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Abstract— Control of large arrays of microactuators and sen-

sors, are anticipated to be of much interest to the technological
advances of tomorrow. Prominent among the requisite control tasks
will be that of producing stable dynamic patterns. Here we address
the problem of practical asymptotic stabilization of travelling
pulses in a one dimensional array of microactuators. Solitons are
used as models of travelling pulses. A method is described to
embed descretized KdV equation in a microactuator array, and an
essentially local feedback control scheme is developed, for the
purpose of practical asymptotic stabilization of solitons. While
no proofs of asymptotic stability are given, numerical evidence
is presented to support the conjecture that the proposed control
scheme is practically asymptotically stabilizing.

Index Terms— mems arrays, transient response, soliton, KdV
equation, practical asymptotic stabilization

I. INTRODUCTION

It is anticipated that mems technology and naotechnol-

ogy will usher in an era of unprecedented technological

capabilities. Anticipated devices such as micromechanisms

that can swim, crawl, fly, autonomous micromanufactur-

ing plants, microrobotic arrays, and next generation data

storage, retrieval and search devices will all constitute of

large arrays (perhaps millions or more) of mems elements

operating in dynamic environments. In essence these arrays,

due to their autonomous features, adaptability to varying

environmental conditions, and their own complex dynamics,

will qualify to be called artificial organisms. Empowering

them with autonomous control features will be a necessary

task which will be quite different from any of the control

design problems encountered today, and perhaps the closest

analogy will be the autonomous control features of living

organisms of today.
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If we were to pursue this analogy, one of the key

features of interest is that organisms seem to control their

bodies by generating patterns. For example, eels, fish and

snakes produce travelling waves. Human vocal cords pro-

duce a large number of patterns corresponding to various

sound elements. Digestive tracts produce travelling pulses.

In contrast to simple electrical engineering circuitry, all

organisms seem to be capable of producing a large number

of different patterns, and in addition capable of fast and

graceful transition from one pattern to another. In human

speech, transients between one sound and another are almost

imperceptible. A snake may produce three waves along its

body in normal movement, but several more waves while

it is in fast retreat from an enemy, but the transition is fast

and smooth.

It has been argued that futuristic artificial organisms,

made of mems or nanotechnology, should also be empow-

ered to produce a wide variety of patterns, and empowered

to switch from one pattern to another in a quick and graceful

manner. First aspect of this design challenge, i.e., what are

appropriate patterns and how one may produce one in a

dynamic array, has for the most part been already addressed

by biologists, physicists and mathematicians. There is a

large literature on pattern forming dynamic systems (see

e.g. [7]). Embedding such an equation in a mems array with

prescribed dynamics is a relatively easy task (see section II

for an example). Second aspect of the problem, i.e., how

to design a control system to ensure quick and graceful

transition from one pattern to another, is almost completely

unexplored. This paper is an attempt to bring attention to

this problem.

As an illustrative example, let us consider the problem

of producing a traveling pulse in a linear mems array.

A futuristic application of such an array could be in a

micromanufacturing plant as a mechanism to move parts

along a conveyer mechanism. Let us say, in accordance
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with the foregoing discussion that the controller should have

following general features:

a) mems array elements are ”essentially locally coupled”,

i.e. any feedback signal received by the controller of a

particular mems element only take into account states of

nearby elements. (This is in view of the fact that biological

control systems have this feature).

b) mems array does not receive exogeneous timing signals.

(This is required for autonomous operation).

c) mems array is capable of producing a family of traveling

pulses, and when desired, dynamics can be switched from

one traveling pulse pattern to another in a quick and smooth

manner.

Here we describe an approach to solving this problem

via the use of a stabilized version of the Korteweg-de

Vries equation (KdV). KdV is one of the most studied

equations of the mathematical physics (see e.g. [1]). A

family of solutions, called solitons, consists of a single (or a

nonlinear superposition of several) travelling pulses. Thus,

KdV solitons meet requirements (a) and (b) mentioned

above. However, solitons are only orbitally stable, but not

orbitally asymptotically stable. Thus, is order to meet (c)

one has to device a local feedback control scheme, i.e., one

in which feedback signals given to any individual mems

element only use the state of nearby mems elements, that

will asymptotically stabilize solitons. At this stage it isn’t

clear to us whether such control laws exist. Here we present

a family of control laws that are essentially local, i.e. use

very little global information, and conjecture that for any

given bounded open neighborhood W in C∞[0, 1], and any

given L2[0, 1] neighborhood V of the soliton solution, a

feedback control law from the family exists that will control

any initial condition in W to V asymptotically. We present

numerical evidence to show that elements of the family, even

occurring very early in its hierarchy, can control ”reasonably

nice” initial conditions, i.e. sine waves, zero initial state,

two solitons, other one solitions etc., to the vicinity of a

desirable a priori choosen one solition.

II. EMBEDDING A PATTERN FORMING EQUATION IS A

MEMS ARRAY

Let us consider a linear mems array consisting of N
actuators. For the sake of simplicity here we assume that

the element dynamics are uncoupled from each other. (How

one may account for the presence of any local coupling,

may be extrapolated rather easily). Let us suppose that the

equations of motion of the array are:

ξ̇i = f(ξi) + g(ξi)ui, i = 1, · · · , N (1)

where, ξ(i) is the state and ui is the control input to the

ith actuator, and f and g are smooth vector fields. Here we

assume that all mems elements are identical. Vector fields

f and g will depend on the particulars of the mems tech-

nology. For example, for piston actuated capacitive mems

devices, in a nondimensional form, a lumped parameter

model may be written as,

f(ξ) = =

⎡
⎣ ξ2

−2τωξ2 − ω2(ξ1 − l̂0) − ξ2
3/2

−ξ1ξ3

⎤
⎦ ,

g(ξ) = =

⎡
⎣ 0

0
1

⎤
⎦ , (2)

where the state x= [ position, velocity, charge ], ω and

τ are constants representing the natural frequency and the

damping constant respectively, and l̂0 is the free length of

the gap between electrodes. Another popular model is the

case in which each mems element is written as a second

order linear system, in which case f(ξ) = [ξ2,−2τωξ2 −
ω2ξ1]T and g(ξ) = [0, 1]T .

Now suppose that we have chosen a pattern forming ODE

to embed,

żi = φi(z1, z2, · · · , zN ), i = 1, · · · , N (3)

where zi ∈ �. Our problem now is to design a feedback

control law such that |ξi,1(t) − zi(t)| → 0 asymptotically.

In principal one must solve a nonlinear model matching

problem, (see e.g. [8]) to embed (6) in (1). However, due to

the nature of the equations one can get by with a standard

back stepping computation. We will not discuss details of

this aspect further. However, we wish to point out that if φi

is local, i.e., depends only in zi and a few other zj where j
is close to i, then the model matching control law will also

be local. If in addition, {φi}N
i=1 utilize only a few global

functions, then the model matching law can be designed to

only need a few global functions. Therefore, we are only

interested in embedding pattern forming equations which

have local only coupling or failing that, predominantly local

coupling.

Remark: One may observe that the equations are uncoupled,

hence one may produce any desirable pattern by command-

ing individual actuators to follow requisite paths. However,

such a scheme would require external timing signals for

the array, hence impeding on autonomous operation. In

addition, due to the absence of coupling between elements,

one should not anticipate robustness from an uncoupled

controller.

III. KDV SOLITONS AND LESSONS FROM THE

FERMI-PASTA-ULAM EXPERIMENT

Pattern forming equation of choice in this is a discretiza-

tion of a feedback controlled Kortweg de-Vries equation

(KdV). First we discuss some relevant features of the KdV

equation. We relegate details of the feedback control law to

the next section.
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The KdV has the form,

qt = −(qqx + qxxx), (4)

where x ∈ [0, 1], t ≥ 0 and qt, qx, qxxx are respective partial

derivatives of q with respect to variables t and x. There is

a rich theory of the KdV equation (see e.g. [1], [2]. For the

purposes of this paper, the most important fact is that the

KdV equation admits travelling pulses as solutions. These,

so called one solitons, are parameterized as,

q(t, x) = a2sech2(a(x − a2t/3 − x0)/
√

12), (5)

where, a > 0 and x0 are constants. Indeed, there is a soliton

hierarchy, i.e, one solitons, two solitons, etc., and elements

at the two and higher levels are nonlinear superpositions

of one solitons, in the sense that they themselves consist

of finitely many moving pulses, and when the pulses are

sufficiently far apart, they are well approximated by linear

superpositions of one solitons.

Developments of the theory of solitons originated from

attempts to explain an apparent anomaly in a simulation

experiment carried out by Fermi, Pasta and Ulam in the Los

Alamos Maniac I supercomputer (see [9] for a description).

Expectation at the time was that nonlinear spring forces

in a high dimensional spring-mass array would settle at

a thermodynamic equilibrium at which energy would be

shared equally by all linear modes. However, simulations

showed that energy was confined to a few nonlinear oscil-

latory modes. This was later explained in the celebrated

papers [4], [5]. What Fermi-Pasta-Ulam observed was a

solution in the close proximity of an N-soliton. (Simulations

of the Fermi-Pasta-Ulam experiment are plenty on the world

wide web.) Indeed, it was shown later that for a smooth

initial profile most of the energy goes into relatively few

soliton states. This is the key to our controller design. For

smooth initial conditions, solutions of the KdV equation

can be approximated with finitely many parameters, hence

these solutions can be approximately controlled from one

to another, and in particular to a desired one soliton, by us-

ing finite dimensional approximations. Such approximations

will be developed in the section V.

IV. INTEGRAL INVARIANTS OF THE KDV

KdV equation on [0, 1] with periodic boundary con-

ditions, admits infinitely many integral invariants [6]. A

linearly independent set of them are usually written in a

hierarchical form. The first few are (see e.g. [6], [3]):

H1(q) =
∫

qdx,

H2(q) =
∫

q2dx,

H3(q) =
∫

(q2
x − 1

3
q3)dx,

H4(q) =
∫

(
9
5
q2
xx − 3qq2

x +
1
4
q4)dx,

H5(q) =
∫

(
1
5
q5 − 6q2q2

x +
36
5

qq2
xx − 108

35
q2
xxx)dx,

H6(q) =
∫

(
1
6
q6 − 10q3q2

x + 18q2q2
xx − 5q4

x

−108
7

qq2
xxx +

120
7

q3
xx +

36
7

q2
xxxx)dx, (6)

Details on how to compute other elements of the hierarchy

may be found in [6], [2] etc.

V. CONTROL DESIGN

Let us write the KdV equation in the form,

qt = F (q),

where, F (q) = −(qqx+qxxx). Here x ∈ [0, 1] and boundary

conditions are periodic. Since our objective is to control

solutions, let us add a control term v = v(q), and write the

controlled equation as,

qt(t, x) = F (q)(t, x) + v(q)(x). (7)

We remark here that the aim is to design v as a predom-

inantly local feedback control law, i.e. one which depends

on q and a few of its partial derivatives, and a few global

functions. In other words we seek v(q)(x) in the form

θ(q, qx, · · · , ∂kq(x), w1(q), w2(q), · · · , wl(q)), where wi are

global functions. The reason for this restriction is that

upon spatial discretization partial derivatives of q becomes

functions of the state at the element at x and a few of its

nearest neighbors. The global functions wi are common to

all elements, hence can be computed by sharing resources.

Let Hi, i = 1, · · · be the integral invariants of the KdV

described in section IV. Let us write them as Hi(q) =∫ 1

0
ϕi(q, · · · , ∂i−2q)dx. By definition, directional deriva-

tives of Hi along F are all equal to zero, hence,

d

dt
Hi(q) =

∫ 1

0

∂uj
ϕi(q, · · ·)∂jv(x)dx,

=
∫ 1

0

δϕi(q, · · · , ∂i−2q)v(x)dx (8)

where δϕi =
∑

j(−1)j∂j ∂
∂qj

ϕi, and where qj denoted the

jth partial derivative of q with respect to x. Observe that

this sum is finite since ϕi depends only on the first i − 2
derivatives of q.

Now we may write,

d

dt

⎡
⎢⎣

H1(q)
...

Hm(q)

⎤
⎥⎦ =

∫ 1

0

A(q, q1, · · · , q2m−2)v(x)dx, (9)

for arbitrary m where, A(q, q1, · · · , q2m−2) =
[δϕ1, · · · , ϕm)]T .

Let us suppose that it is desired to stabilize the solution

at a desired one soliton q0. Since any initial condition may

be approximated closely by a multi-soliton, it follows that
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information contained in the initial data can be essentially

captured by the values of the first few integral invariants.

Thus, the problem of controlling the state from a given

initial condition to the vicinity of the desired soliton may be

rephrased as a problem of controlling the first few integral

invariants from their initial values to their respective values

at the desired soliton. This is the heuristic basis of the

proposed control law.

Thus, the proposed control law is,

v(x) = −AT (q, · · · , q2m−2)Λ

[
H1(q) − H1(q0)

...Hm(q) − Hm(q0)

]
,(10)

where, Λ is a positive diagonal matrix, and m is an integer

such that H1, · · · ,Hm captures the initial state reasonably

well.

This control law is inspired by the theory of nonlinear

output regulation developed by Byrnes and Isidori [8]. We

wish to remark that, while it is obvious that the control law

stabilizes [H1, · · · ,Hm] at [H1(q0), · · · ,Hm(q0)], it does

not prove that the solutions will converge for the reason

that the complementary dynamics, (on may think of this as

zero dynamics of outputs H1, · · · ,Hm) are only stable, and

not necessarily asymptotically stable. Indeed it is possible

that the control law may destabilize the complimentary

dynamics. Proving that this isn’t the case is a challenge

which we haven’t succeeded in resolving as of yet. In the

section VI we provide numerical evidence to support the

conjecture that for sufficiently large m the control law will

control the state to an arbitrarily small neighborhood of the

desired soliton.

VI. SIMULATION EVIDENCE

In this section we describe simulation results that seem

to support the conjecture that the proposed control law

indeed controls a reasonable initial state to the vicinity

of a desired soliton. In the simulations, we have chosen

following parameters in the controller (10).

m = 5
Λ = diag[1, 1, 0.1, 10−5, 10−6]

q0(t, x) = a2sech2(a(x − a2t/3)/
√

12)
a = 3.5.

Instead of x ∈ [0, 1] we hav taken x ∈ [0, 15]. This larger

spatial domain allows to work with a fewer number of

integral invariants in computing control laws. Numerical

simulations of the controlled system are carried out by first

discretizing the system spatially using symmetric difference

method with a step size of 0.2 and integrating the resulting

system of ordinary differential equations using the 4th order

Runge-Kutta routine using Matlab. Initial states chosen were

(a) a sum of two gaussians, (b) zero initial state, and (c) a

half sine wave (as in the Fermi-Pasta-Ulam experiment).

VII. CONCLUDING REMARKS

Whereas the control methodology is explained for embed-

ded KdV solitons, the same procedure works for the Toda

lattice, and other soliton equations of mathematical physics.

Soliton control for the Toda lattice would be essentially

the same, however embedding in a mems array would

be slightly more complex since Toda lattice dynamics are

second order.

We have provided no proofs of practical asymptotic sta-

bility of the soliton orbit here. We are vigorously pursuing

this and other related theoretical aspects.
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