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Abstract: This paper considers a global asymptotic output tracking problem with a prescribed constant reference signal 
for a class of single-input and single output-output nonlinear systems. It is shown that under some mild conditions on 
such a system there is a smooth output feedback achieving global asymptotic output tracking and such a smooth output 
controller is explicitly constructed by a new design method proposed. The usefulness of our result is illustrated by a
numerical example. 
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1. INTRODUCTION 2. GLOBAL ASYMPTOTIC OUTPUT TRACKING 

FOR A CLASS OF NONLINEAR SYSTEMS BY 
OUTPUT FEEDBACK One of most important problems in control theory is 

to design a feedback control law making the output of a 
system asymptotically track a prescribed smooth 
reference signal. This problem has a long-standing 
history and has been thoroughly investigated over the 
last three decades. 

We consider a global asymptotic output tracking 
problem by output feedback for single-input and single 
output-output nonlinear systems of the form given by 
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The asymptotic tracking problem requires not only to 
asymptotically track a desired reference signal but also 
to guarantee the boundedness of all the internal states in 
the system. In general, even when the state of the 
system is known, tracking problems are much more 
difficult than those of stabilization. Thus solving 
asymptotic output tracking problems via output 
feedback is more difficult and challenging than solving 
those via state feedback (see [1]).  

where is the state, u1 2[ , , , ]T
nx x x x= R ∈R and 

y∈ R are the input and the output of the system, 
respectively, the mapping  for : n

iδ × × →R R R R
1,i = , n  are smooth with (0, ,0) 0iδ =… . The class 

of systems under consideration is assumed to satisfy the 
following condition. 

In this paper, we consider essentially the same class 
of nonlinear systems as treated in [2-4]. By far, it seems 
that one of most relaxed conditions imposed on the 
nonlinear terms of a given system is a triangular-type 
condition as far as the output feedback control is 
concerned as discussed in [2-3]. In [4], it has been 
proved that under a furthermore relaxed condition on 
the nonlinear term than a triangular-type condition, 
global asymptotic stabilization problems can be solved 
by output feedback. 

Assumption 1. For System (1), there exists a function 
( ) 0sγ ≥  such that for any  the inequality 0s >
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is satisfied.                                             
In this paper, we deal essentially with the same class 

of nonlinear systems treated in [2-4], and study an 
output tracking problem with a prescribed constant 
reference signal for this class. It is shown that under 
some mild assumptions on a given system belonging to 
this class the global asymptotic output tracking problem 
is solved by smooth output feedback and further such a 
smooth output feedback is explicitly constructed. 
Finally the usefulness of our result is illustrated by a 
numerical example. 

System (1) can be rewritten in the following form: 
( , , )x Ax Bu t x u

y Cx
δ= + +

=
          (3) 

where 
( )1, , T

nx x x=  
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,  ( )0 0 0 1 TB =

( )1 0 0 0C = , ( )1( , , ) ( , , ), , ( , , )nt x u t x u t x uδ δ δ= . 
Formally, the tracking problem can be formulated as 
follows: given a bounded reference signal  with 
bounded derivatives , find, if possible, 
a dynamic output compensator of the form 
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such that all the states of the closed system (1) with (4) 
are globally bounded; the output of this closed system 
with any initial state ( )(0), (0) nx R Rξ ∈ × satisfies 

lim ( ) ( ) 0.rt
y t y t

→∞
− =               (5)  

In the article [4], global asymptotic stabilization of 
system (1) can be solved by output feedback. In this 
paper, it will be shown that asymptotic output tracking 
is achievable by smooth output feedback. Further an 
output feedback controller solving this problem will be 
explicitly constructed by a new method. Indeed, the 
following result can be established. 

Theorem 1. Consider system (1) or equivalently (3) and 
suppose that it satisfies Assumption 1 and there exist 
matrices ,K L and such that the matrices 0s >

KA A BK= + , LA A LC= +  

are stable and det where defined as 
(16). Then the global asymptotical tracking problem for 
any constant reference signal is solvable by a 
smooth dynamic output feedback controller of the form 
(4). 

( ) 0W s > ( )W s

( )ry t c≡

Proof. Let  be a constant reference signal that 
needs to be tracked. Define the error signals by 

( )ry t c≡

         . 1( ) ( ) ( )re t y t y t x c= − = −

Then system (1) is equivalent to 
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and further (2) in Assumption 1 is written as 
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Thus it becomes clear that solving the problem of global 
asymptotic tracking for system (1) is equivalent to 
achieving global stabilization of the error dynamic 

system (6).  
Now, we design a linear output feedback controller  
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or equivalent to 

ˆ ˆ ˆ( )( )z Az Bu L s y Cz= + − −              (9) 
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with any . 0s >
First, we select [ ]1, , nK K K= … and [ ]1, , nL L L= …  

so as to satisfy that KA A BK= +  and LA A LC= +  
are stable. Next defining  

1 ˆ ˆ, , 2i i ie e x x i nε ε= − = − ≤ ≤ , 

it follows from (6) and (8) that 
( ) ( , , )LA s t x uε ε δ= +           (11) 

where 
( ) ( )LA s A L s C= + . 

Now, from (6) and (10), the closed–loop system 
(6)-(9)-(10) becomes 

( ) ( , , ) ( )Kz A s z t z u BK sδ ε= + −       (12) 

where and ( )2, , , T
nz e x x=

( ) ( )KA s A BK s= + . 

Further defining 
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,  

and noticing that KA and LA are stable, we have the 
following equalities:  
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where 
( ) ( ) ( ), ( ) ( ) ( )K K L LP s D s P D s P s D s P D s= = , 
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s
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Now, we set 1( ) ( )T
LV Pε ε= ε . Then, from (12), 

Assumption 1 and the previous equalities, we have 
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So, the closed-loop system (6)-(9)-(10) is globally 
exponentially stable. This implies the global output 
tracking problem with any constant signal ( )ry t c≡  is 
solvable, for the nonlinear system (1).              Next, we set and note that 2 ( ) ( )T

KV z z P s z=
Example. We work out a simple numerical example to 
illustrate the result described in Theorem 1. The 
example we consider is a 2-dimensional system of the 
following form: 

1( ) ( ) ( )D s BK s s BKD sε ε−= . 

Then, from (12), Assumption1 and the previous 
equalities, we obtain 
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It is easy to verify that system (17) satisfies 
Assumption1. It follows from Theorem 1 that for any 
given constant reference signal  there exists a 
dynamic output feedback controller of the form (8), 
achieving asymptotic output tracking for the nonlinear 
system (17). For instance, let 

( )ry t c≡

Now, we introduce a function 
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for the system (11) and (12). Then using (13) and (14), 
we have  
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Then, following the design procedure above, one can 
obtain the following output feedback controller 
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where 
 1 2[ , ] [ 2, 3K K K ]= = − −  and . 
In view of Assumption1, we can check that 

1 2[ , ] [ 4, 4]TL L L= = − −
( ) 1 2s sγ = . 
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With ( ) 1 2s sγ = , we choose and1 1M = 2
2M s= .  

Then, there exists a range of s  to satisfy det . 
We choose . The simulation results shown in 
Fig.1 or Fig.2 demonstrate asymptotic output tracking 
of (17) is achieved by the output compensator (18). 
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Fig.2. state trajectories with 
1 2 2ˆ ˆ(0) 7, (0) 5, (0) 1, (0) 0x x e x= = − = =  

 
 

Fig.1(a). output reference 3. CONCLUSIONS 
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In this paper, the asymptotic output tracking problem 
for a system belonging to a class of nonlinear systems 
was studied. It was shown that the asymptotic output 
tracking problem is solvable by a smooth output 
feedback controller and such a controller can be 
explicitly constructed. Finally a simple numerical 
example was work out to illustrate the result obtained. 
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Fig.1(b). trajectory of state 2x  with 2(0) 5x = −   
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Fig.1(d). trajectory of state 2x̂ with 2ˆ (0) 0x =  
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