
 
 

  

Abstract—The problem of assigning a prescribed set of 
vectors to locally asymptotically stable fixed points of a sys-
tem arises in implementing associative memory using a neu-
ral network. This paper discusses this problem for neural 
networks of the discrete state space type in the framework of 
systems and control theory. Although the so-called orthogo-
nal projection method is reasonably powerful and widely used 
to construct such a network for associative memory, there is 
yet another important problem to be investigated. That is the 
problem of how to avoid fictitious fixed points created 
around desired fixed points or how to enlarge and /or adjust 
the domains of attraction of desired fixed points. Firstly a 
generalized orthogonal projection method is studied, and sec-
ondary introducing a state feedback structure in to a neural 
network it is shown that it is possible to design a control law 
such that without changing the already assigned fixed points 
each fixed point achieves a maximum convergence margin to 
improve the capability as associative memory. Finally, to 
illustrate the results, numerical examples for associative 
memory are worked out. 
 

Keywords— neural network, stability, stability margin, as-
sociative memory 

I. INTRODUCTION 
N the dynamical systems theory, the stability analysis of 
fixed points is a very important problem. On the other 

hand, in the neural network theory, the problem of assign-
ing arbitrarily given vectors to fixed points of a neural 
network may become a main concern. In fact, in imple-
menting associative memory or pattern recognition using a 
dynamical neural network, the desired true information is 
memorized as a locally asymptotically stable fixed point of 
the network. Then, the memorized information can be re-
called by only giving an incomplete content or a portion of 
the memorized information, which is taken as an initial 
state of the network, so that its state converges asymptoti-
cally to the fixed point that contains the desired informa-
tion. This type of memory is quite different from the mem-
ory used in ordinary digital computers in which informa-
tion is stored in a memory device with a unique address 
for each memory unit and the content of information is 
ecalled by merely specifying the address. 

There have been studied the two types of neural net-
works, i.e., the discrete state space with discrete time and 
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the continuous state space with discrete or continuous time. 
In implementing associative memory, the fixed point as-
signment problem has attracted a great deal of attention, 
however there is another important problem to be studied, 
that is, the problem of how to enlarge and/or adjust the 
convergence margin of each assigned stable fixed point in 
order to improve the capability of associative memory. 
However, this problem has not been thoroughly studied. In 
addition to this, there is still another challenging but ex-
tremely difficult problem, that is, the problem of how to 
handle information corrupted by structural deformation.  

For the discrete type, a variety of methods for assigning 
given vectors to locally asymptotically stable fixed points 
has been studied and further the problem of enlarging the 
convergence margin of each fixed point has been exam-
ined, see e.g., [1]-[9]. In particular, the papers [8]-[9] pro-
posed and studied methods for improving or maximizing 
the convergence margins of assigned stable fixed points, 
and this problem has been fairly understood. 

For the continuous type, there have also appeared a 
number of investigations, see, e.g., [10]-[13] and the ref-
erences there. However, there are still a number of essen-
tial problems unsolved, including even the fixed-point 
assignment problem and the other problems mentioned 
above. For instance, when dealing with two-dimensional 
images corrupted by shape deformation, the problem be-
comes extremely difficult [13]. 

This paper deals with neural networks of the discrete 
state space type, more specifically, those described by the 
McCulloch-Pitts model [1]. For this type a variety of 
methods for assigning a set of prescribed vectors as as-
ymptotically stable fixed points have been studied [2]-[9]. 
Among them, the so-called orthogonal projection method 
is reasonably powerful and widely used. However, for this 
method there is yet another important problem to be inves-
tigated. It is the problem of how to avoid fictitious fixed 
points created around desired fixed points or how to 
enlarge and /or adjust the domains of attraction of desired 
fixed points because the capability of recalling information 
as associative memory is dependent on the domains of 
attraction. In particular, it has been pointed out [8] [9] that, 
although any given vectors can be assigned to stable fixed 
points of a given neural network by means of the orthogo-
nal projection method, some fictitious fixed points may be 
also created in vicinities of the assigned stable fixed points. 
Therefore, this may cause a fatal problem that not only the 
recalling process leads to expected information but also 
the convergence margin becomes unexpectedly small.  

This paper first proposes and studies a generalized or-
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thogonal projection method, and then discusses a method 
for maximizing the convergence margins of the desired 
fixed points by introducing a state feedback into the neural 
networks. Finally, to illustrate the theoretical results ob-
tained, some numerical examples of simple neural net-
works implementing associative memory are presented. 

II. PROCEDURE FOR PAPER SUBMISSION 
First, basic definitions and notations used in the sequel 

are introduced. Let : { 1, 1}= −B and consider a general 

dynamical system over nB described in the following 
form: 

0( 1) ( ( )), (0) nx k f x k x x+ = = ∈B .       (1) 

Denote the solution of (1) by 0( ; )x k x  or simply ( )x k . 

Then, a vector nξ ∈B is said to be a fixed point or an 
equilibrium solution of (1) if ( )f ξ ξ=  or equivalently 

( ; )x k ξ ξ=  for all 0k ≥ . The domain of attraction of a 

fixed point nξ ∈B is defined as 

0 0( ) : { 0  such that  ( ; ) }nx k x k xξ ξ= ∈ ∃ ≥ =D B .  (2) 

Next let the Hamming distance between ξ and ζ in 
nB  be denoted by ( , )Hd ζ ξ , and the δ -ball centered at 

nξ ∈B  by ( )δ ξN , i.e., 

( ) : { ( , ) }, 0n
Hdδ ξ ζ ζ ξ δ δ= ∈ ≤ ≥N B . 

Then, a fixed point nξ ∈B is said to be locally asymp-
totically stable (or simply stable) if 1( ) ( )ξ ξ⊃D N . Fi-

nally, for a fixed point nξ ∈B , define 

( ) : max{ 0 ( ) ( )}r δξ δ ξ ξ= ≥ ⊂N D ,       (3) 

which will be used as a measure of convergence margin of 
the fixed point. 

Next, consider a neural network of the McCulloch-Pitts 
model [1] defined over the discrete state spaceBn as 

MP: 
0

( 1) Sgn{ ( ) },

 (0) n

x k Wx k h

x x

+ = −⎧⎪
⎨

= ∈⎪⎩ B
       (4) 

where ( )x k ∈Bn  is the state, n nW ×∈R  the connection 

matrix, nh ∈R the threshold vector and Sgn( )・ designates 
the vector-valued sign function, i.e., 

T
1 nSgn( ) : [sgn sgn ]ξ ξ ξ=  

where T
1 n[ ] nξ ξ ξ= ∈R and 

1, 0
sgn :

1, 0.
η

η
η

>⎧
= ⎨− ≤⎩

 

Further, denote the solution of MP by 0( ; )MPx k x or simply. 

Then it is clear that all the properties of solu-
tion 0( ; )MPx k x , or equivalently, of dynamical neural net-
work MP are determined by the parameter set ( , )W h , and 
hence any design problem of such a network can be de-
scribed as a problem of choosing an appropriate parameter 
set ( , )W h . Finally let r n<  and (1) ( ): { , , }r nξ ξ= ⊂P B  
be a set of distinct vectors, called a set of prototype vectors 
or simply a prototype set, which represents the set of in-
formation to be stored in a neural network. Further, intro-
duce a Lyapunov function for MP model (4) by 

1( ) :
2

T TE x x Wx x h= − + .          (5) 

 Then we cite the following theorems [2], [5], [6], 
which provide a method for assigning a given set of vec-
tors to its asymptotically stable fixed points of a neural 
network.  

THEOREM 1. Consider a dynamical neural network of the 
MP model (4). If the connection matrix n nW ×∈R is non-
negative definite over the set { 1,0,1}n− , then for any ini-

tial state 0(0) n
MPx x= ∈B  

(i) 0 0( 1; ) ( ; )MP MPx k x x k x+ ≠  

0 0( ( 1; )) ( ( ; ))MP MPE x k x E x k x⇒ + <  

(ii) the trajectory 0( ; )x k x converges to an asymptoti-
cally stable fixed point of the MP model with finite 
steps.  □ 

THEOREM 2 (The Orthogonal Projection Method, OPM). 
Consider a dynamical neural network of the MP model (4) 
with the parameter set ( , )W h  given by 

(1) ( )

1

: ,

: [ ]

: [ ] , 1

n n

r n r

T
n k

W

h h h h

ξ ξ

×

×

⎧ = ΞΞ ∈
⎪⎪ Ξ = ∈⎨
⎪ = ≤⎪⎩

† R
B          (6) 

where r n×Ξ ∈† B  denotes the Moore-Penrose generalized 
inverse. 

Then the following statements hold: 

(i) Each ( )iξ ∈P  is a fixed point of MP. 

(ii) (1) (2) ( )( ) ( ) ( ) ( ),r nE E E E x xξ ξ ξ= = = ≤ ∀ ∈B  
(iii) MP has no limit cycles.  □ 

The name “the Orthogonal Projection Method (OPM)” 
comes from the fact that the matrix :W = ΞΞ†  represents 
the orthogonal projection operator from nR onto the sub-
space spanned by the column vectors in Ξ  (hence it is 
nonnegative definite).  
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III. THE GENERALIZED ORTHOGONAL PROJECTION 
METHOD 

This section proposes and studies a generalized or-
thogonal Projection method. To begin with, the following 
fact is cited. 

THEOREM 3. Let n mX ×∈R be a matrix. Then the 
Moore-Penrose inverse † m nX ×∈R satisfies 

† 1

0
1

0

lim ( )

lim ( ) .

T T
n

T T
m

X X I XX

X I X X
λ

λ

λ

λ

−

→+
−

→+

= +

= +
          (7) 

 

Now the next theorem holds, but its proof is omitted 
here. 

THEOREM 4. Let (1) ( ): { , , }r nξ ξ= ⊂P B be a set of given 
prototype vectors with r n<  and de-
fine (1) ( ): [ ]r n rξ ξ ×Ξ = ∈B .Further, choose an inte-

ger d satisfying 1 ( ) / 2d n n≤ < − and a positive func-
tion :{0, , } (0, )q d → ∞ . Moreover for each 1, ,i r= , 

define ( )( ) : ( ( , ))i
i Hp x q d x ξ= and ( ): ( )i

i dN ξ=D . Finally 

introduce a nonnegative function : [0, )n nE × → ∞R by 

2( )
1( ) : ( )

i

r i
ii

x
E W p x Wx ξ

=
∈

= −∑ ∑
D

.       (8) 

Then, there exists a unique matrix n nW ×∈R that mini-
mizes ( )E W and is given as 

1
T

rW Iβαγ
γ

−
⎡ ⎤

= Ξ + Ξ Ξ Ξ⎢ ⎥
⎣ ⎦

         (9) 

where 

0

0

0

2( )

4 ( )( )
( 1)

4 ( )( ) 1 .
( 1)

d
n ss

d
n ss

d
n ss

n sq s C
n

s n sq s C
n n

s n sq s C
n n

α

β

γ

=

=

=

−
=

−
=

−

⎧ ⎫−
= −⎨ ⎬

−⎩ ⎭

∑

∑

∑

 

                        

Now, notice that for any 0a >  

Sgn( ) Sgn{ ( )} Sgn( )Wx h a Wx h aWx ah− = − = − . 
Therefore, THEOREM 4 may imply that it is meaningful to 
set 

1

1

, 0

: [ ] , 1

T
r

T
n k

W I

h h h h

ε ε ε
−⎧ ⎡ ⎤= Ξ + Ξ Ξ Ξ >⎪ ⎣ ⎦⎨

⎪ = ≤⎩

      (10) 

as a parameter set ( , )W h of the MP model (4) because it 
follows from THEOREM 3 that 

†
0 0

: limW Wεε →+
= = ΞΞ .           (11) 

Based on the above arguments, (10) will be called “the 
Generalized Orthogonal Projection Method (GOPM)” 
comparing with (6) in THEOREM 2. In implementing the 
MP model (4), choose a connection matrixWε with suffi-
ciently small 0ε > so that 

( ) † ( ) ( )Sgn( ) Sgn( ) , 1, ,i i iW h h i rεξ ξ ξ− = ΞΞ − = = , 

while some of fictitious fixed points can disappear.. 

IV. MAXIMIZATION OF CONVERGENCE MARGIN 
First, we consider the MP model (4) with an arbitrary 

parameter set ( , )W h , and introduce to this system an input 

vector ( ) nu k ∈R and a state feedback with a special form 
to define the McCulloch-Pitts Model with feedback (MPF) 
as follows: 

MPF: 0( 1) Sgn{ ( ) ( )}, (0)
( ) Sgn{ ( ) }

nx k Wx k h u k x x
u k F Vx k g θ

⎧ + = − + = ∈⎪
⎨

= − +⎪⎩

B  

(12) 
or equivalently in the closed loop form 

MPF: 
0

( 1) Sgn[ ( ) Sgn{ ( ) } ]

(0) n

x k Wx k h F Vx k g

x x

θ+ = − + − +⎧⎪
⎨

= ∈⎪⎩ B
          

(13) 
where n mF ×∈R with m n≤ , m nV ×∈R , mg ∈R  and 

nθ ∈R . ( , , , , )m F V g θ  forms a feedback parameter set 
to be chosen so as to improve the convergence margin 
without changing its pre-assigned fixed points. Let the 
solution of MPF be denoted by 0( ; )MPFx k x or simply 

( )MPFx k  and consider a prototype vector set 
(1) ( ): { , , }r nξ ξ= ⊂P B  with r n< . Now, for 

each 1, ,i r= , denote by id  the minimum distance from 
( )iξ ∈P  to the others ( )jξ  for j i≠ , i.e., 

( ) ( ): min{ ( , )  1, ,  and }.i j
i Hd d j r j iξ ξ= = ≠｜   (14) 

Then, the following theorem holds [8]. 

THEOREM 5. Let (1) ( ): { , , }r nξ ξ= ⊂P B be a prototype 
set of distinct vectors, and define 

(1) ( ): [ ]r n rξ ξ ×Ξ = ∈B . 

Consider the MP model (4) with an arbitrary parameter set 
( , )W h and the MPF model (12) or (13) with the feedback 
parameter set given by 
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1

( )
1

:

: , :

: [ ] , :

: [1 1]

T

T
r i i

r j T
j

m r

F a V

g g g g n d

a aθ ξ
=

=⎧
⎪

= Ξ = Ξ⎪⎪
⎨ = = −⎪
⎪ = = Ξ⎪⎩ ∑

      (15) 

where, denoting ( )ijW w= and ( )ih h= , 0a >  is chosen 

to be any constant satisfying 

{ }11

1 max
2

n
ij iji n

a w h
=≤ ≤

> +∑ .          (116 

Then, letting 0
nx ∈B  be an initial state and 0k ≥  be 

an integer, the trajectories ( )MPx k of MP model 
and ( )MMPx k of MPF model satisfy the following proper-
ties:  

(i) If ( )
( 1) / 21

( ) ( )
i

r j
MPF dj

x k ξ−=
∉∪ N , then 

( 1) ( 1)MPF MPx k x k+ = + . 

(ii) If ( )
( 1) / 2( ) ( )

i

i
MPF dx k ξ−∈N for some 0k ≥ and 

some ( )iξ , then 
( )( 1) i

MPFx k ξ+ = . 

(iii) Every ( )iξ ∈P  is a fixed point for MPF model, 
that is, for all 0i ≥  

( ) ( )

( )

Sgn{ }

Sgn{ } .

i i

i

W h u

u F V g

ξ ξ

ξ θ

⎧ = − +⎪
⎨

= − +⎪⎩
 

□ 

Further, the following corollary can be easily verified 
using THEOREM 5. 

COROLLARY 1.  Let all the notations be the same as those 
in the previous THEOREM 5. Then, the following state-
ments are satisfied: 

(i) For every ( )iξ ∈P , 

( )

( )
( 1) / 2

( )
( 1) / 21

( ) {  0  such that 

                 ( ; ) ( ) and

                 ( ; ) ( ),  }.

i

j

i n

i
MP d

r j
MP dj

k

x k

x l l k

ξ ξ

ξ ξ

ξ ξ

−

−=

= ∈ ∃ ≥

∈

∉ ∀ <∪

｜D

N

N

B

 

(ii) For every ( )iξ ∈P , 
( ) ( )

( 1) / 2 ( ) ( )
i

i i
d ξ ξ− ⊂N D . 

(iii) If 3id ≥ , then ( )iξ  is a locally asymptotically 
stable fixed point. 

(iv) If the MP model has no limit cycles, then the MPF 
model has also no limit cycles.   □ 

Finally, the following theorem can be easily verified 
using THEOREM 5 and COROLLARY 1. 

THEOREM 6.  Let all the notations be the same as those 
in the previous THEOREM 5 except an arbitrary parameter 
set ( , )W h is replaced with the parameter set constructed 
the Orthogonal Projection Method as in THEOREM 2. 

Then, if 3id ≥  for all 1,i r= ,  

(i) each assigned fixed point ( )iξ  is locally asymp-
totically stable 

(ii) there is no other fixed point in ( )
( 1) / 2 ( )

i

i
d ξ−N and 

its convergence margin is given as 
( )( ) ( 1) 2i

ir dξ = − , that is, each fixed point ( )iξ  
has the maximum convergence margin.   □ 

Figure 1 explains the result of Theorem 6 together with 
THEOREM 5, hat is, on the outside of the convergence mar-
gin ( 1) / 2 1id − ≥  the two trajectories ( )MPFx k and 

0( ; )MPx k x  are exactly the same until they reach the con-
vergence margin and then at the next moment  

( )MPFx k immediately moves to the fixed point ( )iξ  
but ( )MPx k may travel more and eventually reach a ficti-

tious fixed point *ξ created by MP model. 

V. NUMERICAL EXAMPLES 
  Some numerical examples were performed for the gen-
eralized orthogonal projection method obtained in Section 
III, and the results showed that some fictitious fixed points 
are removed and the capability for associative memory is 
definitely improved. However, the improvement seems 
much less than the method proposed in Section IV. Due to 
the shortage of space, all the numerical results are omitted, 
and only those results obtained using the method devel-
oped in Section IV are presented here. 

EXAMPLE 1. First, we consider an associative memory for 
memorizing English alphabets , , ,A B Z and blank . 

( ) ( 1)i
MMPx kξ = +  

(An assigned fixed point 
for MPF and MP models) 

* ( 1)MPx kξ = +  
(A Fictitious fixed point 

created by MP model) 

Initial state (0)x  

( 1) ( 1)MPF MPx k x k− = −

( ) ( )MPF MPx k x k=

Convergence margin
( 1) / 2i ir d= −  

Figure 1. The Trajectories of MP and MPF models 
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Each character is divided into 100 ( 10 10= × ) pixels and 
each pixel is represented by 1 or -1 according to black or 
white, forming the set ( ) ( ) ( ) ( ){ , , , , }A B Zξ ξ ξ ξ=P of 27 

prototype vectors  in 100B . The parameter set ( , )W h of 
the MP model is constructed by the Orthogonal Projection 
Method described in THEOREM 2 with 0h = , and the 
feedback parameter set ( , , , , )m F V g θ of the MPF model is 
determined according to THEOREM 5.  

First, it is checked that, for these prototype vectors, all 
the minimum distances are computed and turn out to sat-
isfy , , , , 4A B Zd d d d ≥ . Therefore, it follows from 
THEOREM 6 that all the prototype vectors are assigned to 
locally asymptotically stable fixed points of the MPF 
model. 

Figure 2 depicts the trajectories of both MP and MPF 
models starting from the same initial state 

100
0 (0)x x= ∈B obtained from ( )Aξ by adding 15 % noises. 

The result shows that the MPF model trajectory 
( )MPFx k converges to the expected prototype vector ( )Aξ , 

but surprising enough the MP model trajectory 0( ; )MPx k x  

converges to a fictitious fixed point *ξ , which is created 
by the Orthogonal Projection Method and differs only at 
one pixel, that is, ( ) *( , ) 1A

Hd ξ ξ = . That is to say that the 
Orthogonal Projection Method ensures to assign all the 
prototype vectors to fixed points but simultaneously may 
produce a fictitious fixed point just next to a prototype 
vector as demonstrated in this example.  

EXAMPLE 2. Next, we consider an associative memory for 
memorizing English words. A word to be memorized is 
composed of at most five (5) alphabets and the following 
30 words are memorized: 

CAT      APPLE   MOON    MOUSE   PEACH 
EARTH  TIGER LEMON SUN      WOLF  
MELON  VENUS  WHALE  GRAPE   MARS 
JAPAN   SHIP   ROSE    CHINA    TRAIN 
LILY    INDIA   PLANE   PANSY    SPAIN 
BIKE   TULIP  ITALY    BOAT    OLIVE 

In this time, each character is divided into 24 24 ( 576)× =  
pixels, so that each character is represented by a vector in 

576B . Therefore each word consisting at most 5 characters 
is represented by a vector in 2880B and the 30 prototype 
vectors are denoted as (CAT) (OLIVE), ,ξ ξ  in 2880B . 

For the associative memory for these words, we also 
construct two types of neural networks, using MP model 

Figure 3. Associative memories for English words 
using MP model and MPF model 

MP model            MPF model   

MP model   MPF model 
( ) ( )MP MMPx k x k  

Convergent to 
fixed point ( )Aξ

Figure 2. Trajectories of MP and MPF models 

Initial state 
100

0x = B  

Convergent to a fictitious 
 fixed point * ( )Aξ ξ≠  
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and MPF model, respectively. Each type network is com-
posed of five MP (MPF) models, each of which is con-
structed as in EXAMPLE 1 to memorize ( ) ( ), , ,A Bξ ξ  

( ) ( ),Zξ ξ in 576B . Then these five networks are connected 
each other, through a newly introduced hidden network to 
each individual network, in such a way that each word is 
assigned to an asymptotically stable fixed point in the 
space 2880B of the total network but  the pre-assigned 
fixed points in each individual network for memorizing 

( ) ( ) ( ) ( ), , , ,A B Zξ ξ ξ ξ are unchanged. A detailed descrip-
tion for this construction is given in [7]. 

Figure 3 depicts the computer simulation results of the 
two associative memories for English words using MP 
model and MPF model. As seen from the figure, the initial 
state is a very nosy information which is generated from 
the prototype vector (APPLE)ξ  of “APPLE” by adding 
45 % noises. It is seen that in the associative memory us-
ing the MP model a fictitious fixed point (i.e., a meaning-
less word) is created near the word “APPLE” and the cor-
rect information cannot be recalled, while in the associa-
tive memory using the MPF model the correct information 
“APPLE” is recalled.  

VI. CONCLUDING REMARKS 
This paper dealt with the problem of assigning a given 

set of points to the locally asymptotically stable fixed 
points in a neural network. In particular, a generalized or-
thogonal projection method was proposed. Further from 
the viewpoint of systems and control theory a method for 
maximizing the convergence margin of each assigned 
fixed point was studied, which is vital for implementing an 
associative memory by a neural network to improve the 
capability of associative memory. In fact introducing a 
state feedback structure into a neural network it was 
shown that it is possible to design a state feedback law 
such that the convergence margin of each fixed point in its 
closed loop system is maximized without changing all the 
pre-assigned asymptotically stable fixed points. Finally, to 
show the effectiveness of the result obtained, some nu-
merical examples for associative memory were presented. 

More sophisticated neural networks were considered by 
introducing limit cycles to memorize information [6]. Fur-
ther, recently neural networks of continuous state spaces 
with continuous time have been considered in the frame-
work of the systems and control theory [13]. For these 
networks, the same problem studied in this paper should 
be investigated.  
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