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Abstract: Perspective dynamical systems arise in dynamic machine vision. This paper 
studies a Luenberger-type nonlinear observer for a perspective time-varying linear system 
in which the number of observing points is more than one. More precisely, assuming a 
given perspective time-varying linear system to be Lyapunov stable and to satisfy some 
sort of observability condition, it is shown that the estimation error converges exponen-
tially to zero.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The observation obtained by observing a moving 

rigid body by a camera is essentially the direction 
vector of a point observed, called a perspective ob-
servation, because all the points on a line passing 
through the center of the camera are projected to a 
single point of the image plane. And the basic prob-
lem in dynamical machine vision is how to deter-
mine the position and velocity of a moving body 
and/or any unknown parameters characterizing the 
motion and shape of the body from such perspective 
observation. A perspective dynamical system arises 
in mathematically describing such a dynamic ma-
chine vision problem and has been studied in a num-
ber of approaches in the framework of systems the-
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ory (See, e.g., Abdursul, et al., 2004, Matveev, et al., 
2000, S. Soatto, et al., 1996). 

Some interesting works recently reported are con-
cerned with nonlinear observers for estimating the 
unknown state of perspective time-varying linear 
systems (Abdursul, et al., 2004, Matveev, et al., 2000, 
S. Soatto, et al., 1996). In particular, the paper (Ab-
dursul, et al., 2004) has proposed a nonlinear ob-
server of the Luenberger-type for such a time-
invariant system without transforming it into an im-
plicit system as proposed and discussed in the papers 
(Matveev, et al., 2000, S. Soatto, et al., 1996) and 
shown that under some reasonable assumptions on 
the given system the estimation error of the proposed 
nonlinear observer converges exponentially to zero. 

In these previous works it was assumed that only 
one point on a moving body is observed. However in 
more realistic situations the number of observing 
points, even the number of moving bodies, may be 
more than one. A similar situation occurs in com-
puter vision problems. In fact the work (Chiusoa, et 
a., 1995) discussed a problem of multiple observing 
points from the viewpoint of dynamical computer 



       

     

vision and a nonlinear filter was proposed in order to 
causally estimate the 3-dimentional shape by inte-
grating noisy visual information over time. Further 
the nonlinear observer of the Luenberger-type devel-
oped in (Abdursul, et al., 2004) has been extended to 
the case of multiple observing points by the recent 
work (Inaba, et al., 2004). 

The objective of the present paper is to further ex-
tend the work (Inaba and Abdursul, 2004) for time-
invariant systems with multiple observing points to 
the case where the system considered is time-varying 
(see also Abdursul and Inaba, 2003), that is, the case 
of perspective dynamical time-varying linear systems 
with multiple observing points. 

First, in Section 2, a perspective time-varying lin-
ear system considered in this investigation is de-
scribed. In Section 3, a nonlinear observer of the 
Luenberger-type for perspective time-varying linear 
systems is discussed and then after obtaining some 
important properties of such systems a convergence 
theorem of the nonlinear observer is presented. More 
precisely, it is shown that, under suitable assump-
tions on a given perspective time-varying linear sys-
tem, including that it is Lyapunov stable and satisfies 
some sort of observability condition, the estimation 
error of the nonlinear observer converges exponen-
tially to zero. Finally, Section 4 gives some conclud-
ing remarks. 
 
 

2. PERSPECTIVE TIME-VARYING 
LINEAR SYSTEMS 

 
This section defines a mathematical model for a 

perspective dynamical time-varying system with 
more than one observing point. Throughout this in-
vestigation, let us denote the fields of real and com-
plex numbers by R  andC , respectively. 

First let us denote the number of observing points 
by 1p ≥ . Then, as in the work (Inaba, et al., 2004), 
a perspective time-varying linear system with multi-
ple observing points considered in this investigation 
is given as 

R

R
0 0

2

( ) ( ) ( ) ( ), ( )

( ) ( ( ))

n

p

x t A t x t v t x t x

y t H Cx t

⎧ = + = ∈⎪⎪⎪⎨⎪ = ∈⎪⎪⎩
   (1) 

where R( ) nx t ∈ represents the entire state of the 
moving bodies, R( ) nv t ∈ the external input, 

R R() : n nA ×⋅ →  a continuous and bounded ma-

trix-valued function, R(3 )p nC ×∈  and 0t ∈R  the 
initial time. Finally, R2( ) py t ∈ represents the per-
spective observation vector generated on the image 
plane by observing the p points, and as in the case of 
multiple observing points discussed in (Inaba, et al., 
2004) the function R R2: n pH →  has the follow-
ing form:  
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.  (2) 

For later convenience, the observation vector 
R2( ) py t ∈ is expressed in the following form: 

(1) (1)
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  (3) 

where ( ) ( )( ) ( ( ))k ky t h C x t=  represents the perspec-
tive observation generated from the -thk observing 
point and the matrix R(3 )p nC ×∈ is decomposed as 

(1) ( ) ( ) 3[ ] ,T p T T k nC C C C ×= ∈ R . 

Now we investigate a Luenberger-type nonlinear 
observer for System (1) without converting it to an 
implicit system as discussed in (Matveev, et al., 
2000). As mentioned in the previous work (Ab-
dursul, et al., 2004), the advantage of this observer 
over the one in (Matveev, et al., 2000) is that the 
former does not require a transformation that in-
volves an integration of the input ( ) (0 )v s s t≤ ≤ , 

which may cause difficulty in implementation, in 
particular, for the case that the input ( )v t is gener-
ated in a state feedback form. 

 
 

3. LUENBERGER-TYPE NONLINEAR 
OBSERVERS 

 
In this section, we propose a Luenberger-type ob-

server for a perspective time-varying linear system of 
the form (1), and show that under some suitable as-
sumptions on System (1) the estimation error con-
verges to zero exponentially. 

First, notice that, denoting an estimate of the state 
( )x t by (̂ )x t , a full-order state observer for System 

(1) is expressed generally in the form 

0 0ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ( ), ),  ( ) nd x t x t v t y t t x t x
dt

ϕ= = ∈ R  (4) 

and satisfies the condition that whenever 
0 0(̂ ) ( )x t x t=  the solution (̂ )x t  of (4) coincides 

completely with the solution ( )x t of System (1) for 
any choice of ()v ⋅ . 

Therefore, under the condition that (4) has a 
unique solution, it is possible to assume that the func-
tion ˆ( , , , )x v y tϕ  has the form 

ˆ ˆ ˆ( , , , ) ( ) ( , , )x v y t A t x v r x y tϕ = + +  

where ˆ( , , )r x y t  is any sufficiently smooth function 
satisfying the condition ( , ( ), ) 0r x h Cx t =  for 
all Rnx ∈ and all 0t t≥ . Among many functions 

ˆ( , , )r x y t  satisfying this condition, it is desirable to 
choose a function, which is reasonably simple, but 
has sufficient freedom to adjust its characteristics. As 
such a function, we choose 

ˆ ˆ ˆ( , , ) ( , , )[ ( )]r x y t K y x t y h Cx= −  



       

     

where ˆ( , , )K y x t  is any sufficiently smooth function. 
Then, (4) becomes a nonlinear observer of the Luen-
berger-type: 

0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ), ( ), )

ˆ ˆ ˆ           [ ( ) ( ( ))], ( ) n

d x t A t x t v t K y t x t t
dt

y t H Cx t x t x

= + +

× − = ∈ R
 (5) 

where ˆ( , , )K y x t is a suitable matrix-valued function 

of the form R R R R2 (2 ): p n n pK ×× × → , called an 
observer gain matrix. 

The fundamental problem we must answer is how 
to choose a gain matrix ˆ( , , )K y x t  in (5) so as to sat-
isfy the condition ˆ( ) ( )x t x t→ as t → ∞ . To do so, 
first introduce the following notation: 

R
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⎢ ⎥
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⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, 

and a similar notation for R3 3ˆˆ : p pCx Rξ= ∈ ∈ . 
Then using these notations, simplify the term 

ˆ( )y H Cx−  as follows: 
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(6) 
where 2I indicates the 2 2× identity matrix and 
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R

(7) 
ˆ: .x xρ = −                   (8) 

Using (6), one obtains  

ˆ ˆ ˆ ˆ( , , )[ ( )] ( , , ) ( ) ( )K y x t y H Cx K y x t E x B y Cρ− =   (9) 

and hence to eliminate from (9) all the denominators 
( )
3 ˆkC x  appearing in Ε ˆ( )x , one can choose a gain ma-

trix ˆ( , )K y x  of the form: 
1 * * 1ˆ ˆ( , , ) ( ) ( ) ( )K y x t P t C B y E x− −=     (10) 

where *C indicates the complex conjugate transpose 
of C  and R R( ) : n nP t ×→ is an appropriately cho-
sen matrix-valued function, which is considered to be 
a free parameter for the gain matrix. And with this 
choice for ˆ( , , )K y x t , the Luenberger-type nonlinear 
observer (5) becomes 

0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ), ( ), )

ˆ ˆ ˆ            [ ( ) ( ( ))], ( ) n

d x t A t x t v t K y t x t t
dt

y t H Cx t x t x

= + +

× − = ∈ R
 

     (11) 
and it follows from (1), (11) and (6) that the differen-
tial equation for the estimation error ˆ: x xρ = −  is 
obtained as 

R

1 * *

0 0 0

( ) [ ( ) ( ) ( ( )) ( ( )) ] ( ),

ˆ( ) ( ) ( ) .n

d t A t P t C B y t B y t C t
dt

t x t x t

ρ ρ

ρ

−= −

= − ∈
 

 (12) 
Next, we make suitable assumptions on System 

(1), which seem to be necessary and/or reasonable 
from the viewpoint of dynamical machine vision. 

Assumption 3.1. System (1) is assumed to satisfy the 
following conditions. 

(i) System (1) is Lyapunov stable. That is there 
exists 0b >  such that  

         Φ R( , ) , ,t s b t s∀≤ < ∞ ∈  

where Φ( , )t s  is the transition matrix for ( )A t . 

(ii) The observation vector ( )y t  is a continuous 
and bounded function of t , that is, 

・ 0 0( ) [ , ) [ , )m my C t L t∞∈ ∞ ∩ ∞ .               (13) 

(iii) There exist 0T >  and 0ε >  such that 



       

     

Φ

Φ

* * *
0

0

( , ) ( ( ))

    ( ( )) ( , ) ,  .

T

r

t t C B y t

B y t C t t d I t t

τ τ

τ τ τ ε

+ +

× + + ≥ ∀ ≥
∫

        (14) 
 

Remark 3.2.  All the conditions given in Assump-
tion 3.1 are necessary and/or reasonable require-
ments from the viewpoint of machine vision. 

(i) The condition (i) is imposed to ensure that if 
( ) 0v t ≡  then the motion of a moving body 

takes place within a bounded space. 
(ii) The condition (ii) is imposed to ensure that the 

motion is smooth enough and takes place in-
side a conical region centered at the camera to 
produce a continuous and bounded measure-
ment ( )y t  on the image plane. 

(iii) The condition (iii) is imposed to ensure some 
sort of detestability for the perspective system 
(1). In fact, the inequality (14) implies that 
( , ( ))C A t  is a uniformly observable pair. This 
fact is verified in Proposition 3.3.   

The following proposition gives some system 
theoretical implications of Assumption 3.1 (iii). 

Proposition 3.3.  Consider System (1), and assume 
that Assumption 3.1 (iii) is satisfied. Then the pair 
( , ( ))C A t  is uniformly observable, that is, there exist 
some 0T >  and ˆ 0ε >  such that 

Φ Φ* *
0

0
ˆ( , ) ( , ) ,  .

T
rt t C C t t d I t tτ τ τ ε+ + ≥ ∀ ≥∫  

Proof: Using (7), define a symmetric nonnegative 
matrix by 
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⎢ ⎥= ⎢ ⎥
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Then it is not difficult to see that 
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     ( 1) ( 1 )

                  ( 1 )

p
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p

I S y

y

y

λ

λ λ λ

λ

−

= − − −

− −

 

and hence the eigenvalues of ( )S y are 
2 2(1) ( )( ( )) 0,1,1 , ,1 pS y y yλ = + + . 

Thus one obtains 

0max ( ( ( )) (1 () ) ,S y t y t tλ ∞≤ + ⋅ < ∞ ∀ > , 

and accordingly the inequalities 

3 0(1 () ) ( ( )) 0,py I S y t t t∞+ ⋅ ≥ ≥ ∀ ≥ . 

Now it follows from the above and (14) that for 
any 0t t≥  

Φ Φ

Φ

Φ

* *
0

* *
0

( , ) ( , )

1  ( , ) ( , )
1 ()

1 ˆ    ( , )
1 ()

T

T

t t C C t t d

t t C S t t
y

C t t d I I
y

τ τ τ

τ τ

τ τ ε ε

∞

∞

+ +

≥ + +
+ ⋅

× + ≥ =
+ ⋅

∫
∫  

where  
1ˆ : 0

1 ()y
ε ε

∞
= >
+ ⋅

. 

This verifies the statement.    

For a general time-varying linear system with sys-
tem matrix ( )A t  and output matrix ( )C t , i.e., for a 
system of the form 

0 0( ) ( ) ( ) ( ), ( )

( ) ( ) ( )

x t A t x t v t x t x

y t C t x t

⎧ = + =⎪⎪⎨⎪ =⎪⎩
 

its observability and detectability are completely de-
termined by the pair ( ( ), ( ))C t A t , and completely 
independent of the input and initial state. However 
for a general nonlinear system they are generally 
dependent on the input and initial state. It should be 
noted that the inequality (14) implies that the pair 
( , ( ))C A t  is uniformly observable, but this uniform 
observability does not necessarily imply the ob-
servability and detectability of System (1). However 
it is seen from the next theorem that the condition 
(14) is sufficient for existence of a nonlinear observer 
and hence implies the observability or at least detect-
ability along the trajectory ( )x t  that is generated by a 
given input ( )v t  and initial state 0( )x t .   

Now, it is ready to state our main theorem. How-
ever, since its proof requires a number of lengthy and 
cumbersome technical arguments, only a sketch of 
the proof is given here. 

Theorem 3.4 (Nonlinear Observers).  Assume that 
System (1) satisfies Assumption 3.1 and the matrix 
differential inequality 

0( ) ( ) ( ) ( ) ( ) 0,TA t P t P t A t P t t t+ + ≤ ∀ ≥   (15)  

has symmetric positive-definite matrix-valued solu-
tion R0() : [ , ) n nP t ×⋅ ∞ →  such that for some 

0δ >  

0( ) 0,P t I t tδ≥ > ∀ ≥ . 

Consider a nonlinear observer of the Luenberger-type 
(5), that is, 

1 * * 1

0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ( ))

ˆ ˆ ˆ            [ ( ) ( ( ))], ( ) n

d x t Ax t v t P C B y t E x t
dt

y t H Cx t x t x

− −= + +

× − = ∈ R
  

(16) 
with a gain matrix of the form (10), i.e., 

1 * * 1ˆ ˆ( , , ) : ( ) ( ) ( )K y x t P t C B y E x− −=          (17) 

where ( )B y  is given by (7). 



       

     

Then, the following statements hold. 
(i) The estimation error  ˆ( ) : ( ) ( )t x t x tρ = −  sat-

isfies the differential equation 
   

R

1 * *

0 0 0

( ) [ ( ) ( ) ( ( )) ( ( )) ] ( ),

ˆ( ) ( ) ( ) .n

d t A t P t C B y t B y t C t
dt

t x t x t

ρ ρ

ρ

−= −

= − ∈
 

(ii) ( )tρ  converges exponentially to zero, that is, 
there exist 0, 0α β> >  such that 

0

0

ˆ( ) : ( ) ( ) ( ) ,

                                      .

tt x t x t e t

t t

αρ β ρ−= − ≤

∀ ≥
 

Proof:  The statement (i) can be easily verified by 
differentiating ˆ( ) ( ) ( )t x t x tρ = −  and substituting 
(1), (16) and (17) to the resultant. Therefore, only the 
statement (ii) will be proved in detail. To prove this, 
it suffices to show by virtue of Lemma 5.1.2 (Curtain 
and Zwart, 1995) that the estimation error  ( )tρ  sat-
isfies the inequality  

0

2 2
0( ) ( )

t
t dt tρ γ ρ

∞
≤∫                 (18) 

where 0γ >  is some constant, independent 
on 0( )tρ . 

First, using (12) and (15), one can easily ob-
tain 

2
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( ) [ ( ) ( ) ( ) ( ) ( )] ( )

2 ( ) ( ( )) ( ( )) ( )

2 ( ( )) ( ) .
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T T

T T T
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t A t P t P t A t P t t

t C B y t B y t C t

B y t C t

ρ ρ

ρ ρ

ρ ρ

ρ

= + +

−

≤ −

Hence, integrating the above from 0 to t  gives 

0 0 0

2
0

0

0 ( ) ( ) ( ) ( ) ( ) ( )

2 ( ( )) ( ) ,

T T

t

t P t t t P t t
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First note that it easily follows from (7) and As-

sumption 3.1 (ii) that  
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Now expressing (12) in the form  
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Next using (14) and (22) one can evaluate 
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Further 1Q can be evaluated as follows: 
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(23) 
where 1 0γ >  is a constant, independent of ()ρ ⋅  
and 0 0t ≥ . 

To evaluate 2Q , first note that, since by Assump-
tion 3.1 (i) ( )A t  is Lyapunov stable, there is a con-
stant 0b >  such that 

Φ( , )t s t b+ ≤ < ∞  for all , 0s t ≥ . 

Using this fact, one obtains 
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and further, using (21) and (19), the above expression 
for 2Q  can be further reduced to 
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(24) 
where 2 0γ >  is a constant, independent of ()ρ ⋅  
and 0 0t ≥ . 

Finally, it follows from (23) and (24) the desired 
inequality 

0

2 2
1 2 0

2
0

2( ) ( ) ( )

: ( ) .
t

t dt t

t

ρ γ γ ρ
ε
γ ρ

∞
≤ +

=

∫  

This completes the proof of Theorem 3.4.  □ 
 

4. CONCLUDING REMARKS 

This paper studied a nonlinear observer for per-
spective time-varying linear systems arising in dy-
namical machine vision. First a Luenberger-type 
nonlinear observer was proposed, and then under 
some reasonable assumptions on a given perspective 
system, it was shown that it is possible to construct 
such a Luenberger-type nonlinear observer whose 
estimation error converges exponentially to zero.  
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