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Abstract— This paper proposes and studies in the frame work
of systems and control theory the problem of how to construct a
dynamical system defined over a Hilbert space such a way that
any given vectors are assigned to locally asymptotically stable
fixed-points of the system. Some basic properties of such sys-
tems are investigated, and further the results are applied to
neural networks to implement associative memory or pattern
recognition for two-dimensional images in such a way that a
certain structural deformation of images is acceptable. Finally
some numerical examples for associative memory are presented
to illustrate the performance.

. INTRODUCTION

IN the dynamical systems theory, the problem of analyzing
the stability of fixed-points of a system is one of most
important issues. On the other hand, for instance, in the neural
network theory, the problem of assigning given vectors to
fixed-points of a system together with their stability analysis
becomes a major issue. In fact, in implementing associative
memory or pattern recognition using a dynamical neural
network, each vector representing information to be stored
need be assigned as a locally asymptotically stable
fixed-point of the network. In this way, the content of in-
formation can be recalled by only giving an incomplete con-
tent or a portion of the memorized information as an initial
state of the network because the state converges to the
fixed-point storing the true information.

There have been studied two types of neural networks, i.e.,
the discrete state space type with discrete time and the con-
tinuous state space type with discrete or continuous time. For
the discrete type, a variety of methods for assigning given
vectors to locally asymptotically stable fixed-points have
been studied [1]-[6]. Further, for the continuous type, quite a
number of investigations have appeared in the literature, see,
e.g., [7]-[9] and the references there. However, the problem
has not been well understood in the system theoretical setting
and seems to be worthwhile to be reformulated and further
investigated in a unified manner from the viewpoint of sys-
tems theory.

This paper deals with systems of the continuous state type
with continuous time. Among many important research sub-
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jects in dynamical systems, this paper particularly focuses on
the fixed-point assignment problem by reformulating and
studying it from the viewpoint of the mathematical system
theory, and further applies the results for implementing as-
sociative memory using a neural network.

In Section I1. the fixed-point assignment problem is for-
mulated in the framework of Hilbert space and the stability of
the assigned fixed-points is discussed, particularly empha-
sizing the locally asymptotical stability. Then, in Section I1I,
further properties of the fixed-point assigned system are
investigated, and in Section 1V the result is applied for im-
plementing associative memory using a neural network, in-
cluding some numerical examples to demonstrate the per-
formance. Finally, some concluding remarks are given in
Section V.

II. CONSTRUCTION OF DYNAMICAL SYSTEMS
WITH GIVEN FIXED-POINTS

Let € denote a real separable Hilbert space and consider a
dynamical system over € described as

x(0) = f(x(1)), x(0)=x,€ FH (n
where [ : 3 — F is a sufficiently smooth function. Further,
let # ={w,---,v,} be a set of linearly independent vectors in

J€ and consider the problem of assigning all the vectors
in # as locally asymptotically stable fixed-points of a system
of the system (1).

To begin with, first denote by €, the subspace spanned by

the vectors in # , and considering & = {v,---,v, } as a basis of
3¢, and identifying its dual space 36" as itself #, , introduce
its dual basis #* = {v",---,v," } € #, , which is defined as the
following duality conditions:

(vovy") =8, = {:)

where (+,+) denotes the inner product on 3. Then arbitrary

i=j

S (2)
i#j

vector x € # can be uniquely expressed in the form

x=y+w=i§,v,+w, ye Hy, we ot (3)
1=

where 3¢ denotes the orthogonal complement  of

and & = <r v,'> . Further the dual vector x" € % of x ex-

pressed in (3) is defined as
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x'=)’°+w'=Z§,v,'+w'. V' edH,w eIt (4)

in}

where the vector w” € 6 is determined via the relation that

when w is represented as w = z Yuuy for a basis {u, } of 3G
vk
then
w = Zr,u,' : (5)
vk
where {u;"}is the dual basis. The norm often used in this
study is given as
!
M:(x.x'}z. xe %. (6)
It should be noted that this norm is different from the

1
one |x},, = (x,x)2 induced by the inner product on %, but

these norms are equivalent. Further, it should be also noted
that the following relations hold: For arbitrary vec-
tor x & J expressed as in (3) one has

B = (") = (0") + (mw”)
b+ = 362 + ol

i=]

and moreover for arbitrary vectors x,z €
(x, z') = <x', z) . (8)

Now, based on the works [7]-[9] introduce a dynamical
system defined over 3 as follows:

#0)=a3 (xtenv" v, S5k (xe).v’ )2
=1

i=1 J=l 9
x(x((), v, >v, -a (x(t), x(1)" )x(l). x(0) =x, € H

where ae R isaconstantand b, = b, € R are constants with
the property b, =0 . Then for arbitrary initial condi-
tion x, € J€ there exists a unique solution x(¢) in J€ [10].
Further it is easily seen that the origin x =0 is a fixed-point
and every vectorv,in® ={v,,---,v, } and the negative " -v,”
are also fixed-points of (9). In general, if pe ¥ is a
fixed-point, then so is the negative ”—p ™. Therefore, when

some statement on a fixed-point is obtained it will be inter-
preted hereafter that the same is applied for the negative

point.
Furthermore, it can be shown that under certain assump-

tions on the system (9) each v, is locally asymptotically
stable. The proof requires several steps. First, introduce a
functional V' : 3 — R | called a generalized energy func-
tional, of the form

V(x)=- % ai(x. v, >2 + % i ib,l (.t. v'- )2 (x_ \-J- )2
i=] i=1 =1 (10)
+ %a(x. x >2

and compute the Fréchet derivative of V' (x), denoted V (x) ,
which is obtained as
L - . 4 = . 2 . .
Ve (x)= -—aZ(x, v, >v, +ZZb,} <.x. v, > (x,v, )v,
1=l =l =l (1
+a (x, x' ) X
Notice that ¥ (x) is a continuous lincar functional on J€ ,
depending onxe JE[10].

Now, for notational simplicity, introduce the following
notations:

&=[& &) where & = (x,v,) fori=1,-,r
B=[b] eR™.
(N

Then the system (9) and the functional (10) together with the
Fréchet derivative (11) can be expressed as

(12)

X =ai§,v, _[élvl fr"r]
=1 (13)
xB[g2 -~ & ~axlef
S 1
V(x)= —%agé’ + (8 &)
2 3 o1
) XB[él fr ] +4”E“"r (14)
Ve(x)= -GZQVJ. +[§‘2 §r2]
1=l
L XBlflvl. grvr.]r +0|Ii2 X..

Now, the following lemma is proved.
LEMMA L. Let & ={v,---,v,} be asetof lincarly independent
vectors in J with the dual basis #° ={v",---,v," ) c % as
characterized by (2), and consider the functional V(x) given

by (10).
Then ifa>0, bu =b, >0 and by =0fori j=1---r,

V(x) attains a local minimum at each pointv, , and all the

minimum values are equal and are given as
V(v,‘)=—%a<V(0)=0, k=lor. (15

PRrOOE. First, it follows from (11) and (2) that
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r

V(v )= —aZ(v,,.v,' }v,'
ror - ” (16)
+33°b, (v*,v)'y {v‘,v,'>v,' +a<vk,v‘°>v," =0

and hence cach v, and its negative —v, arc extreme points
of ¥(x) . Further (15) follows ecasily from (10). To show that
each extreme point v, attains a local minimum, first observe

from the identity (3) and (14) that, for an arbitrary xe € ex-
pressed as

x=i§,v, +w withg, :=<x.v,') and we F,™,

=1

one has

: TRLITON,
;(x):-iazf,‘,’-»z[g,’

t=1

xB [4"12

&*]
271 [ 2 2 j
S ] +za(§§. +{wi ]

4%

| & 1 (17)
> '}:’: ; 52
2 '2 4['

=]

2
xB[&? 5,’]T+£a(i¢,’] =7(g)
=1

where the assumptiona > 0 has been used. Therefore V(x) is
bounded from the below and its all local minimums occur on
the subspace #, .

To proceed further, first compute the first and second de-
rivatives of the lower bound ¥ (£) defined in (17) to obtain

V r
a——(§)=Z(a+bb)§,2§‘ -a&,, fork=1---,r
ag" =l

a7
96,94

&)= i(0+bu)§,2+20§k2‘01"=1 s
=) =l

2(a+bﬂ)§k§l1 k=l forl:l,-..,r,

Then it follows from (18) that, since cach extreme pointy,

corresponds to the vector & =[£ &) with & =+1
27

and all the other elements &, = 0, the matrix ‘—.?@L{ formed by

the second derivatives evaluated at this extreme pointy, is
obtained as

*V

a;ag =2l =diag{hlv"'9b(l-|),"Za.b(“,l)l."',bn}>0,

=0 =i

for i=1,--,r where the assumptionsa >0 and b, =b, >0

have been used to get the positivity. Therefore, each extreme
pointy; attains a local minimum of ¥(&,,--£,). o

Now our main theorem is stated and proved as follows. The
proof is omitted and will be given elsewhere.

THEOREM 1. Let & ={v,,---,v,} be a set of lincarly inde-
pendent vectors in H with 2 = {w",---,v,"} € 3, of the dual

vectors as characterized by (2). and consider the functional

V(x) given by (10).
Then, ifa>0,b,=b,>0and b, =0for i,j=1-r,

then each fixed-point v, of the system (9) is locally asymp-
totically stable.

PROOF. First notice from (9) and (11) thatx(¢) =V, (x(1)) .
Using this fact, onc easily obtains

‘Z—L’,(X(!)) = (Vo (x(0).x(0)) = —(V, (I(l)),",'(x(!))> (19)
==V’ <0

which implies that V' (x(r)) always decreases along the tra-
jectory x(¢) of the system (9). Now recall that each v, in
& ={v,,---,v, }is a fixed-point of the system (9) and further
Lemma 1 ensures that the point attains a local minimum
of V(x) . Therefore (19) implies that every trajec-
tory x(¢) starting from a sufficiently small vicinity of any
fixed-point v, converges asymptotically to the point v, . This
completes the proof. ©

III. BASIC PROPERTIES OF THE CONSTRUCTED SYSTEM

In the previous section, a method for constructing a dy-
namical system for which a set of prescribed vectors is as-
signed as its fixed-points was studied, and further it was
shown under certain assumptions that each assigned
fixed-point is locally asymptotically stable. In this section,
more properties of the constructed system are investigated.

First, we note that using the expression (3) it is possible to
describe the system (9) as the following two coupled sub-
systems:

é,u)={a-Z<a+bu)¢,’m-M’}ém‘ i=1l-,r (20a)

sl

() =-a(Y &2 O+ ) )w(o)

s

(20b)
where the solution x(7) is given by

x(0) =Y & (0, +wlr).

=l
The subsystem (20b) implies that the solution w(f) be-
longing to the orthogonal subspace " always satisfies

lhm w(t)=0. (21)
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The following theorem states more about fixed-points. The
proof is omitted and will be given elsewhere. Hereafier, for
notational simplicity, the argument *¢ ™ in variables may be
omitted when no confusion seems to be possible.

THEOREM 2. Consider the system (9) with a>0 |
b, =b; >0and b, =0for i, j=1---,r. Then:

(i) Every fixed-point of the system (9) satisfiesw =0, and
therefore every fixed-point lies on the subspace 3, and
is expressible in the form

P= Z élvt (22)
e

(i) The number N ;. , of all possible fixed-points of the
system (9) is given as

Nﬁled = z 2”’ ’Cu.
m=0

(i) Further among these fixed-points the r fixed-points
v;,---,v, as well as their negatives are locally asymp-
totically stable, and the fixed-point x=0 (ie,
all§, =0andw=0) is unstable. o

(23)

REMARK. First notice from THEOREM 2 (i) that ecach
fixed-point v, corresponds to the vector & = [ A
withg, =land§; =0 forall j #i. Therefore, THEOREM 2 (iii)
states that the fixed-points corresponding
tog, =+land §; =0 for all j=iarc locally asymptotically
stable and the fixed-point corresponding to £, =0 for

all j =1,---,r is unstable. But it says no statement on the sta-

bility for other fixed-points. The authors’ conjecture for these
fixed-points is as follows:

(i) For a fixed-point corresponding to the vector with
only m components &, ,---,§, #0,
0<g?=m=g <. (24)

(ii) Such a fixed-point is not asymptotically stable but a
saddle point.

This conjecture will be discussed elsewhere in the near future.
o

IV. APPLICATION TO ASSOCIATIVE MEMORY

The basic idea of implementing associative memory or
pattern recognition using a neural network is as follows:

(i) First, the desired information to be stored is represented
by some vectors in an appropriately chosen abstract space,
and a neural network defined over the abstract space is con-
structed in such a way that these vectors are assigned to lo-
cally asymptotically stable fixed-points.

(ii) Then, any desired information can be recalled by giving
only an incomplete content or a portion of the memorized
information as an initial state of the network so that the state
of the network converges to a fixed-point, which represents
the desired information.

4.1 Associative Memory for 2-Dimensional Images

In our example, a certain number of two-dimensional im-
ages (pictures, fingerprints, letters, etc.) are taken as a set
% ={v,,---,v,} of prototype vectors to be memorized in a
neural network. More precisely, introduce a compact do-
main D < R together with the Hilbert space % = £,(D) of
square integrable functions where these functions represent
all possible two-dimensional images, and choose a set
P ={v,,---,v,} of prototype vectors in £,(D) . Then, con-
struct a neural network of the form (9) with
a>0.,b,=b,>0andb, =0 for i, j=1,---,r.

In practical situations, an initial image x(0)e £,(D) is a
corrupted version of some prototype vector v due to a noise
and/or a deformation. In this study, we assume that the noise
is additive and the deformation is described by a deformation
operator T(6): £,(D) — £,(D) depending on a parameter
vector @ e R™ . Thus, we assume that

x(0)=T(O)v, +n (25)
for some prototype vector v, where 7€ £,(D)is an additive
noise. It is assumed that € R™ is unknown but the func-
tional structure 7'(+) is known and mapping @ + T(8) is suf-
ficiently smooth. Further it is assumed that the inverse
S(8) =T"'(6) exists for all possible #& R™ and there exists a
unique nominal parameter vector @ € R™ such that

T(8)x=x forall xe %.

The deformation operator 7(6) we consider is described
via an Affine transformation of the two-dimensional domain
D < R? as follows: Let x(#) e £,(D) be an arbitrary image,
anddenote st =[5 1] e DcR? and p=[p, p,] € R
Then our operators 7(#) and S(&) are given by

|
T(0)x() =[det £2] 2 x(Lu+p)

: (26a)
S(O)x(p) = [det Q1 {27 (- p)]
where
@, @ 2
QQu+p= u+ ]
Y+p [‘”zn "’n] [/’2 (26b)

o=[a, @, o, @y p Pl -
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4.2 The Stability Analysis for Deformation

In this case, to improve the performance of associative
memory, the deformation structure is taken into account. To
make such an improvement, we introduce a modified gener-
alized energy functional as follows:

Vi(x,0) =~ % ag(x. ;.'v >2
135 (05 (x5

i=1 y=I

(27)

+%a(x,x'>2

where ¢ > ( is a constant and

1 _ =
+§c(o-9.o—e)

v, =S80, and v, =S(@W,", i=1,---,r

Then it can be shown that the duality for # = {#,---,3,} is
preserved, i.c.,

(3,8, )=(v.v," ) =4,.
Corresponding to (27), a modification of the system (9) is
introduced as follows:

()= az': (x0),% )5,

=1
S5 ib,, (x5, )2 (x@.5")3,
i=] j=1

—a(x(0),x() ) x(t), x(0)=x, € .

(28)

Further, a dynamics for the parameter vector @ is introduced
as follows:

0 ==y (x(1),61). 6(0)=6, e R™  (29)
where 7> 0 is some constant. It should be noticed that if

8e R" coincides with the nominal value & then (27) and
(28) become the original system (9) and the original gener-
alized energy functional (10), respectively.

THEOREM 3. Consider the combined system of (28) and (29)
witha>0, b, =b, >0and b, =0for i,j=1---,r . Then
each (v;,8)is a locally asymptotically stable fixed-point of
this combined system,

PROOF. First, compute the Fréchet derivatives of ¥ (x,8) with
respect to x and &, respectively, to obtain

V(x,0)= -ai (x, v )6,'

=l

Then notice that the right hand side of (31) evaluated
at(v;,8) vanishes and from (34) that Vg (v,8)=0. There-
fore, each (v, @) is a fixed-point of the combined system.
Further one obtains

: '
%’-’- (x(0), 000)) = (¥, (x,0), 3)+ (V, (x.6).8)
==V (=01, (x, a)) = (Ve (x.0).V, (x, o)) (32)

= . 0f - 7|V (x 0 <0
and’] hence, if the initial state (x(0),8(0)) for (28) and (29) is
sufficiently close to (v;, ) for some k , then

lim (x(), 60)) = (%.6), (33)

showing that (v, &) is locally asymptotically stable. o

V. NUMERICAL EXAMPLES

Our simple example used to demonstrate the results in the
previous sections is described as follows: First, we choose
r =10 two-dimensional images as the set® = {v,,-,v,) of
prototype vectors in £,(D), including letters, flowers, bird

and some simple pictures. Then, cach 2-dimensional image
v, is divided into 128x128 =16,384 pixels, and is ap-
proximately represented by an order 128 x128 matrix with the
entries equal to the values of v, () evaluated at the pixels.

The parameters of the combined system of (28) and (29)
are chosen as a=1b, =lc=2,y=3 . The initial state
x(0) =T(8)v, + 1 given by (26) is constructed from a flower
image vy by setting 6, = @, = 0.7, @, =1 with all the other
parameters equal to zero and adding a white noise with zero
mean and variance 1. Therefore, the structural deformation in
this case contains only an enlargement in the horizontal di-
rection by 1/0.7 =1.429 and no other deformation is intro-
duced. The initial value 8(0) is set as

0o o of.
Fig. 1 shows the result using (20) or cquivalently (9) with

e0)=6=[1 0 1

it - (30)  this initial state x(0) . i.c., the one without taking into account

+ lelbu (x. ‘.',.) <J“ 64.){'4. "‘0<X,X' )X' the deformation structure (25), First, notice that & (1) — 1

e implies x(¢) = vg where vg is another flower similar to vy, and
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that the other &, (1) s converge to zero and in particular the

noise term ||w(1)R3 sharply reduces to zero. It is also seen that
the initial values satisfy & (0)<&;(0) which leads
to &g(r) — 1, converging to an incorrect prototype image vg .
On the other hand, Figs. 2-3 show the results using (28)
and (29), i.e., the case taking into account the deformation
structure (25). In this case, &(r)— 1 which implies the

convergence to the correct prototype image vy, as expected.

V1. CONCLUDING REMARKS

This paper studied from the viewpoint of the systems and
control theory the problem of constructing a dynamical sys-
tem having given vectors as its locally asymptotically stable
fixed-points, and also discussed basic properties of the re-
sultant system. Further, the result obtained was applied to
neural networks to implement associative memory for
2-dimensional images, and a new method for handling struc-
tural deformation of images was proposed. Finally, some
numerical examples were presented to demonstrate the per-
formance.
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Fig. 1. The results using (20) or (9), converging to
an incorrect prototype vector vy
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Fig. 2. The results using (28) and (29), converging
to the correct prototype vector v,

Fig.3. The sequence of images converging to
the correct image v,



