t) = myspo(t), vt20. (8)
Then, since C" =W, ®@W,_, one has
p(t) = ps(t) + pys(t), (9)

which together with (5), (3) and (9) easily gives
%w)* Po(t)) < —alps (1) - 2 B(y(®))Cp(t)|>
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Hence, for any t >0,
0< p™(t)Pp(t)
< p"(0)Pp(0) - afy | ps(s)|“ds— 2[ | B(y(s))Cp(9)|“ds

which leads to the following inequalities:
p (t)Pp(t) < p"(0)Pp(0), Vt=0

1 afl|ps(s)|°ds< p*(0)Pp(0), Vt=0 (10)

-t
J0
-t
0

2[5 B(Y(5))Co(9)|*ds< p" (0)Pp(0), Vt=0.

k L4

Now one can easily obtain from (10) that
? (12)

o0 P
ot < 7o) =72l
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where y. >0 Isaconstant, independent of p(0). Further, after lengthy

and cumbersome technical arguments, one can also obtain a similar
Inequality for p s(t), whichisgiven as

.[(;OHIOUS (t)HZdt < 7/USH/O(O)

where ¥, >0 Is again a constant, independent of o(0). Thus it fol-
lows from (9), (11) and (12) that

[ p®)Pdt < 27| ps ()] dt + 2[¢° | pys (0] clt

< 275|p(0)|” + 215 | PO = 2(r5 + 7us)l (O = ¥1p(0)]
where y >0 isaconstant, independent of p(0). O

2

(12)
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V. COMPUTER SIMULATIONS

Some simple examples are used to illustrate the result obtained. The
simulation result seems to indicate the proposed nonlinear observer
works quite well.

For the example we consider is the system with the following data:

0 1 -T 10 T
A=|-1 0 0| C=|0 1 1|
1 0 0 00 1

v(t) = 2z[-sin(2at) cos(2t) O]
xo=[1 1 2].
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Then, the state trgjectory X(t) and the perspective observation traectory
y(t) are given as follows:

where y(t) = [0 (t) + X3(1)/%g(t)  (Xp(t) + X3(t))/ x3 (0] .
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Next, for the observer, we set the following data:

%=[5 5 6], P=diag{30,30,30}.

= True state
— Estimated state
T

0 50 100 150 200

0 50 100 150 200

I | |
0 50 100 150 200
t t*0.05 sec
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V. CONCLUDING REMARKS

This paper discussed a nonlinear observer for perspective linear sys
tems arising in machine vision.

(1) A Luenberger-type nonlinear observer was proposed, and under
some reasonable assumptions on a perspective system, it was shown
that it is possible to construct a nonlinear observer whose estimation
error converges exponentially to zero.

(2) Further, computer simulations using typical examples in machine
vision were performed, and the results indicate that the proposed
nonlinear observer works well.

(3) There are several future problems to be studied.

(a) First, although Assumption (3.7) (iii) is obvioudly related to the
detectability condition, the detail should be investigated. Fur-
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thermore, how to check the condition (iii) Is an important future
problem to be studied.

(b) Further, in constructing the proposed nonlinear observer, thereisa
free matrix parameter P >0 to be chosen. This parameter seems
to essentially determine the speed of error convergence of the
observer, but no explicit discussion has been given to this prob-
lem.

(c) Another important future problem is to investigate the sensitivity
of the proposed observer to noisy observation.

(d) Finally, it is natural to consider the problem of extending the pro-

posed observer to a perspective linear time-varying system of the
form

{ %(t) = A X() +v(t), X(0)=Xge R"
y(t) = h(C(t)x(t)).

36/39



[1]
[2]

[3]

[4]

[3]

KAIST
15 October 2002

REFERENCES

K. Kanatani, Group Theoretical Methods in Image Understanding,
Springer-Verlag, 1990.

B. K. Ghosh and E. P. Loucks, A perspective theory for motion and
shape estimation in machine vision, SAM Journal on Control and
Optimization, vol.35, pp.1530-1559, 1995.

B. K. Ghosh, M. Jankovic and Y. T. Wu, Perspective problems in
system theory and its applications to machine vision, Journal of
Mathematical Systems, Estimation and Control, vol.4, pp.3-38,
1994.

B. K. Ghosh, H. Inaba and S. Takahashi, |dentification of Riccati
dynamics under perspective and orthographic observations, |EEE
Transactions on Automatic Control, vol. 45, pp. 1267-1278, 2000.
W. P. Dayawansa, B. K. Ghosh, C. Martin and X. Wang, A neces-
sary and sufficient condition for the perspective observability prob-

37/39



[6]

[7]

[8]

[9]

KAIST
15 October 2002

lem, Systems and Control Letters, vol.25, pp.159-166, 1993.

H. Inaba, A. Yoshida, R. Abdursul and B. K. Ghosh, Observability
of perspective dynamical systems, to appear in | EEE Proceedings of
Conference on Decision and Control, Sydney, Australia, December
2000.

A. Matveev, X. Hu, R. Frezza and H. Rehbinder, Observers for sys-
tems with implicit output, | EEE Transactions on Automatic Control,
vol. 45, pp.168-173, 2000.

S. Soatto, R. Frezza and P. Perona, Motion estimation via dynamic
vision, |EEE Transactions on Automatic Control, vol. 41,
PP.393-413, 1996.

M. Jankovic and B. K. Ghosh, Visually guided ranging from obser-
vations of points, lines and curves via an identifier based nonlinear
observer, Systems and Control Letters, vol. 25, pp. 63-73, 1995.

[10]B. K. Ghosh and J. Rosenthal, A generalized Popov-Belevitch-

38/39



KAIST
15 October 2002

Hautus test of observability, IEEE Transactions on Automatic Con-
trol, vol. 40, pp.176-1180, 1995.

[11]D. Carlson and H. Schneider, Inertia theorems for matrices. the
semi definite case, Journal of Mathematical Analysis and Applica-
tions, vol. 6, pp. 430-446, 1963.

[12]H. Kano and T. Nishimura, Lyapunov eguations, inegualities and
stability theorems for periodic systems, | SCIE Transactions, vol. 13,
PP.134-140, 2000. (in Japanese)

[13] R. Brockett, Finite dimensional linear systems, Wiley, 1970.

[14]F. M. Cdlier and C. A. Desoer, Linear system theory,
Springer-Verlag, 1991.

[15] D. G. Luenberger, An introduction to observers, |IEEE Transactions
on Automatic Control, Vol. AC-16, 569-603, 1971.

39/39



	Tokyo Denki University
	
	
	Introduction
	Preliminaries
	Nonlinear Observers of
	the Luenberger-type
	Computer Simulations
	Concluding Remarks



	Basic Notations
	Generalized Eigenspaces
	
	Notice that � is a nonnegative and Hermitian matrix.



