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Abstract

We numerically generate a stochastic process called “Brownian house-moving,” which is a
Brownian bridge that stays between its starting point and its terminal point. To construct this
process, statements are prepared on the weak convergence of conditioned Brownian bridges.
We also study the sample path properties of Brownian house-moving and the decomposition
formula for its distribution. Using this decomposition formula and a Monte Carlo sampling
technique for a BES(3)-bridge, we are able to numerically generate Brownian house-moving
at discrete times.
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1. Introduction

Recently, [1] developed a chain rule for Wiener path
integrals between two curves that arise in the computa-
tion of first-order Greeks for barrier options, and demon-
strated the effectiveness of this chain rule through nu-
merical examples. In this chain rule, a BES(3)-bridge
and a Brownian meander played an important role. We
are currently investigating higher-order chain rules for
computing higher-order Greeks of barrier options, and
we expect a stochastic process called “Brownian house-
moving” to play an important role in their computation.
This paper is organized as follows. Sections 2 and 3

review the results of [2]. In Section 2, we construct the
Brownian house-moving as the one-dimensional Brown-
ian bridge conditioned to stay between its starting point
and its terminal point. In section 3, we extend the no-
tion of the Brownian house-moving and construct the
Brownian house-moving between two curves. After ap-
plying the results in this section, we obtain the decom-
position formula for the distribution of the Brownian
house-moving. Using this decomposition formula, we nu-
merically generate Brownian house-moving in Section 4.
Section 5 presents our conclusions.

2. Notations and main results

Let C([0, 1],R) be a class of R-valued continuous func-
tions defined on [0, 1], and let

d∞(w,w′) = sup
0≤t≤1

|w(t)− w′(t)| (w,w′ ∈ C([0, 1],R)).

B(C([0, 1],R)) denotes the Borel σ-algebra with respect
to the topology generated by the metric d∞. For 0 ≤
t1 < t2 ≤ 1 and f, g ∈ C([0, 1],R), we define

K[t1,t2](f, g) := {w = {w(t)}t∈[t1,t2] ∈ C([t1, t2],R) |
f(t) ≤ w(t) ≤ g(t), t1 ≤ t ≤ t2},

K−[t1,t2](g) :=

∞⋃
n=1

K[t1,t2](−n, g).

Assume that

Y : (Ω,F , P ) → (C([0, 1],R),B(C([0, 1],R)))

is a random variable and Λ ∈ B(C([0, 1],R)) satisfies
P (Y ∈ Λ) > 0. Then, we define the probability measure
PY −1(Λ) on (Y −1(Λ), Y −1(Λ) ∩ F) by

PY −1(Λ)(A) :=
P (A)

P (Y ∈ Λ)
,(

A ∈ Y −1(Λ) ∩ F :=
{
Y −1(Λ) ∩ F | F ∈ F

})
.

Throughout this paper, PY −1(Λ)(Y |Λ ∈ Γ) is often writ-
ten as P (Y |Λ ∈ Γ).
For r > 0 and c < d, we define

nr(x) :=
1√
2πr

exp

(
−x2

2r

)
, Nr(c, d) :=

∫ d

c

nr(x)dx.

If {Xn}∞n=1 converges to X in distribution, then we

denote Xn
D→ X. Additionally, we write X

D
= Y for

random variables X,Y that obey the same distribution.
We construct a stochastic process called “Brownian

house-moving” H0→b (b > 0) as the weak limit of con-
ditioned Brownian bridges.

Theorem 1 Let b > 0, B0→b = {B0→b(t)}t∈[0,1] be
the one-dimensional Brownian bridge from 0 to b on
[0, 1]. There exists an R-valued continuous Markov pro-
cess H0→b = {H0→b(t)}t∈[0,1] that satisfies

B0→b|K[0,1](−ε,b+ε)
D−→ H0→b, ε ↓ 0. (1)

Moreover, for 0 < s < t < 1 and x, y ∈ (0, b), the law
for H0→b is given by

P
(
H0→b(t) ∈ dy

)
=

J
(b)
1 (t, y) J

(b)
2 (1− t, y)

J (b)(b)
dy, (2)
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Fig. 1. Densities of H0→b(t) (b = 1.5) for t = 0.01, 0.02, . . . ,

0.99.

P
(
H0→b(t) ∈ dy | H0→b(s) = x

)
=

J
(b)
2 (1− t, y) J

(b)
3 (s, x, t, y)

J
(b)
2 (1− s, x)

dy, (3)

where

J
(η)
1 (r, z) :=

∞∑
k=−∞

2(z + 2kη)

r
nr(z + 2kη),

J
(η)
2 (r, z) := J

(η)
1 (r, η − z),

J
(η)
3 (s, x, t, y)

:=

∞∑
k=−∞

(nt−s(y − x+ 2kη)− nt−s(y + x+ 2kη)),

J
(η)
4 (r, z) :=

∂

∂η
J
(η)
1 (r, z), J (η)(z) := J

(η)
4 (1, z).

Moreover, the sample path properties of the Brown-
ian house-moving H0→b are studied. It is shown that
the Brownian house-moving does not hit b on the time
interval [0, 1).

Proposition 2 Let b > 0. For t0 ∈ (0, 1), it holds that

P

(
max

0≤u≤t0
H0→b(u) < b

)
= 1.

The regularity of the sample path of the Brownian
house-moving is also established.

Proposition 3 For every γ ∈ (0, 1
2 ), the path of H0→b

(b > 0) on [0, 1] is locally Hölder-continuous with expo-
nent γ:

P

 ∞⋃
n=1

 sup
t,s∈[0,1]

0<|t−s|≤ 1
n

∣∣H0→b(t)−H0→b(s)
∣∣

|t− s|γ
< ∞


 = 1.

3. Construction of Brownian house-

moving between two curves

With regards to Theorem 1, the Brownian house-
moving can be considered as a one-dimensional Brow-
nian bridge conditioned to stay between two constant
levels. In this section, we use this viewpoint to extend
the notion of Brownian house-moving to construct the
one-dimensional Brownian bridge conditioned to stay
between two curves.

Let 0 ≤ t1 < t2 ≤ 1. Throughout this section, we use
the following notation.
For a, b ∈ R, c ≥ 0, and d > 0,W[t1,t2],W

+
[t1,t2]

,Ba→b
[t1,t2]

,

and rc→d
[t1,t2]

denote a Brownian motion, a Brownian mean-

der, a Brownian bridge from a to b, and a BES(3)-bridge
from c to d defined on [t1, t2], respectively.
Let g− and g+ be C2-functions on [0, 1] satisfying

min
0≤t≤1

(g+(t)− g−(t)) > 0.

According to the values g−(t1) ≤ a ≤ g+(t1) and

g−(t2) ≤ b ≤ g+(t2), the continuous process X
a,b,(g−,g+)
[t1,t2]

on [t1, t2] is defined as follows (see also Lemma 4 below):

• In the case a = g−(t1), b < g+(t2), the weak limit
of Ba→b

[t1,t2]
|K[t1,t2](g−−ε,g+) as ε ↓ 0.

• In the case a > g−(t1), b = g+(t2), the weak limit
of Ba→b

[t1,t2]
|K[t1,t2](g−,g++ε) as ε ↓ 0.

For a continuous process X on [t1, t2] and an R-valued
C2-function g on [t1, t2], we define

Zg
[t1,t2]

(X) := exp

(
g′(t2)X(t2)− g′(t1)X(t1)

−
∫ t2

t1

X(u)g′′(u)du− 1

2

∫ t2

t1

g′(u)2du

)
.

Therefore, if X is W[t1,t2], then it follows from Itô’s for-
mula that

Zg
[t1,t2]

(W[t1,t2])

= exp

{∫ t2

t1

g′(u)dW[t1,t2](u)−
1

2

∫ t2

t1

g′(u)2du

}
.

For convenience later, we define

Z̃g
[t1,t2]

(X) := Zg
[t1,t2]

(X + g).

For f ∈ C([t1, t2],R),
←
f denotes the function

←
f (t) := f(t1 + t2 − t) (t1 ≤ t ≤ t2).

Let t0 ∈ (t1, t2). For w1 ∈ C([t1, t0],R) and w2 ∈
C([t0, t2],R) that satisfy w1(t0) = w2(t0), we define
w1 ⊕t0 w2 ∈ C([t1, t2],R) by

(w1 ⊕t0 w2)(t) :=

{
w1(t) (t1 ≤ t ≤ t0),

w2(t) (t0 ≤ t ≤ t2).

Lemma 4 X
a,b,(g−,g+)
[t1,t2]

exists and its distribution is

given as follows. For a bounded continuous function F
on C([t1, t2] : R),
(1) If a = g−(t1), b < g+(t2), then

E
[
F (X

a,b,(g−,g+)
[t1,t2]

)
]

(4)

= E

[
F
(
r
0→b−g−(t2)
[t1,t2]

∣∣
K−

[t1,t2]
(g+−g−) + g−

)
× Z̃g−−a

[t1,t2]

(
r
0→b−g−(t2)
[t1,t2]

∣∣
K−

[t1,t2]
(g+−g−)

)−1]
×
(
E

[
Z̃g−−a
[t1,t2]

(
r
0→b−g−(t2)
[t1,t2]

∣∣
K−

[t1,t2]
(g+−g−)

)−1])−1
.
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(2) If a > g−(t1), b = g+(t2), then

E
[
F (X

a,b,(g−,g+)
[t1,t2]

)
]

(5)

= E

[
F
(
g+ −←r

0→g+(t1)−a
[t1,t2]

∣∣
K−

[t1,t2]
(
←
g

+
−←g
−
)

)
× Z̃b−←g

+

[t1,t2]

(
r
0→g+(t1)−a
[t1,t2]

∣∣
K−

[t1,t2]
(
←
g

+
−←g
−
)

)−1]
×
(
E

[
Z̃b−←g

+

[t1,t2]

(
r
0→g+(t1)−a
[t1,t2]

∣∣
K−

[t1,t2]
(
←
g

+
−←g
−
)

)−1])−1
.

For 0 < t < 1, 0 < t1 < t2 < 1, y ∈ (g−(t), g+(t)),
y1 ∈ (g−(t1), g

+(t1)), and y2 ∈ (g−(t2), g
+(t2)), we de-

fine

h(t, y) := E
[
Z̃g−

[0,t](r
0→y−g−(t)
[0,t] )−1 ;

r
0→y−g−(t)
[0,t] ∈ K−[0,t](g

+ − g−)
]

× P (W+
[0,t](t) ∈ dy − g−(t))/dy,

and

h(t1, y1, t2, y2)

:= E

[
Z̃b−←g

+

[t2,1]
(r

0→g+(t2)−y2

[t2,1]
)−1 ;

r
0→g+(t2)−y2

[t2,1]
∈ K−[t2,1](

←
g
+
−←g

−
)
]

× P
(
W+

[t2,1]
(1) ∈ db− y2 − (b− g+(t2))

)
/dy2

× P
(
y1 +W[t1,t2] ∈ K[t1,t2](g

−, g+),

y1 +W[t1,t2](t2) ∈ dy2
)
.

We establish the existence of the weak limit of
B0→b

[0,1] |K[0,1](g−−ε,g++ε) as ε tends to 0, where g−, g+ sat-

isfy g−(0) = 0 and g+(1) = b.

Theorem 5 Assume that g−, g+ satisfy g−(0) = 0 and
g+(1) = b. There exists an R-valued continuous Markov
process H = {H(t)}t∈[0,1] that satisfies

E [F (H)] = lim
ε↓0

E[F (B0→b
[0,1] |K[0,1](g−−ε,g++ε)])] (6)

=

∫ g+(t0)

g−(t0)

E
[
F (X

0,y,(g−,g+)
[0,t0]

⊕t0 X
y,b,(g−,g+)
[t0,1]

)
]

× P (H(t0) ∈ dy) , (7)

for every bounded continuous function F on C([0, 1],R)
and 0 < t0 < 1, where the X

0,y,(g−,g+)
[0,t0]

and X
y,b,(g−,g+)
[t0,1]

that appear in (7) are chosen to be independent. More-
over, for 0 < t1 < t2 < 1, y1 ∈ (g−(t1), g

+(t1)) and
y2 ∈ (g−(t2), g

+(t2)), the law for H is given by

P (H(t1) ∈ dy1)

=
h(t1, y1)

∫ g+(t2)

g−(t2)
h(t1, y1, t2, z2)dz2∫ g+(t2)

g−(t2)

∫ g+(t1)

g−(t1)
h(t1, z1)h(t1, z1, t2, z2)dz1 dz2

dy1,

P (H(t1) ∈ dy1,H(t2) ∈ dy2)

=
h(t1, y1)h(t1, y1, t2, y2)∫ g+(t2)

g−(t2)

∫ g+(t1)

g−(t1)
h(t1, z1)h(t1, z1, t2, z2)dz1 dz2

dy1dy2.

Applying Theorem 5 (7), we obtain the next proposi-

tion.

Proposition 6 The stochastic process H defined in
Theorem 5 satisfies

P
(
g−(t) < H(t) < g+(t) for t ∈ (0, 1)

)
= 1.

Applying Theorem 5 (7) for g− ≡ 0 and g+ ≡ b, we
obtain the next decomposition formula for the distribu-
tion of H0→b.

Corollary 7 It holds for every bounded continuous
function F on C([0, 1],R) that

E
[
F (H0→b)

]
=

∫ b

0

E
[
F
(
r0→y
[0,t0]

|K−
[0,t0]

(b)⊕t0

(
b−←r

0→b−y
[t0,1] |K−

[t0,1]
(b)

))]
× P

(
H0→b(t0) ∈ dy

)
, 0 < t0 < 1,

where r0→y
[0,t0]

|K−
[0,t0]

(b) and
←
r
0→b−y
[t0,1] |K−

[t0,1]
(b) are chosen to

be independent.

Remark 8 Let A be a closed subset of C([0, 1],R) and

ϕ(t) := 1−
∫ 1

0

1(−∞,t](u)du, t ∈ R.

Then we have

Fn(w) := ϕ(nd∞(w,A)) ↓ 1A(w), n → ∞.

Therefore, the dominated convergence theorem and
Dynkin’s π-λ theorem imply that Corollary 7 holds true
for F = 1B, where B ∈ B(C([0, 1],R)) is a measurable
subset of C([0, 1],R).
Remark 8 implies the following lemma.

Lemma 9 For 0 < z ≤ x ≤ b and t0 ∈ (0, 1), we have

P

(
max

u∈[0,t0]
H0→b(u) = x

)
= 0,

P

(
max

u∈[0,t0]
H0→b(u) ≤ x,H0→b(t0) ≤ z

)
=

∫ z

0

J
(x)
1 (t0, y)J

(b)
2 (1− t0, y)

J (b)(b)
dy.

Remark 10 Let t0 ∈ (0, 1). Lemma 9 implies that

P

(
max

u∈[0,t0]
H0→b(u) = b

)
= 0,

P

(
max

u∈[0,t0]
H0→b(u) ≤ b

)
= P

(
max

u∈[0,t0]
H0→b(u) ≤ b,H0→b(t0) ≤ b

)

=

∫ b

0

P
(
H0→b(t0) ∈ dy

)
= 1.

Therefore, P
(
maxu∈[0,t0] H

0→b(u) < b
)
= 1 holds and

Proposition 2 is obtained. Propositions 6 and 2 imply
that the Brownian house-moving H0→b does not hit b on
the time interval [0, 1).
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Fig. 2. Density of H0→b(0.5) (b = 1.5).

4. Numerical methods

A possible numerical strategy consists of directly sam-
pling Brownian house-moving paths with discrete time
steps. This strategy is demanding, since the CDFs for
H0→b and its inverse are not known analytically. Hence,
such simulations were restricted to a small number of
discrete time steps. Using Corollary 7 for t0 = 0.5, we
were able to generate H0→b with long discrete steps,
since the inverse CDF of H0→b(0.5) can be obtained be-
forehand and the CDF of the BES(3)-bridge is known
analytically.
First, we can generate a random number y ∈ (0, b)

from the inverse CDF for the distribution of H0→b(0.5).
Next, combining the scaling identity

r0→y
[0,t0]

(·) D=
√
t0 × r0→ŷ

[0,1]

(
·
t0

) (
ŷ :=

y√
t0

)
and samples of the BES(3)-bridge r0→ŷ

[0,1] (·) on [0, 1],

we are able to obtain samples of the BES(3)-bridge
r0→y
[0,t0]

(·) on [0, t0] and conditioned samples of the BES(3)-

bridge r0→y
[0,t0]

|K−
[0,t0]

(b). Similarly, conditioned samples of

the BES(3)-bridge
←
r
0→b−y
[t0,1] |K−

[t0,1]
(b) can be obtained.

Here, the CDFs for the BES(3)-bridge r0→ŷ := r0→ŷ
[0,1]

can be obtained analytically as follows:

P

(
r0→ŷ

(
1

n

)
≤ z

)
= Nn−1

n2

(
− ŷ

n
, z − ŷ

n

)
+Nn−1

n2

(
ŷ

n
, z +

ŷ

n

)
+

n− 1

nŷ

(
nn−1

n2

(
z +

ŷ

n

)
− nn−1

n2

(
z − ŷ

n

))
,

P

(
r0→ŷ

(
k

n

)
≤ z | r0→ŷ

(
k − 1

n

)
= x

)

=
Φx,ŷ

1
n ,n−k

n

(z)− Φ−x,ŷ1
n ,n−k

n

(z)− Φx,−ŷ
1
n ,n−k

n

(z) + Φ−x,−ŷ1
n ,n−k

n

(z)

nn−k+1
n

(ŷ − x)− nn−k+1
n

(ŷ + x)

where

Φc1,c2
r1,r2(z)

:= nr1+r2(c1 − c2)

×N r1r2
r1+r2

(
−c1r2 + c2r1

r1 + r2
, z − c1r2 + c2r1

r1 + r2

)
.

Fig. 3. Five sample paths for {H0→b(t)}t∈[0,1], and the graph of

{E[H0→b(t)]}t∈[0,1] (b = 1.5).

Thus, using this analytical representation and the binary
search method, sample paths for r0→ŷ can be generated.
In Fig. 3, five sample paths for {H0→b(t)}t∈[0,1], and

the graph of {E[H0→b(t)]}t∈[0,1], are shown for b = 1.5
and 100 discrete time steps.

5. Conclusion and discussions

We introduced a stochastic process called Brownian
house-moving to compute higher-order Greeks of barrier
options. We also introduced the decomposition formula
for the distribution of Brownian house-moving. Using
this decomposition formula, we were able to generate
Brownian house-moving with discrete time steps.
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