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ABSTRACT The genus Thalassospira has often been studied as a potential major
contributing member of aromatic hydrocarbon-exposed microbial communities. Here, the
complete genome sequence of a new isolate of Thalassospira, strain GO-4, was obtained
and was confirmed to possess functional genes that are responsible for its metabolism of
phthalic acid.

Anew isolate of Thalassospira, strain GO-4, was obtained from a phenanthrene-enriched
marine bacterial consortium. This consortium was sampled from the coast of Nojima,

Yokohama, Japan (35.328520N, 139.636326E), in December 2019. Bacterial cells were collected
by filtering 1 L of coastal seawater through a 0.22-mm Rapid-Flow filter (Thermo Fisher
Scientific, Waltham, MA), and the filter was used as the inoculant for a routinely transferred
bacterial enrichment culture that was supplied with 50 mg L21 phenanthrene as the carbon
source in artificial seawater (ASW) medium (1). Strain GO-4 was isolated from this consortium
through dilution-to-extinction methods with 10 mM glucose as the carbon source. Thalassospira
species have often been identified as members of aromatic hydrocarbon-exposed microbial
communities (2–5) and are considered to contribute to aromatic hydrocarbon biodegradation
(6–8). Therefore, to expand our understanding of the metabolic potential of Thalassospira, the
complete genome of strain GO-4 was sequenced and its functional genes were investigated.

The complete genome of strain GO-4 was obtained through hybrid assembly of DNBSEQ-
G400 short-read (MGI Tech, Shenzhen, China) and GridION long-read (Oxford Nanopore
Technologies, Oxford, UK) sequencing data. The genomic DNA of strain GO-4 was extracted
using the NucleoBond high-molecular-weight DNA kit (Macherey-Nagel, Germany) after cul-
turing for 6 days on 10 mM glucose in ASW medium. The DNBSEQ library was prepared
with the MGIEasy FS DNA library preparation set (MGI Tech). A total of 22,517,128 reads with
200-bp paired-end read lengths were obtained; they were then trimmed and quality filtered
using Cutadapt (v4.0) (9), SeqKit (v0.13.2) (10), and Sickle (v1.33) (11). The GridION library
was created using the ligation sequencing kit SQK-LSK109 (Oxford Nanopore Technologies)
(.3-kb fragments were enriched by the protocol). A total of 68,243 reads (average length,
17,703 bp) were generated by the GridION platform using R9.4.1 flow cells and Guppy
(v4.0.11) (12) for live base calling. Raw reads were subjected to trimming and quality filtering
using Porechop (v0.2.3) (13) and Filtlong (v0.2.0; minimum length of 1,000 bp) (https://
github.com/rrwick/Filtlong). De novo hybrid assembly was performed using Unicycler (v0.4.7)
(14) to assemble these sequencing data, and Bandage (v0.8.1) (15) was used to validate the
assembled sequence. All software was used with default settings unless otherwise indicated.

The complete genome sequence thus obtained consisted of a single circular chromosome
(4,546,452 bp, with 1,256� coverage and a G1C content of 54.8%) without plasmids.
According to the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (v6.1), this chromo-
some carried 4,046 coding sequences (CDSs), 12 rRNAs, and 64 tRNAs.

The strain GO-4 genome possessed homologs of known functional genes that are
responsible for phthalic acid and protocatechuic acid biodegradation, i.e., pht genes (16) and
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pca genes (17), respectively. This suggests that Thalassospira contributes to the biotransforma-
tion of phthalic acid and structurally related aromatics in the bacterial consortium from which
it originated.

Data availability. The genome sequence of strain GO-4 is available in NCBI GenBank
under the accession number CP097807. The raw sequence data are also available with the
SRA accession numbers SRR19369649 and SRR19369650, under BioProject accession number
PRJNA841389 and BioSample accession number SAMN28591689.
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