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On the Weak Convergence of

Conditioned Bessel Bridges

By Kensuke Ishitani, Tokufuku Rin and Shun Yanashima

Abstract. The purpose of this paper is to introduce the con-
struction of a stochastic process called “δ-dimensional Bessel house-
moving” and its properties. We study the weak convergence of δ-
dimensional Bessel bridges conditioned from above, and we refer to
this limit as δ-dimensional Bessel house-moving. Applying this weak
convergence result, we give the decomposition formula for its distri-
bution and the Radon-Nikodym density for the distribution of the
Bessel house-moving with respect to the one of the Bessel process. We
also prove that δ-dimensional Bessel house-moving is a δ-dimensional
Bessel process hitting a fixed point for the first time at t = 1.

1. Introduction and Main Results

The purpose of this paper is to introduce the construction of a stochastic

process called “δ-dimensional Bessel house-moving” and its properties.

Recently, [2] developed a chain rule for Wiener path integrals between

two curves that arise in the computation of first-order Greeks of barrier op-

tions, demonstrating its effectiveness with some numerical examples. In this

chain rule, a 3-dimensional Bessel bridge and a Brownian meander played

an important role. We believe higher-order chain rules might be useful in

computing higher-order Greeks of barrier options, in which the stochastic

process “Brownian house-moving” is expected to play an important role.

The Brownian house-moving is a Brownian bridge that stays between

its starting point and its terminal point. In [1], it has been proven that

the Brownian house-moving can also be obtained by the weak convergence

of 3-dimensional Bessel bridges conditioned from above. In [3], a Monte

Carlo sampling technique for Brownian house-moving is studied. Although

the existence of the Brownian house-moving was well-known in [7, 12], the

weak convergence result for conditioned 3-dimensional Bessel bridges had
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yet to be researched, and this result is necessary for computing higher-order

Greeks of barrier options under the Black-Scholes market model.

Furthermore, to compute higher-order Greeks of barrier options un-

der the general market model, we need more general results for the weak

convergence of conditioned diffusion bridges. As a preparatory step to-

ward this goal, in this paper we focus on the weak convergence of condi-

tioned δ-dimensional Bessel bridges. We study the weak convergence of

δ-dimensional Bessel bridges conditioned from above for all δ > 0 (Theo-

rem 1), and we refer to this limit as “δ-dimensional Bessel house-moving”.

Since the Brownian house-moving corresponds to the 3-dimensional

Bessel house-moving, our results expand on those in [1]. In [1], to prove their

result, they use a relation between the one-dimensional Brownian bridge

and the 3-dimensional Bessel bridge. However, we are not able to apply

the same approach as [1] for δ > 0 because a δ-dimensional Bessel process

is abstractly defined as a solution of a stochastic differential equation. For

this reason, we prove our result with different approaches, such as by using

estimations related to the Fourier-Bessel expansion ([6], [10]).

We also prove that a δ-dimensional Bessel house-moving is a δ-dimen-

sional Bessel process hitting a fixed point for the first time at t = 1 (Proposi-

tion 1.2). As mentioned above, the first hitting process for one-dimensional

diffusion processes already appeared in [7, 12]. However, since we also con-

struct the Bessel house-moving as the weak limit of conditioned Bessel

bridges, we can obtain new results on the sample path properties of the

Bessel house-moving. For example, applying our weak convergence result,

we can obtain the decomposition formula for its distribution (Theorem 2)

and the Radon-Nikodym density for the distribution of the Bessel house-

moving with respect to one of the Bessel processes (Theorem 3).

1.1. Notations

We start by introducing notations needed for stating our results.

Throughout this paper, we fix δ > 0 and set ν := δ/2 − 1.

For 0 ≤ a < b, let Ra = {Ra(t)}t≥0 be a δ-dimensional Bessel process

(BES(δ) process for short) starting from a. In addition, for 0 ≤ t1 < t2 ≤ 1,

ra→b
[t1,t2] = {ra→b

[t1,t2](t)}t∈[t1,t2] denotes a δ-dimensional Bessel bridge (BES(δ)

bridge for short) from a to b on [t1, t2]. We write simply ra→b := ra→b
[0,1] .
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For a continuous process X on [t1, t2], we denote its maximal value as

M[t1,t2](X) = max
t1≤u≤t2

X(u).

In the case that [t1, t2] = [0, t], we write Mt(X) := M[0,t](X). Moreover, in

the case that [t1, t2] = [0, 1], we write simply M(X) := M[0,1](X).

For η > 0, 0 ≤ s < t ≤ 1, and x, y ∈ [0, η], we define

q
(η)
1 (s, x, t, y) :=

P (Rx(t− s) ∈ dy)
dy

P
(
M[s,t](r

x→y
[s,t] ) ≤ η

)
,

q
(η)
2 (t, y) := lim

ε↓0
∂

∂ε
q
(η+ε)
1 (0, y, t, η)

=
P (Ry(t) ∈ dη)

dη
lim
ε↓0

∂

∂ε
P
(
M[0,t](r

y→η
[0,t] ) ≤ η + ε

)
.

Let C([t1, t2],R) be a class of R-valued continuous functions defined on

[t1, t2] and set

K−
[t1,t2](c) := {w ∈ C([t1, t2],R) | w(t) ≤ c, t1 ≤ t ≤ t2}

for c ∈ R. In the case that [t1, t2] = [0, 1], we write simply K−(c) :=

K−
[0,1](c). Let

d∞(w,w′) = ‖w − w′‖C([t1,t2],R)

:= sup
t1≤t≤t2

∣∣w(t) − w′(t)
∣∣ (w,w′ ∈ C([t1, t2],R)).

B(C([t1, t2],R)) denotes the Borel σ-algebra with respect to the topology

generated by the metric d∞. In addition, for 0 ≤ s < t ≤ 1, π[s,t] :

C([0, 1],R) → C([s, t],R) denotes the restriction map.

Assume that Y : (Ω,F , P ) → (C([0, 1],R),B(C([0, 1],R))) is a random

variable and that Λ ∈ B(C([0, 1],R)) satisfies P (Y ∈ Λ) > 0. Then, we

define the probability measure PY −1(Λ) on (Y −1(Λ), Y −1(Λ) ∩ F) as

PY −1(Λ)(A) :=
P (A)

P (Y ∈ Λ)
, A ∈ Y −1(Λ) ∩ F :=

{
Y −1(Λ) ∩ F | F ∈ F

}
.

Throughout this paper, PY −1(Λ)(Y |Λ ∈ Γ) is often written as P (Y |Λ ∈ Γ).

In addition, Xn
D→ X means that {Xn}∞n=1 converges to X in distribu-

tion.
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1.2. Main results

First, we construct a stochastic process called “δ-dimensional Bessel

house-moving” (BES(δ) house-moving for short) Ha→b as the weak limit of

BES(δ) bridges conditioned from above.

Theorem 1. Let 0 ≤ a < b. There exists an R-valued continuous

Markov process Ha→b = {Ha→b(t)}t∈[0,1] that satisfies

ra→b|K−(b+η)
D−→ Ha→b, η ↓ 0.

Moreover, for 0 < s < t < 1 and x, y ∈ (0, b), the law of Ha→b is given by

P
(
Ha→b(t) ∈ dy

)
=
q
(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy,

P
(
Ha→b(t) ∈ dy | Ha→b(s) = x

)
=
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1 − s, x)

dy.

Applying Theorem 1, we can prove the decomposition formula for the

distribution of the BES(δ) house-moving (Theorem 2). Let t ∈ (t1, t2). For

w1 ∈ C([t1, t],R) and w2 ∈ C([t, t2],R) that satisfy w1(t) = w2(t), we define

w1 ⊕t w2 ∈ C([t1, t2],R) by

(w1 ⊕t w2)(s) :=

{
w1(s), s ∈ [t1, t],

w2(s), s ∈ [t, t2].

Theorem 2. Let 0 ≤ a < b. For every bounded continuous function

F on C([0, 1],R), it holds that

E
[
F (Ha→b)

]
=

∫ b

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
P
(
Ha→b(t) ∈ dy

)
,

0 < t < 1,

where ra→y
[0,t] |K−

[0,t]
(b) and Hy→b

[t,1] are chosen to be independent.

As an application of Theorem 2, we show that the BES(δ) house-moving

does not hit b on the time interval [0, 1).
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Proposition 1.1. Let 0 ≤ a < b. For 0 < t < 1, it holds that

P

(
max
0≤u≤t

Ha→b(u) < b

)
= 1.

By using Theorem 1, we can also prove that the distribution of the

BES(δ) house-moving is absolutely continuous with respect to the BES(δ)

process.

Let PX denote the measure induced by a continuous process X =

{X(t)}t∈[0,1]. In addition, for 0 < t < 1, we define

PX
t := P ◦ (π[0,t] ◦X)−1.

Theorem 3. Let 0 ≤ a < b and t ∈ (0, 1). Then, we have

dPHa→b

t

dPRa

t

(w) =
q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

· 1K−
[0,t]

(b)(w), w ∈ C([0, t],R).

Let τa,b denote the first hitting time of the point b by Ra:

τa,b := inf{r ≥ 0 | Ra(r) = b}.

Proposition 1.2. Let 0 ≤ a < b. The BES(δ) house-moving Ha→b =

{Ha→b(t)}t∈[0,1] satisfies

P
(
Ha→b(t) ∈ dy

)
= P (Ra(t) ∈ dy | τa,b = 1) ,

P
(
Ha→b(t) ∈ dy | Ha→b(s) = x

)
= P (Ra(t) ∈ dy | Ra(s) = x, τa,b = 1)

for 0 < s < t < 1 and x, y ∈ (0, b).

Finally, we study the sample path properties of BES(δ) house-moving

Ha→b and establish the regularity of its sample path.
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Proposition 1.3. For every γ ∈ (0, 1
2), the path of Ha→b (0 ≤ a < b)

on [0, 1] is locally Hölder-continuous with exponent γ:

P

 ∞⋃
n=1

 sup
t,s∈[0,1]

0<|t−s|≤ 1
n

∣∣Ha→b(t) −Ha→b(s)
∣∣

|t− s|γ <∞


 = 1.

The remainder of this paper is structured as follows. In Section 2, we

introduce some basic facts related to Bessel processes and Bessel bridges,

and we prove the results for the distribution of the maximal value of the

Bessel bridge. Section 2 is also devoted to proving some inequalities that

are used in this paper. In Section 3, we prove Theorem 1, which gives the

construction of the Bessel house-moving as the weak limit of conditioned

BES(δ) bridges. In Section 4, we prove the decomposition formula for the

distribution of the Bessel house-moving (Theorem 2) and use this formula to

prove some results, including Proposition 1.1. Section 5 is devoted to prov-

ing the absolute continuity of the distribution of the BES(δ) house-moving

with respect to the BES(δ) process (Theorem 3). In Section 6, we prove

Proposition 1.2 by using the first hitting time of the Bessel process, thus

giving us the characterization of the Bessel house-moving. We show sample

path properties of the Bessel house-moving in Section 7 and Section 8. Sec-

tion 7 is devoted to proving the regularity of the sample path of the BES(δ)

house-moving (Proposition 1.3). In Section 8, we show that the BES(3)

house-moving has the space-time reversal property, and we demonstrate

numerical examples for H0→b.

2. Preliminaries

2.1. Bessel process and Bessel bridge

The BES(δ) process is a one-dimensional diffusion generated by Lδ :=
1
2

d2

dx2 + δ−1
2x

d
dx . Note that the point 0 is an entrance boundary for δ ≥ 2

(ν ≥ 0) and a regular boundary for 0 < δ < 2 (−1 < ν < 0). In the case

that 0 < δ < 2, we impose the reflecting boundary condition at 0.

In addition, for 0 ≤ a < b, the BES(δ) bridge from a to b on [0, 1] is

defined by conditioning the BES(δ) process from a, Ra = {Ra(t)}t≥0, on

Ra(1) = b.
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For t > 0 and x, y ∈ (0,∞), we set

nt(x) :=
1√
2πt

exp

(
−x

2

2t

)
, A

(ν)
t (x, y) := nt(x)nt(y)Iν

(xy
t

)
.

Let a, b ≥ 0. For 0 < s < t and x, y > 0, we have the transition densities

of Ra ([9, Chapter XI]):

P (Ra(t) ∈ dy) = 2πy
(y
a

)ν
A

(ν)
t (a, y)dy,

P (Ra(t) ∈ dy | Ra(s) = x) = 2πy
(y
x

)ν
A

(ν)
t−s(x, y)dy.

For 0 < s < t < 1 and x, y > 0, we have the transition densities of the

BES(δ) bridge ra→b on [0, 1] ([9, Chapter XI]):

P
(
ra→b(t) ∈ dy

)
=
P (Ra(t) ∈ dy)P (Ry(1 − t) ∈ db)

P (Ra(1) ∈ db)(1)

=
2πyA

(ν)
t (a, y)A

(ν)
1−t(y, b)

A
(ν)
1 (a, b)

dy,

P
(
ra→b(t) ∈ dy | ra→b(s) = x

)
=
P (Rx(t− s) ∈ dy)P (Ry(1 − t) ∈ db)

P (Rx(1 − s) ∈ db)

(2)

=
2πyA

(ν)
t−s(x, y)A

(ν)
1−t(y, b)

A
(ν)
1−s(x, b)

dy.

In the next lemma, we express the joint densities of the Bessel bridge

and the maximal value of the Bessel process by the maximal values of the

Bessel bridge.

Lemma 2.1. Let c ≥ 0 and 0 ≤ a, b ≤ c. For 0 < s < t < 1 and

0 ≤ x, y ≤ c, we have

P
(
ra→b(t) ∈ dy,M(ra→b) ≤ c

)
= P

(
M[0,t](r

a→y
[0,t] ) ≤ c

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ c

)
P
(
ra→b(t) ∈ dy

)
,(3)
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P
(
ra→b(t) ∈ dy, ra→b(s) ∈ dx,M(ra→b) ≤ c

)
= P

(
M[0,s](r

a→x
[0,s] ) ≤ c

)
P
(
M[s,t](r

x→y
[s,t] ) ≤ c

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ c

)
(4)

× P
(
ra→b(t) ∈ dy, ra→b(s) ∈ dx

)
.

Proof. First, we prove (3). By the Markov property of Ra, we have

P
(
ra→b(t) ∈ dy,M(ra→b) ≤ c

)
=
P (Ra(t) ∈ dy,M(Ra) ≤ c,Ra(1) ∈ db)

P (Ra(1) ∈ db)

=
P (Ry(1 − t) ∈ db,M1−t(R

y) ≤ c) × P (Ra(t) ∈ dy,Mt(R
a) ≤ c)

P (Ra(1) ∈ db) .(5)

Therefore, because

P (Ry(1 − t) ∈ db,M1−t(R
y) ≤ c)

= P
(
M[t,1](r

y→b
[t,1] ) ≤ c

)
P (Ry(1 − t) ∈ db) ,

P (Ra(t) ∈ dy,Mt(R
a) ≤ c) = P

(
M[0,t](r

a→y
[0,t] ) ≤ c

)
P (Ra(t) ∈ dy) ,

it follows from (1) and (5) that

P
(
ra→b(t) ∈ dy,M(ra→b) ≤ c

)
= P

(
M[0,t](r

a→y
[0,t] ) ≤ c

)
× P

(
M[t,1](r

y→b
[t,1] ) ≤ c

) P (Ra(t) ∈ dy)P (Ry(1 − t) ∈ db)
P (Ra(1) ∈ db)

= P
(
M[0,t](r

a→y
[0,t] ) ≤ c

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ c

)
P
(
ra→b(t) ∈ dy

)
,

which completes the proof. In a similar manner to the proof of (3), we can

obtain (4). �

2.2. Distribution of the maximal value of the Bessel bridge

In this subsection, we prove the results for the distribution of the max-

imal value of the Bessel bridge used in this paper.
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Lemma 2.2. Let X > 0. There exist some C̃ν > 0 and Nν ∈ N such

that

nπ

2
< jν,n < 2nπ,

∣∣∣∣ 1

Jν+1(jν,n)

∣∣∣∣ ≤ π√n,∣∣∣∣Jν (Xjν,n)

Jν+1(jν,n)

∣∣∣∣ ∨ ∣∣∣∣Jν+1 (Xjν,n)

Jν+1(jν,n)

∣∣∣∣ ≤ C̃ν
(1 +Xπ)

1
2

X
, (n > Nν).

Proof. According to (60), we can find a natural number Nν ≥ 2 that

satisfies

nπ

2
< jν,n < 2nπ,

∣∣∣∣ 1

Jν+1(jν,n)

∣∣∣∣ ≤ π√n (n ≥ Nν).

In addition, by (58), for n ≥ Nν , the following inequalities hold:∣∣∣∣Jν (Xjν,n)

Jν+1(jν,n)

∣∣∣∣ ≤ Cν
(Xjν,n)

ν

(1 +Xjν,n)
ν+ 1

2

π
√
n

≤ Cν
(2Xnπ)ν(

1 + Xnπ
2

)ν+ 1
2

π
√
n ≤ 22ν+1/2Cν

(1 +Xπ)1/2

X
,

∣∣∣∣Jν+1 (Xjν,n)

Jν+1(jν,n)

∣∣∣∣ ≤ Cν+1
(Xjν,n)

ν+1

(1 +Xjν,n)
ν+ 3

2

π
√
n

≤ Cν+1
(2Xnπ)ν+1(
1 + Xnπ

2

)ν+ 3
2

π
√
n ≤ 22ν+5/2Cν+1

(1 +Xπ)1/2

X
. �

Theorem 4 ([8] (20)). Let 0 ≤ x, y < c, and t > 0, and let p(t;x, y) be

the symmetric transition density of a regular one-dimensional diffusion on

[0,∞) R = {R(t)}t≥0 relative to its speed measure. In addition, let rx→y
[0,t] =

{rx→y
[0,t] (s)}s∈[0,t] denote an R-bridge of length t from x to y. Moreover, let

ϕ↑
λ and ϕ↓

λ denote the increasing and decreasing solutions of Au = λu for A

the infinitesimal generator of R, normalized so that∫ ∞

0
e−λtp(t;x, y)dt = ϕ↑

λ(x)ϕ
↓
λ(y), 0 ≤ x ≤ y, λ > 0.(6)
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Then, we have∫ ∞

0
e−λtP

(
M[0,t](r

x→y
[0,t] ) > c

)
p(t;x, y)dt = ϕ↑

λ(y)ϕ
↓
λ(c)

ϕ↑
λ(x)

ϕ↑
λ(c)

.(7)

Remark 2.1. In the case of the BES(δ) process, ϕ↑
λ and ϕ↓

λ in Theo-

rem 4 are given as follows ([8, (23)]):

ϕ↑
λ(x) = Iν

(√
2λx

)
x−ν , ϕ↓

λ(x) = Kν

(√
2λx

)
x−ν , x ≥ 0, λ > 0.(8)

Theorem 5. Let c > 0 and 0 ≤ s < t. For x, y ∈ (0, c), we have

P
(
M[s,t](r

x→y
[s,t] ) ≤ c

)
=

1

πA
(ν)
t−s(x, y)

∞∑
n=1

Jν (xjν,n/c)Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

(t− s)
)
.

In addition, for y ∈ [0, c), we have

P
(
M[s,t](r

0→y
[s,t] ) ≤ c

)
= P

(
M[s,t](r

y→0
[s,t] ) ≤ c

)
=

2(t− s)ν+ 1
2

√
2πnt−s(y)

∞∑
n=1

(
jν,n
cy

)ν Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

(t− s)
)
.

Proof. The Laplace transform for a function f is denoted by L(f):

L(f)(λ) :=

∫ ∞

0
e−λsf(s)ds λ > 0.

For 0 ≤ x ≤ y < c, by (6), (7), and (8), we have

L
(
P
(
M[0,·](r

x→y
[0,·] ) ≤ c

)
p(·;x, y)

)
(λ)

= L
((

1 − P
(
M[0,·](r

x→y
[0,·] ) > c

))
p(·;x, y)

)
(λ)

= L (p(·;x, y)) (λ) − L
(
P
(
M[0,·](r

x→y
[0,·] ) > c

)
p(·;x, y)

)
(λ)
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= ϕ↑
λ(x)ϕ

↓
λ(y) − ϕ

↑
λ(y)ϕ

↓
λ(c)

ϕ↑
λ(x)

ϕ↑
λ(c)

= (xy)−νIν(
√

2λx)
Kν(

√
2λy)Iν(

√
2λc) − Iν(

√
2λy)Kν(

√
2λc)

Iν(
√

2λc)
, λ > 0.

Here, note that

Iν(XC)

Iν(C)
(Iν(C)Kν(Y C) − Iν(Y C)Kν(C))(9)

= 2
∞∑
n=1

Jν(Xjν,n)Jν(Y jν,n)

J2
ν+1(jν,n)(C

2 + j2ν,n)

holds for 0 ≤ X ≤ Y ≤ 1 and C > 0 ([8, (161)]). Since we apply this

equality for C =
√

2λc, X = x/c, and Y = y/c, it follows that

L
(
P
(
M[0,·](r

x→y
[0,·] ) ≤ c

)
p(·;x, y)

)
(λ)

= 2(xy)−ν
∞∑
n=1

Jν (xjν,n/c) Jν (yjν,n/c)

J2
ν+1(jν,n)(2λc

2 + j2ν,n)

= (xy)−ν
∞∑
n=1

Jν (xjν,n/c) Jν (yjν,n/c)

c2J2
ν+1(jν,n)

×
∫ ∞

0
exp

(
−
(
λ+

j2ν,n
2c2

)
r

)
dr

=
∞∑
n=1

∫ ∞

0
e−λr(xy)−ν Jν (xjν,n/c) Jν (yjν,n/c)

c2J2
ν+1(jν,n)

× exp

(
−
j2ν,n
2c2

r

)
dr, λ > 0.(10)

For n, we set

fn(r) :=
Jν (xjν,n/c)Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
(
λ+

j2ν,n
2c2

)
r

)
, r ≥ 0.

Then, by Lemma 2.2 and (60), there exist some C̃ν > 0 and Nν ∈ N such

that

|fn(r)| ≤ C̃2
ν

√
(1 + xπ

c )(1 + yπ
c )

xy
exp

(
−(nπ)2

8c2
r

)
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≤ C̃2
ν

1 + π

xy
exp

(
−(nπ)2

8c2
r

)
, n > Nν .

Therefore, we can see that

∞∑
n=Nν+1

∫ ∞

0
|fn(r)|dr ≤ C̃2

ν

1 + π

xy

∞∑
n=Nν+1

8c2

(nπ)2
<∞

holds and we can integrate term by term in (10). Hence, it follows that

L
(
P
(
M[0,·](r

x→y
[0,·] ) ≤ c

)
p(·;x, y)

)
(λ)

=

∫ ∞

0
e−λr(xy)−ν

∞∑
n=1

Jν (xjν,n/c) Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

r

)
dr

= L

(
(xy)−ν

∞∑
n=1

Jν (xjν,n/c)Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

(·)
))

(λ) (λ > 0).

By the inverse Laplace transform of this identity, we obtain the following

expression:

P
(
M[0,t](r

x→y
[0,t] ) ≤ c

)
=

(xy)−ν

π(xy)−νA
(ν)
t (x, y)

∞∑
n=1

Jν (xjν,n/c)Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

t

)

=
1

πA
(ν)
t (x, y)

∞∑
n=1

Jν (xjν,n/c)Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

t

)
.

Because the right-hand side of (9) is symmetric for X and Y , we can see

that this result holds for 0 < y ≤ x < c.
Finally, for 0 ≤ y < c, we can calculate the following:

P
(
M[0,t](r

0→y
[0,t] ) ≤ c

)
=

2tν+ 1
2

√
2πnt(y)

∞∑
n=1

(
jν,n
cy

)ν Jν (yjν,n/c)

c2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2c2

t

)
. �
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Proposition 2.1. Let η > 0 and 0 ≤ s < t. For x, y ∈ (0, η), we have

∂

∂η
P
(
M[s,t](r

x→y
[s,t] ) ≤ η

)
=

1

πA
(ν)
t−s(x, y)

∞∑
n=1

1

J2
ν+1(jν,n)

exp

(
−
j2ν,n
2η2

(t− s)
)

×
{(

−2ν + 2

η3
+
j2ν,n
η5

(t− s)
)
Jν (xjν,n/η) Jν (yjν,n/η)

+
xjν,n
η4

Jν+1 (xjν,n/η)Jν (yjν,n/η)

+
yjν,n
η4

Jν+1 (yjν,n/η)Jν (xjν,n/η)

}
,

∂

∂η
P
(
M[s,t](r

0→y
[s,t] ) ≤ η

)
=

2(t− s)ν+ 1
2

√
2πnt−s(y)

∞∑
n=1

y−ν (jν,n/η)
ν+2

J2
ν+1(jν,n)

1

η3
exp

(
−
j2ν,n
2η2

(t− s)
)

×
{(
t− s− 2η2(ν + 1)

j2ν,n

)
Jν (yjν,n/η)

+
yη

jν,n
Jν+1 (yjν,n/η)

}
.

Proof. Let η > 0 and let 0 < x, y < η be fixed. For n, we set

fn(η, x, y) =
1

J2
ν+1(jν,n)

exp

(
−
j2ν,n
2η2

(t− s)
)

×
{(

−2ν + 2

η3
+
j2ν,n
η5

(t− s)
)
Jν (xjν,n/η)Jν (yjν,n/η)

+
xjν,n
η4

Jν+1 (xjν,n/η)Jν (yjν,n/η)

+
yjν,n
η4

Jν+1 (yjν,n/η)Jν (xjν,n/η)

}
.
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By Lemma 2.2, there exist some C̃ν > 0 and Nν ∈ N such that

|fn(η, x, y)|

≤ exp

(
−π

2(t− s)
8η2

n2

)

×


(

2ν + 2

η3
+

(2nπ)2

η5
(t− s)

)
η2C̃2

ν

(
(1 + xπ

η )(1 + yπ
η )
)1/2

xy

+
x(2nπ)

η4
ηC̃ν

(
1 + xπ

η

)1/2

x
· ηC̃ν

(
1 + yπ

η

)1/2

y

+
y(2nπ)

η4
ηC̃ν

(
1 + yπ

η

)1/2

y
· ηC̃ν

(
1 + xπ

η

)1/2

x


≤ exp

(
−π

2(t− s)
8η2

n2

)
×
{

2ν + 2

η
+

(2nπ)2

η3
(t− s) +

2π(x+ y)

η2
n

}
C̃2
ν (1 + π)

xy
, n > Nν .

Therefore, we can differentiate term by term the first identity of Theorem 5

in some neighborhood of η. Similarly, for n, we set

fn(η, y) =
(jν,n/η)

ν+2

J2
ν+1(jν,n)

1

η3
exp

(
−
j2ν,n
2η2

(t− s)
)

×
{(
t− s− 2η2(ν + 1)

j2ν,n

)
Jν (yjν,n/η) +

yη

jν,n
Jν+1 (yjν,n/η)

}
.

By Lemma 2.2, there exist some C̃ν > 0 and Nν ∈ N such that

|fn(η, y)| ≤
√
π(1 + π)

yην+4
√

2
C̃ν(2nπ)ν+ 5

2

×
{
t− s+

8η2(ν + 1)

(nπ)2
+

2yη

nπ

}
exp

(
−π

2(t− s)
8η2

n2

)
, n > Nν .

Therefore, we can differentiate term by term the second identity of Theo-

rem 5 in some neighborhood of η. �
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According to Proposition 2.1 and Lebesgue’s dominated convergence

theorem, we can obtain the next corollary.

Corollary 1. Let b > 0. For 0 ≤ s < t and y ∈ (0, b), we have

lim
η↓b

∂

∂η
P
(
M[s,t](r

y→b
[s,t] ) ≤ η

)
=

1

πA
(ν)
t−s(y, b)

∞∑
n=1

jν,nJν (yjν,n/b)

b3Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

(t− s)
)
,

lim
η↓b

∂

∂η
P
(
M(r0→b

[s,t] ) ≤ η
)

=
2(t− s)ν+ 1

2

√
2πnt−s(b)

∞∑
n=1

jν+1
ν,n

b2ν+3Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

(t− s)
)
.

2.3. Some inequalities

We prepare the following inequalities:

Lemma 2.3. Let 0 ≤ a < b and η ∈ (0, 1]. There exists some Cν,b > 0

such that

q
(b+η)
1 (s, x, t, y) ≤ Cν,b

(t− s)ν+1
nt−s(y − x),(11)

0 ≤ s < t ≤ 1, x, y ∈ [0, b+ η),

q
(b+η)
1 (r, z, 1, b) ≤ Cν,b

(1 − r)ν+1

(
1 ∧ 2η(b+ η)

1 − r

)
n1−r(z − b),(12)

0 < r < 1, z ∈ (0, b+ η).

Proof. First, we prove inequality (11). By (59), there exists some

Cν > 0 such that(
xy

t− s

)−ν

Iν

(
xy

t− s

)
≤ Cν

(1 + xy
t−s)

ν+ 1
2

exp

(
xy

t− s

)
.
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Thus, by this inequality, it follows that

q
(b+η)
1 (s, x, t, y)

≤ P (Rx(t− s) ∈ dy)
dy

≤ 2πy1+ν

(
y

t− s

)ν

nt−s(x)nt−s(y)
Cν

(1 + xy
t−s)

ν+ 1
2

exp

(
xy

t− s

)

≤ Ĉν,b

(t− s)ν+1
nt−s(y − x),

where Ĉν,b :=
√

2πCν(b + 1)2ν+1
√

1 + (b+ 1)2. Next, we prove inequality

(12). According to [6], there exists some C̃ν > 0 such that

2(xy)−ν
∞∑
n=1

Jν(jν,nx)Jν(jν,ny)

J2
ν+1(jν,n)

exp
(
−j2ν,nt

)
≤ C̃ν

(1 + t)ν+2

(t+ xy)ν+1/2

(
1 ∧ (1 − x)(1 − y)

t

)
1√
t
exp

(
−(x− y)2

4t
− j2ν,1t

)
,

x, y ∈ (0, 1), t > 0.

Using this inequality and Theorem 5, we can obtain the following estimate:

q
(b+η)
1 (r, z, 1, b)

=
P (Rz(1 − r) ∈ db)

db
P
(
M[r,1](r

z→b
[r,1] ) ≤ b+ η

)
=

b2ν+1

(b+ η)2ν+2
2

(
z

b+ η

b

b+ η

)−ν

×
∞∑
n=1

Jν (zjν,n/(b+ η))Jν (bjν,n/(b+ η))

J2
ν+1(jν,n)

exp

(
−j2ν,n

1 − r
2(b+ η)2

)

≤ C̃ν
b2ν+1

(b+ η)2ν+2

(
1 +

1 − r
2(b+ η)2

)ν+2

×
( (1−r)+2bz

2(b+η)2
)1/2

( (1−r)+2bz
2(b+η)2

)ν+1

(
1 ∧ 2η(b+ η − z)

1 − r

)

× exp

(
−j2ν,1

1 − r
2(b+ η)2

)
2
√
π(b+ η)n1−r(z − b)
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≤ C̃ν
b2ν+1

(b+ η)2ν+2

(
2(b+ 1)2 + 1

2(b+ η)2

)ν+2

×
(1+2(b+1)2

2(b+η)2
)1/2

( 1−r
2(b+η)2

)ν+1

(
1 ∧ 2η(b+ η)

1 − r

)
2
√
π(b+ η)n1−r(z − b)

≤ C̃ν,b

(1 − r)ν+1

(
1 ∧ 2η(b+ η)

1 − r

)
n1−r(z − b),

where C̃ν,b := C̃ν

√
π
2

(1+2(b+1)2)ν+5/2

b3
. Since we set Cν,b := Ĉν,b ∨ C̃ν,b, we

can obtain our assertions. �

Lemma 2.4. Let b > 0. For 0 < t ≤ 1 and y ∈ [0, b), we have

q
(b)
2 (t, y) > 0.

Proof. According to [10, Theorem 3.3], for all x ∈ [0, 1) and t > 0,

there exists a constant Cν > 0 such that

x−ν
∞∑
n=1

jν,nJν(jν,nx)

Jν+1(jν,n)
exp

(
−
j2ν,n
2
t

)

≥ Cν
(1 − x)(1 + t)ν+2

(x+ t)ν+ 1
2 t

3
2

exp

(
−(1 − x)2

2t
− 1

2
j2ν,1t

)
.

Hence, by Corollary 1, we can prove the assertion as follows:

q
(b)
2 (t, y) = 2

(
b

y

)ν ∞∑
n=1

jν,nJν (yjν,n/b)

b2Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

t

)

≥ Cν
2

b2
(1 − y

b )(1 + t
b2

)ν+2

(yb + t
b2

)ν+ 1
2 ( t

b2
)

3
2

exp

(
−(b− y)2

2t
−
j2ν,1
2b2

t

)
> 0. �

3. Proof of Theorem 1

In this section, we prove Theorem 1, which gives the construction of the

Bessel house-moving as the weak limit of the conditioned BES(δ) bridges.
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Lemma 3.1. Let 0 ≤ a < b and η > 0. For 0 < s < t < 1 and

x, y ∈ (0, b+ η), we have

P
(
ra→b|K−(b+η)(t) ∈ dy

)
(13)

=
q
(b+η)
1 (0, a, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

dy,

P
(
ra→b|K−(b+η)(t) ∈ dy | ra→b|K−(b+η)(s) = x

)
(14)

=
q
(b+η)
1 (s, x, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (s, x, 1, b)

dy.

Proof. By Lemma 2.1, we obtain

P
(
ra→b|K−(b+η)(u) ∈ dy

)
=
P
(
ra→b(u) ∈ dy,M(ra→b) ≤ b+ η

)
P (M(ra→b) ≤ b+ η)

=
P
(
M[0,u](r

a→y
[0,u] ) ≤ b+ η

)
P
(
M[u,1](r

y→b
[u,1]) ≤ b+ η

)
P (M(ra→b) ≤ b+ η)

× P
(
ra→b(u) ∈ dy

)
, 0 < u < 1.(15)

It holds from (15) and (1) that

P
(
ra→b|K−(b+η)(t) ∈ dy

)
=
P
(
M[0,t](r

a→y
[0,t] ) ≤ b+ η

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ b+ η

)
P (M(ra→b) ≤ b+ η)

× P (Ra(t) ∈ dy)P (Ry(1 − t) ∈ db)
P (Ra(1) ∈ db)

=
q
(b+η)
1 (0, a, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

dy.

Hence, (13) holds.
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Next, we prove (14). By Lemma 2.1, we have

P
(
ra→b|K−(b+η)(t) ∈ dy, ra→b|K−(b+η)(s) ∈ dx

)
=

P
(
ra→b(t) ∈ dy, ra→b(s) ∈ dx,M(ra→b) ≤ b + η

)
P (M(ra→b) ≤ b + η)

=
P
(
M[s,t](r

x→y
[s,t] ) ≤ b + η

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ b + η

)
P
(
M[0,s](r

a→x
[0,s] ) ≤ b + η

)
P (M(ra→b) ≤ b + η)

× P
(
ra→b(t) ∈ dy, ra→b(s) ∈ dx

)
.(16)

Therefore, combining (15), (16) and (2), we obtain

P
(
ra→b|K−(b+η)(t) ∈ dy | ra→b|K−(b+η)(s) = x

)
=
P
(
ra→b|K−(b+η)(t) ∈ dy, ra→b|K−(b+η)(s) ∈ dx

)
P
(
ra→b|K−(b+η)(s) ∈ dx

)
=
P
(
M[s,t](r

x→y
[s,t] ) ≤ b+ η

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ b+ η

)
P
(
M[s,1](r

x→b
[s,1] ) ≤ b+ η

)
× P

(
ra→b(t) ∈ dy | ra→b(s) = x

)
=
P
(
M[s,t](r

x→y
[s,t] ) ≤ b+ η

)
P
(
M[t,1](r

y→b
[t,1] ) ≤ b+ η

)
P
(
M[s,1](r

x→b
[s,1] ) ≤ b+ η

)
× P (Rx(t− s) ∈ dy)P (Ry(1 − t) ∈ db)

P (Rx(1 − s) ∈ db)

=
q
(b+η)
1 (s, x, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (s, x, 1, b)

dy.

Hence, (14) holds. �

Proposition 3.1. Let 0 ≤ a < b. For 0 < s < t < 1 and x, y ∈ (0, b),

we have

lim
η↓0
P
(
ra→b|K−(b+η)(t) ∈ dy

)
=
q
(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy,(17)
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lim
η↓0
P
(
ra→b|K−(b+η)(t) ∈ dy

∣∣ ra→b|K−(b+η)(s) = x
)

(18)

=
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1 − s, x)

dy.

Proof. By Lemma 3.1 and L’Hôpital’s rule, we obtain our assertion. �

Let b > 0. For 0 ≤ s < t ≤ 1 and x, y ∈ [0, b], we define

hb(s, x, t, y) :=
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1 − s, x)

.(19)

Proposition 3.2. Let b > 0. For 0 ≤ s < t ≤ 1 and x ∈ [0, b), we

have ∫ b

0
hb(s, x, t, y)dy = 1.

Proof. By (19), it suffices to show the following identity:

q
(b)
2 (1 − s, x) =

∫ b

0
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)dy.

Here, using Lemma 3.1, it holds that

q
(b+η)
1 (s, x, 1, b)

η
=

∫ b+η

0
q
(b+η)
1 (s, x, t, y)

q
(b+η)
1 (t, y, 1, b)

η
dy.(20)

According to L’Hôpital’s rule, we obtain

lim
η↓0

q
(b+η)
1 (s, x, 1, b)

η
= q

(b)
2 (1 − s, x).(21)

On the other hand, by Lemma 2.3, for η ∈ (0, 1) and y ∈ (0, b+ η), we have

the following estimate:

q
(b+η)
1 (s, x, t, y)

q
(b+η)
1 (t, y, 1, b)

η

≤ 1

η

Cν,b

(t− s)ν+1
nt−s(y − x)

Cν,b

(1 − t)ν+1

(
1 ∧ 2η(b+ η)

1 − t

)
n1−t(y − b)

≤
C2
ν,b(b+ 1)

π(t− s)ν+3/2(1 − t)ν+5/2
<∞.(22)
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Again, using L’Hôpital’s rule, it holds that

lim
η↓0
q
(b+η)
1 (s, x, t, y)

q
(b+η)
1 (t, y, 1, b)

η
= q

(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)(23)

for y ∈ (0, b). Therefore, by (22), (23), and Lebesgue’s dominated conver-

gence theorem, we obtain

lim
η↓0

1

η

∫ b+η

0
q
(b+η)
1 (s, x, t, y)q

(b+η)
1 (t, y, 1, b)dy

=

∫ b

0
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)dy.

By this equality and (21), taking the limit η ↓ 0 in (20) allows us to prove

the assertion. �

The following proposition implies that hb(s, x, t, y) satisfies the

Chapman–Kolmogorov identity.

Proposition 3.3. Let b > 0. For 0 < s < t < u < 1 and x, z ∈ (0, b),

we have

hb(s, x, u, z) =

∫ b

0
hb(s, x, t, y) hb(t, y, u, z)dy.

Proof. By (19), it suffices to show the following identity:

q
(b)
1 (s, x, u, z) =

∫ b

0
q
(b)
1 (s, x, t, y)q

(b)
1 (t, y, u, z)dy.

According to Lemma 2.1 and (2), we can prove the assertion as follows:

q
(b)
1 (s, x, u, z)

=
P (Rx(u− s) ∈ dz)

dz

∫ b

0
P
(
rx→z
[s,u] (t) ∈ dy,M[s,u](r

x→z
[s,u] ) ≤ b

)
=
P (Rx(u− s) ∈ dz)

dz

×
∫ b

0
P
(
M[s,t](r

x→y
[s,t] ) ≤ b

)
P
(
M[t,u](r

y→z
[t,u] ) ≤ b

)
P
(
rx→z
[s,u] (t) ∈ dy

)
=

∫ b

0
q
(b)
1 (s, x, t, y)q

(b)
1 (t, y, u, z)dy. �
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By Proposition 3.2 and Proposition 3.3, the right sides of (17) and (18)

determine the continuous Markov process Ha→b = {Ha→b(t)}t∈[0,1]. Then,

by Proposition 3.1 and Lemma A.1, we obtain the convergence

ra→b|K−(b+η) → Ha→b as η ↓ 0 in the finite-dimensional distributional

sense. Therefore, all that remains in proving Theorem 1 is the tightness

of the family {ra→b|K−(b+η)}0<η<η0 for some η0 > 0. By

lim
η↓0
q
(b+η)
2 (1, a) = q

(b)
2 (1, a),

we can take η1 > 0 so that q
(b+η)
2 (1, a) > q

(b)
2 (1, a)/2 holds for η ∈ (0, η1).

Throughout this section, we fix η1 in this fashion and denote

η0 := min{η1, 1}.(24)

Lemma 3.2. Let 0 ≤ a < b and let 0 < η < η0 be fixed. We have

q
(b+η)
1 (0, a, 1, b) > η

q
(b)
2 (1, a)

2
.

Proof. According to Taylor’s theorem, we can find θ ∈ (0, 1) so that

q
(b+η)
1 (0, a, 1, b) = ηq

(b+θη)
2 (1, a) > η

q
(b)
2 (1, a)

2
. �

Using Lemmas 2.3 and 3.2, we obtain the following moment inequalities:

Lemma 3.3. Let 0 ≤ a < b. For each α > 0, we can find a constant

Cα,ν,a,b > 0 such that

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(r) − ra→b|K−(b+η)(0)
∣∣∣2α](25)

≤ Cα,ν,a,b

rν+1−α(1 − r)ν+ 5
2

, r ∈ (0, 1),

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(1 − r) − ra→b|K−(b+η)(1)
∣∣∣2α](26)

≤ Cα,ν,a,b

rν+2−α(1 − r)ν+ 3
2

, r ∈ (0, 1),
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sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(t) − ra→b|K−(b+η)(s)
∣∣∣2α](27)

≤ Cα,ν,a,b

(t− s)ν+1−αsν+ 3
2 (1 − t)ν+ 5

2

, s, t ∈ (0, 1).

Proof. By Lemmas 2.3 and 3.2, we have

P

(
ra→b

∣∣∣
K−(b+η)

(u) ∈ dz
)

=
q
(b+η)
1 (0, a, u, z)q

(b+η)
1 (u, z, 1, b)

q
(b+η)
1 (0, a, 1, b)

1[0,b+η](z)dz

≤ 2

ηq
(b)
2 (1, a)

(
Cν,b

uν+1
nu(z − a)

)
×
(

Cν,b

(1 − u)ν+1

(
1 ∧ 2η(b+ η)

1 − u

)
n1−u(z − b)

)
dz

≤
4(b+ η)C2

ν,b

q
(b)
2 (1, a)

1

uν+1(1 − u)ν+2
nu(z − a)n1−u(z − b)dz

for 0 < u < 1. On the other hand, for each c ∈ R,∫ b+η

0
|z − c|2αnr(z − c)dz ≤ 2

∫ ∞

0
w2αnr(w)dw =

(2r)α√
π

Γ

(
α+

1

2

)
holds. Hence, because we have

E

[∣∣∣ra→b|K−(b+η)(r) − ra→b|K−(b+η)(0)
∣∣∣2α]

≤
4(b+ η)C2

ν,b√
2πq

(b)
2 (1, a)

1

rν+1(1 − r)ν+5/2

∫ b+η

0
|z − a|2αnr(z − a)dz

≤
2α+2(b+ η)C2

ν,bΓ
(
α+ 1

2

)
√

2πq
(b)
2 (1, a)

1

rν+1−α(1 − r)ν+5/2

and

E

[∣∣∣ra→b|K−(b+η)(1 − r) − ra→b|K−(b+η)(1)
∣∣∣2α]

≤
4(b+ η)C2

ν,b√
2πq

(b)
2 (1, a)

1

(1 − r)ν+3/2rν+2

∫ b+η

0
|z − b|2αnr(z − b)dz
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≤
2α+2(b+ η)C2

ν,bΓ
(
α+ 1

2

)
√

2πq
(b)
2 (1, a)

1

(1 − r)ν+3/2rν+2−α
,

we obtain inequalities (25) and (26) as follows:

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(r) − ra→b|K−(b+η)(0)
∣∣∣2α]

≤
2α+2(b+ 1)C2

ν,bΓ
(
α+ 1

2

)
√

2πq
(b)
2 (1, a)

1

rν+1−α(1 − r)ν+5/2
,

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(1 − r) − ra→b|K−(b+η)(1)
∣∣∣2α]

≤
2α+2(b+ 1)C2

ν,bΓ
(
α+ 1

2

)
√

2πq
(b)
2 (1, a)

1

rν+2−α(1 − r)ν+ 3
2

.

Next, we prove (27). We note that

P
(
ra→b|K−(b+η)(t) ∈ dy, ra→b|K−(b+η)(s) ∈ dx

)
= P

(
ra→b|K−(b+η)(t) ∈ dy | ra→b|K−(b+η)(s) = x

)
× P

(
ra→b|K−(b+η)(s) ∈ dx

)
=
q
(b+η)
1 (0, a, s, x)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

q
(b+η)
1 (s, x, t, y)dxdy,

0 < x, y < b+ η.

By Lemmas 2.3 and 3.2, we have

P
(
ra→b|K−(b+η)(t) ∈ dy, ra→b|K−(b+η)(s) ∈ dx

)
≤ 2

ηq
(b)
2 (1, a)

· Cν,b

sν+1
ns(x− a) ·

Cν,b

(1 − t)ν+1

2η(b+ η)

1 − t n1−t(y − b)

· Cν,b

(t− s)ν+1
nt−s(y − x)dxdy

≤
2(b+ η)C3

ν,b

πq
(b)
2 (1, a)

· 1

(t− s)ν+1sν+3/2(1 − t)ν+5/2
· nt−s(y − x)dxdy.
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On the other hand,∫∫
(0,b+η)2

|y − x|2αnt−s(y − x)dxdy

=

∫ b+η

0

(∫ b+η

0
|y − x|2αnt−s(y − x)dy

)
dx

≤ (b+ η)
(2(t− s))α√

π
Γ

(
α+

1

2

)
holds. Hence, we obtain

E

[∣∣∣ra→b|K−(b+η)(t) − ra→b|K−(b+η)(s)
∣∣∣2α]

=

∫∫
(0,b+η)2

|y − x|2αP
(
ra→b|K−(b+η)(t) ∈ dy, ra→b|K−(b+η)(s) ∈ dx

)
≤

2(b+ η)C3
ν,b

πq
(b)
2 (1, a)

· 1

(t− s)ν+1sν+3/2(1 − t)ν+5/2

×
∫∫

(0,b+η)2
|y − x|2αnt−s(y − x)dxdy

≤
2α+1(b+ η)2C3

ν,bΓ
(
α+ 1

2

)
π
√
πq

(b)
2 (1, a)

· 1

(t− s)ν+1−αsν+3/2(1 − t)ν+5/2
.

Therefore, we have

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(t) − ra→b|K−(b+η)(s)
∣∣∣2α]

≤
2α+1(b+ 1)2C3

ν,bΓ
(
α+ 1

2

)
π
√
πq

(b)
2 (1, a)

· 1

(t− s)ν+1−αsν+3/2(1 − t)ν+5/2
,

and inequality (27) is proved. �

Corollary 2. Let 0 ≤ a < b. For each u ∈
(
0, 1

2

)
, the family

{π[u,1−u] ◦ ra→b|K−(b+η)}η∈(0,η0) is tight.

Proof. Using inequalities (25) and (27) for α = 1
2 and α = ν + 3,
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respectively, we obtain

sup
0<η<η0

E
[∣∣∣ra→b|K−(b+η)(u)

∣∣∣]
≤ sup

0<η<η0

(
E
[∣∣∣ra→b|K−(b+η)(u) − ra→b|K−(b+η)(0)

∣∣∣]
+E

[∣∣∣ra→b|K−(b+η)(0)
∣∣∣])

≤ C1/2,ν,a,b(1 − u)−ν− 5
2u−ν− 1

2 + a <∞

and

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(t) − ra→b|K−(b+η)(s)
∣∣∣2(ν+3)

]
≤ Cν+3,ν,a,bs

−ν− 3
2 (1 − t)−ν− 5

2 (t− s)2

≤ Cν+3,ν,a,bu
−2ν−4(t− s)2

for u ≤ s < t ≤ 1−u. Hence, by Lemma A.2, we establish the assertion. �

Proposition 3.4. Let 0 ≤ a < b. For ξ > 0, we have

lim
u↓0

sup
η∈(0,η0)

P

(
sup

0≤t≤u
|ra→b|K−(b+η)(t) − ra→b|K−(b+η)(0)| > ξ

)
= 0,

lim
u↓0

sup
η∈(0,η0)

P

(
sup

1−u≤t≤1
|ra→b|K−(b+η)(t) − ra→b|K−(b+η)(1)| > ξ

)
= 0.

Proof. Applying (25), (26) and (27) for α = 3ν+7 and t, s, r ∈ (0, 1)

with s < t, we have

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(r) − ra→b|K−(b+η)(0)
∣∣∣2(3ν+7)

]
(28)

≤ C3ν+7,ν,a,b
r2ν+6

(1 − r)ν+ 5
2

,

sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(t) − ra→b|K−(b+η)(s)
∣∣∣2(3ν+7)

]
(29)

≤ C3ν+7,ν,a,b
|t− s|2ν+6

sν+ 3
2 (1 − t)ν+ 5

2

,
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sup
0<η<η0

E

[∣∣∣ra→b|K−(b+η)(1 − r) − ra→b|K−(b+η)(1)
∣∣∣2(3ν+7)

]
(30)

≤ C3ν+7,ν,a,b
r2ν+5

(1 − r)ν+ 3
2

.

Let γ = 1
4α = 1

4(3ν+7) , 0 < η < η0, and fix n ∈ N. We define

F η
n =

{
max

1≤k≤2n−1

∣∣∣∣ra→b|K−(b+η)

(
k − 1

2n

)
− ra→b|K−(b+η)

(
k

2n

)∣∣∣∣ ≥ 2−nγ

}
,

F̃ η
n =

{
max

2n−1≤k≤2n

∣∣∣∣ra→b|K−(b+η)

(
k − 1

2n

)
− ra→b|K−(b+η)

(
k

2n

)∣∣∣∣ ≥ 2−nγ

}
,

a(n, k, η) = P

(∣∣∣∣ra→b|K−(b+η)

(
k − 1

2n

)
− ra→b|K−(b+η)

(
k

2n

)∣∣∣∣ ≥ 2−nγ

)
,

1 ≤ k ≤ 2n.

Then, by Chebyshev’s inequality, we have

a(n, k, η) ≤ 2
n
2E

[∣∣∣∣ra→b|K−(b+η)

(
k − 1

2n

)
− ra→b|K−(b+η)

(
k

2n

)∣∣∣∣2(3ν+7)
]
,

(31)

1 ≤ k ≤ 2n.

Therefore, using (28), (29), (30), and (31), we have

a(n, 1, η) ≤ 2
n
2C3ν+7,ν,a,b

(
2n

2n − 1

)ν+ 5
2
(

1

2n

)α−ν−1

≤ C3ν+7,ν,a,b2
−n(ν+3) ≤ C3ν+7,ν,a,b2

− 3
2
n,

a(n, k, η) ≤ 2
n
2C3ν+7,ν,a,b

(
2n

k − 1

)ν+ 3
2
(

2n

k

)ν+ 5
2
(

1

2n

)2ν+6

≤ C3ν+7,ν,a,b2
− 3

2
n, (2 ≤ k ≤ 2n − 1),

a(n, 2n, η) ≤ 2
n
2C3ν+7,ν,a,b

(
2n

2n − 1

)ν+ 3
2
(

1

2n

)2ν+5

≤ C3ν+7,ν,a,b2
−n(ν+3) ≤ C3ν+7,ν,a,b2

− 3
2
n.
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Thus, it follows that

P (F η
n ) ≤

2n−1∑
k=1

a(n, k, η) ≤ C3ν+7,ν,a,b2
−n

2 ,

P
(
F̃ η
n

)
≤

2n∑
k=2n−1

a(n, k, η) ≤ C3ν+7,ν,a,b2
−n

2 .

Therefore, Lemmas A.3 and A.4 prove the desired results. �

By Corollary 2 and Proposition 3.4, we can apply Theorem 8 to

{ra→b|K−(b+η)}0<η<η0 and obtain the tightness of this family.

4. Decomposition Formula and Sample Path Properties

In this section, we prove the decomposition formula for the distribution

of the BES(δ) house-moving (Theorem 2). In addition, applying this result,

we study sample path properties of the BES(δ) house-moving.

First, we prove Theorem 2. By Theorem 1, because ra→b|K−(b+η)
D−→

Ha→b (η ↓ 0) holds,

E
[
F (Ha→b)

]
= lim

η↓0
E
[
F (ra→b|K−(b+η))

]
for every bounded continuous function F on C([0, 1],R). We calculate the

numerator of

E
[
F (ra→b|K−(b+η))

]
=
E
[
F (ra→b) ; ra→b ∈ K−(b+ η)

]
P (ra→b ∈ K−(b+ η))

as

E
[
F (ra→b) ; ra→b ∈ K−(b+ η)

]
=

∫ ∞

0
E
[
F (ra→b) ; ra→b ∈ K−(b+ η), ra→b(t) ∈ dy

]
=

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
× P

(
ra→b ∈ K−(b+ η), ra→b(t) ∈ dy

)
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=

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
× P

(
ra→b|K−(b+η)(t) ∈ dy

)
P
(
ra→b ∈ K−(b+ η)

)
.

Hence, we have

E
[
F (ra→b|K−(b+η))

]
=

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
× P

(
ra→b|K−(b+η)(t) ∈ dy

)
.

Then, it suffices to show that

lim
η↓0

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
(32)

× P
(
ra→b|K−(b+η)(t) ∈ dy

)
=

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
P
(
Ha→b(t) ∈ dy

)
.

We obtain the following estimate:∣∣∣∣∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
P
(
ra→b|K−(b+η)(t) ∈ dy

)
−
∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
P
(
Ha→b(t) ∈ dy

)∣∣∣∣
≤
∫ ∞

0

∣∣∣∣E [F (ra→y
[0,t] |K−

[0,t]
(b+η) ⊕t r

y→b
[t,1] |K−

[t,1]
(b+η))

−F (ra→y
[0,t] |K−

[0,t]
(b) ⊕t H

y→b
[t,1] )

]∣∣∣∣P (ra→b|K−(b+η)(t) ∈ dy
)

+

∣∣∣∣∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
×
(
P
(
ra→b|K−(b+η)(t) ∈ dy

)
− P

(
Ha→b(t) ∈ dy

))∣∣∣∣
=: I

(1)
t (η) + I

(2)
t (η).



316 Kensuke Ishitani, Tokufuku Rin and Shun Yanashima

Then, if I
(1)
t (η), I

(2)
t (η) → 0 as η ↓ 0, we can prove (32). First, consider

I
(1)
t (η) =

∫ ∞

0

∣∣∣∣E [F (ra→y
[0,t] |K−

[0,t]
(b+η) ⊕t r

y→b
[t,1] |K−

[t,1]
(b+η))

−F (ra→y
[0,t] |K−

[0,t]
(b) ⊕t H

y→b
[t,1] )

]∣∣∣∣
× q

(b+η)
1 (0, a, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

1[0,b+η](y)dy.

We have

sup
η>0

y∈(0,b+η)

∣∣∣∣E [F (ra→y
[0,t] |K−

[0,t]
(b+η) ⊕t r

y→b
[t,1] |K−

[t,1]
(b+η))(33)

−F (ra→y
[0,t] |K−

[0,t]
(b) ⊕t H

y→b
[t,1] )

]∣∣∣∣
≤ 2 sup

w∈C([0,1],R)
|F (w)| <∞.

By Theorem 1 and Lemma A.5, it holds that

lim
η↓0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b+η) ⊕t r
y→b
[t,1] |K−

[t,1]
(b+η))

]
(34)

= E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
.

In addition, by Lemmas 2.3 and 3.2, and for η ∈ (0, η0) and y ∈ [0, b + η],

we obtain

q
(b+η)
1 (0, a, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

(35)

≤ 2

ηq
(b)
2 (1, a)

(
Cν,b

tν+1
nt(y − a)

)
×
(

Cν,b

(1 − t)ν+1

(
1 ∧ 2η(b+ η)

1 − t

)
n1−t(y − b)

)
≤

2(b+ 1)C2
ν,b

πtν+3/2(1 − t)ν+5/2q
(b)
2 (1, a)

,
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and by Proposition 3.1, it holds that

lim
η↓0

q
(b+η)
1 (0, a, t, y)q

(b+η)
1 (t, y, 1, b)

q
(b+η)
1 (0, a, 1, b)

=
q
(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

.(36)

Therefore, according to (33), (34), (35), (36), and Lebesgue’s dominated

convergence theorem,

I
(1)
t (η) → 0, η ↓ 0.

Next, we consider

I
(2)
t (η) =

∣∣∣∣∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
×
(
P
(
ra→b|K−(b+η)(t) ∈ dy

)
− P

(
Ha→b(t) ∈ dy

))∣∣∣ .
We have

sup
y>0

∣∣∣∣E [F (ra→y
[0,t] |K−

[0,t]
(b) ⊕t H

y→b
[t,1] )

]∣∣∣∣ ≤ sup
w∈C([0,1],R)

|F (w)| <∞.

Then, by (35), (36), and Lebesgue’s dominated convergence theorem,

lim
η↓0

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
P
(
ra→b|K−(b+η)(t) ∈ dy

)
=

∫ ∞

0
E

[
F (ra→y

[0,t] |K−
[0,t]

(b) ⊕t H
y→b
[t,1] )

]
P
(
Ha→b(t) ∈ dy

)
.

Therefore, it follows that

I
(2)
t (η) → 0, η ↓ 0.

Thus, we prove (32) and the proof is completed. �

Lemma 4.1. Let B ∈ B(C([0, 1],R)). Then, Theorem 2 holds true for

F = 1B.

Proof. Let A be a closed subset of C([0, 1],R) and let

φ(x) := 1 −
∫ 1

0
1(−∞,x](u)du, x ∈ R.
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Then, for w ∈ C([0, 1],R), we have

Fn(w) := φ(nd∞(w,A)) ↓ 1A(w), n→ ∞,

where

d∞(w,A) := inf{‖w − v‖C([0,1],R) | v ∈ A}.

Therefore, by Lebesgue’s dominated convergence theorem and Dynkin’s π-λ

theorem, we can obtain our assertion. �

Lemma 4.2. Let 0 ≤ a < b. For 0 < z ≤ x ≤ b and t ∈ (0, 1),

P

(
max
u∈[0,t]

Ha→b(u) = x

)
= 0,

P

(
max
u∈[0,t]

Ha→b(u) ≤ x,Ha→b(t) ≤ z
)

=

∫ z

0

q
(x)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy.

Proof. Let Ai (i = 1, 2) be closed subsets of C([0, 1],R) given by

A1 :=

{
w ∈ C([0, 1],R)

∣∣ max
u∈[0,t]

w(u) = x

}
,

A2 :=

{
w ∈ C([0, 1],R)

∣∣ max
u∈[0,t]

w(u) ≤ x, w(t) ≤ z
}
.

Lemma 4.1 implies that Theorem 2 can be applied for F = 1Ai (i = 1, 2).

Thus, we obtain

P
(
Mt(H

a→b) = x
)

(37)

=

∫ x

0
P

(
ra→y
[0,t] |K−

[0,t]
(b) ∈ ∂K

−
[0,t](x)

)
P
(
Ha→b(t) ∈ dy

)
,

P
(
Mt(H

a→b) ≤ x,Ha→b(t) ≤ z
)

(38)

=

∫ z

0
P

(
ra→y
[0,t] |K−

[0,t]
(b) ∈ K

−
[0,t](x), r

a→y
[0,t] |K−

[0,t]
(b)(t) ≤ z

)
× P

(
Ha→b(t) ∈ dy

)
.
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By Proposition 2.1 and (37), we obtain

P
(
Mt(H

a→b) = x
)

=

∫ x

0

P
(
ra→y
[0,t] ∈ ∂K−

[0,t](x)
)

P
(
ra→y
[0,t] ∈ K−

[0,t](b)
) P (Ha→b(t) ∈ dy

)
= 0.

Furthermore, (38) implies that

P
(
Mt(H

a→b) ≤ x,Ha→b(t) ≤ z
)

=

∫ z

0

P
(
ra→y
[0,t] ∈ K−

[0,t](x), r
a→y
[0,t] (t) ≤ z

)
P
(
ra→y
[0,t] ∈ K−

[0,t](b)
) q

(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy

=

∫ z

0

P
(
ra→y
[0,t] ∈ K−

[0,t](x)
)

P
(
ra→y
[0,t] ∈ K−

[0,t](b)
) q(b)1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy

=

∫ z

0

q
(x)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy. �

4.1. Proof of Proposition 1.1

Let t ∈ (0, 1). Lemma 4.2 implies that

P
(
Mt(H

a→b) = b
)

= 0,

P
(
Mt(H

a→b) ≤ b
)

= P
(
Mt(H

a→b) ≤ b,Ha→b(t) ≤ b
)

=

∫ b

0
P
(
Ha→b(t) ∈ dy

)
= 1.

Therefore, P (Mt(H
a→b) < b) = 1 holds and Proposition 1.1 is obtained.

Proposition 1.1 implies that Bessel house-moving Ha→b does not hit b on

the time interval [0, 1).

5. Proof of Theorem 3

For t > 0 and x, y ∈ [0,∞), we set

p(t;x, y) :=
P (Rx(t) ∈ dy)

dy
.
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In addition, we denote the expectation with respect to a probability Q by

EQ.

First, we prepare two lemmas.

Lemma 5.1. Let 0 ≤ a < b. For t ∈ (0, 1), we have

dP ra→b

t

dPRa

t

(w) =
p(1 − t;w(t), b)

p(1; a, b)
, w ∈ C([0, t],R).

Proof. Let A ∈ B(C([0, t],R)) be fixed. By the Markov property of

Ra, we obtain the assertion as follows:

P ra→b

t (A) =
PRa

(
π−1

[0,t](A), w(1) ∈ db
)

PRa (w(1) ∈ db)

=

ERa

[
1π−1

[0,t]
(A)(w) · PRa

(w(1) ∈ db | w(t))

]
PRa (w(1) ∈ db)

=

∫
π−1
[0,t]

(A)

PRa
(w(1) ∈ db | w(t))

PRa (w(1) ∈ db) PRa
(dw)

=

∫
A

p(1 − t;w(t), b)

p(1; a, b)
PRa

t (dw) . �

Lemma 5.2. Let 0 ≤ a < b and t ∈ (0, 1). For every bounded continu-

ous functions F on C([0, t],R), it holds that

EPHa→b

t [F ] =

∫
C([0,t],R)

F (w) · q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

· 1K−
[0,t]

(b)(w)PRa

t (dw).

Proof. By the Markov property of ra→b and Lemma 5.1, for A ∈
B(C([0, t],R)), it holds that

P ra→b
(
π−1

[0,t](A) | K−(b+ η)
)

=
P ra→b

(
π−1

[0,t](A) ∩ π−1
[0,t](K

−
[0,t](b+ η)) ∩ π−1

[t,1](K
−
[t,1](b+ η))

)
P ra→b (K−(b+ η))
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=

∫
π−1
[0,t]

(A)

P ra→b
(
π−1

[t,1](K
−
[t,1](b+ η)) | w(t)

)
P ra→b (K−(b+ η))

× 1K−
[0,t]

(b+η)(π[0,t] ◦ w)P ra→b
(dw)

=

∫
π−1
[0,t]

(A)

P ra→b
(
π−1

[t,1](K
−
[t,1](b+ η)) | w(t)

)
p(1 − t;w(t), b)

P ra→b (K−(b+ η)) p(1; a, b)

× 1K−
[0,t]

(b+η)(π[0,t] ◦ w)PRa
(dw)

=

∫
A

q
(b+η)
1 (t, w(t), 1, b)

q
(b+η)
1 (0, a, 1, b)

1K−
[0,t]

(b+η)(w)PRa

t (dw) , η > 0.

Then, for a bounded continuous function F on C([0, t],R), we obtain∫
C([0,1],R)

F (π[0,t] ◦ w)P ra→b (
dw | K−(b+ η)

)
=

∫
C([0,t],R)

F (w)
q
(b+η)
1 (t, w(t), 1, b)

q
(b+η)
1 (0, a, 1, b)

1K−
[0,t]

(b+η)(w)PRa

t (dw) , η > 0.

By Lemmas 2.3 and 3.2, and for η ∈ (0, η0), we obtain

q
(b+η)
1 (t, w(t), 1, b)

q
(b+η)
1 (0, a, 1, b)

≤ 4(b+ η)Cν,b√
2πq

(b)
2 (1, a)

1

(1 − t)ν+5/2
, w ∈ C([0, t], [0, b+ η]).

In addition, it holds that

lim
η↓0

q
(b+η)
1 (t, w(t), 1, b)

q
(b+η)
1 (0, a, 1, b)

1K−
[0,t]

(b+η)(w)

=
q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

1K−
[0,t]

(b)(w), w ∈ C([0, t], [0,∞)).

Therefore, Lebesgue’s dominated convergence theorem implies

lim
η↓0

∫
C([0,1],R)

F (π[0,t] ◦ w)P ra→b (
dw | K−(b+ η)

)
=

∫
C([0,t],R)

F (w)
q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

1K−
[0,t]

(b)(w)PRa

t (dw) .
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According to this equality and Theorem 1, it follows that

EPHa→b

t [F ] =

∫
C[0,1],R)

F (π[0,t] ◦ w)PHa→b
(dw)

= lim
η↓0

∫
C([0,1],R)

F (π[0,t] ◦ w)P ra→b (
dw | K−(b+ η)

)
=

∫
C([0,t],R)

F (w)
q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

1K−
[0,t]

(b)(w)PRa

t (dw) .

Thus, the proof is completed. �

Now, we prove Theorem 3. Let A be a closed subset of C([0, t],R). In a

similar manner to the proof of Lemma 4.1, by Lemma 5.2 and Lebesgue’s

dominated convergence theorem, it holds that

EPHa→b

t [1A] =

∫
C([0,t],R)

1A(w)
q
(b)
2 (1 − t, w(t))

q
(b)
2 (1, a)

1K−
[0,t]

(b)(w)PRa

t (dw).(39)

Using (39) and Dynkin’s π-λ theorem, we can prove the assertion com-

pletely. �

6. Proof of Proposition 1.2

In this section, we prove Proposition 1.2, which gives the characteriza-

tion of the Bessel house-moving by using the first hitting time of the Bessel

process.

Lemma 6.1. Let b > 0. For t > 0 and y ∈ (0, b), we have

P (τy,b ∈ dt)
dt

=
q
(b)
2 (t, y)

2
,(40)

P (τ0,b ∈ dt)
dt

=
q
(b)
2 (t, 0)

2
.(41)

Proof. First, we prove (40). It holds that

P (τy,b ∈ dt)
dt

= − ∂

∂t
P (Mt(R

y) < b)

= − ∂

∂t

∫ b

0
P (Mt(R

y) ≤ b,Ry(t) ∈ dx)
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= − ∂

∂t

∫ b

0
P
(
M[0,t](r

y→x
[0,t] ) ≤ b

)
P (Ry(t) ∈ dx) .

For each n, we set

fn(t, x) :=
Jν (xjν,n/b)Jν (yjν,n/b)

b2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2b2

t

)
, t ≥ 0, x ∈ (0, b).

Then, by Theorem 5, we have

q
(b)
1 (0, y, t, x) = 2x

(
x

y

)ν ∞∑
n=1

fn(t, x).

Let T > 0 be fixed. By Lemma 2.2 and (60), there exist some C̃ν > 0 and

Nν ∈ N such that∣∣∣∣ ∂∂tfn(t, x)
∣∣∣∣ =

∣∣∣∣∣Jν (xjν,n/b)Jν (yjν,n/b)

b2J2
ν+1(jν,n)

j2ν,n
2b2

exp

(
−
j2ν,n
2b2

t

)∣∣∣∣∣
≤ 2C̃2

ν

√
(1 + xπ

b )(1 + yπ
b )

xy
(nπ)2 exp

(
−(nπ)2

8b2
t

)
holds for n > Nν and t ∈ (T,∞). Since

∞∑
n=Nν+1

(nπ)2 exp

(
−(nπ)2

8b2
T

)
<∞

holds, we have

∂

∂t
q
(b)
1 (0, y, t, x) = 2x

(
x

y

)ν ∞∑
n=1

∂

∂t
fn(t, x) t ∈ (T,∞),

by Lebesgue’s dominated convergence theorem. Thus, we obtain

sup
t∈(T,∞)

∣∣∣∣ ∂∂tq(b)1 (0, y, t, x)

∣∣∣∣(42)

≤ y−ν
Nν∑
n=1

∣∣xν+1Jν (xjν,n/b)Jν (yjν,n/b)
∣∣

b2J2
ν+1(jν,n)

j2ν,n
b2

exp

(
−
j2ν,n
2b2

T

)
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+ 4C̃2
ν

(
x

y

)ν

√
(1 + xπ

b )(1 + yπ
b )

y

×
∞∑

n=Nν+1

(nπ)2 exp

(
−(nπ)2

8b2
T

)
, x ∈ (0, b).

By (58), because there exists Cν > 0 such that

∣∣xν+1Jν (xjν,n/b)
∣∣ ≤ Cν

(
jν,n
b

)ν x2ν+1(
1 +

xjν,n
b

)ν+ 1
2

≤ Cν

(
jν,n
b

)−1

xν
(

1 +
xjν,n
b

)
, x ∈ (0, b)

holds, the functions xν+1Jν (xjν,n/b) , n = 1, . . . , Nν in the first term on the

right-hand side of (42) are integrable with respect to x on [0, b]. In addition,

since

xν
√

1 +
xπ

b
≤ xν

(
1 +

xπ

b

)
(x ∈ (0, b))

holds, the function xν
√

1 + xπ
b in the second term on the right-hand side

of (42) is integrable with respect to x on [0, b]. Therefore, by Lebesgue’s

dominated convergence theorem,

∂

∂t

∫ b

0
q
(b)
1 (0, y, t, x)dx =

∫ b

0

∂

∂t
q
(b)
1 (0, y, t, x)dx.

Recall that ν = δ/2 − 1, and let m(x)dx = 2x2ν+1dx be the speed measure

of the BES(δ) process. Then, we obtain

m(x)
∂

∂t

(
q
(b)
1 (0, y, t, x)

m(x)

)
= m(x)Lδ

(
q
(b)
1 (0, y, t, x)

m(x)

)

=
1

2

∂

∂x

(
m(x)

∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

))
,
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where Lδ is the infinitesimal generator of the BES(δ) process. So, we get

P (τy,b ∈ dt)
dt

= −1

2

∫ b

0

∂

∂x

(
m(x)

∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

))
dx

= −1

2

[
m(x)

∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

)]x=b

x=0

.

Inequality (58) and Lemma 2.2 imply the following inequality:

∞∑
n=1

sup
x∈(0,∞)

∣∣∣∣∣jν,nx−(ν+1)Jν+1 (xjν,n/b)Jν (yjν,n/b)

J2
ν+1(jν,n)

exp

(
−
j2ν,n
2b2

t

)∣∣∣∣∣
(43)

≤ Cν+1

∞∑
n=1

jν,n

(
jν,n
b

)ν+1 ∣∣∣∣Jν (yjν,n/b)

J2
ν+1(jν,n)

∣∣∣∣ exp

(
−
j2ν,n
2b2

t

)

≤ Cν+1

Nν∑
n=1

jν,n

(
jν,n
b

)ν+1 ∣∣∣∣ 1

Jν+1(jν,n)

∣∣∣∣ ∣∣∣∣Jν (yjν,n/b)

Jν+1(jν,n)

∣∣∣∣ exp

(
−
j2ν,n
2b2

t

)

+
Cν+1C̃νπ (1 + yπ/b)

1
2

ybν

∞∑
n=Nν+1

√
n(2nπ)ν+2 exp

(
−(nπ)2

8b2
t

)
.

Then Lebesgue’s dominated convergence theorem and the inequality (43)

show that

m(x)
∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

)

= 2x2ν+1 ∂

∂x

(
(xy)−ν

∞∑
n=1

Jν (xjν,n/b)Jν (yjν,n/b)

b2J2
ν+1(jν,n)

exp

(
−
j2ν,n
2b2

t

))

= −2x2ν+2y−ν
∞∑
n=1

jν,nx
−(ν+1)Jν+1 (xjν,n/b)Jν (yjν,n/b)

b3J2
ν+1(jν,n)

exp

(
−
j2ν,n
2b2

t

)
and (

m(x)
∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

))∣∣∣∣
x=b

= −q(b)2 (t, y),(
m(x)

∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

))∣∣∣∣
x=0

= 0



326 Kensuke Ishitani, Tokufuku Rin and Shun Yanashima

hold. Thus, we have

−1

2

[
m(x)

∂

∂x

(
q
(b)
1 (0, y, t, x)

m(x)

)]x=b

x=0

=
q
(b)
2 (t, y)

2
,

and (40) is proved. By (40), Theorem 5, and Corollary 1, we easily obatin

(41). �

Remark 6.1. It is well-known that

P (τa,b ≤ t) = 1 − 2

(
b

a

)ν ∞∑
n=1

Jν (ajν,n/b)

jν,nJν+1(jν,n)
exp

(
−
j2ν,n
2b2

t

)
,

P (τ0,b ≤ t) = 1 − 1

2ν−1Γ(ν + 1)

∞∑
n=1

jν−1
ν,n

Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

t

)
hold for 0 < a < b and t > 0 ([5]). By differentiating these identities, we

obtain

P (τa,b ∈ dt) =

(
b

a

)ν ∞∑
n=1

jν,nJν (ajν,n/b)

b2Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

t

)
dt,(44)

P (τ0,b ∈ dt) =
1

2νΓ(ν + 1)

∞∑
n=1

jν+1
ν,n

b2Jν+1(jν,n)
exp

(
−
j2ν,n
2b2

t

)
dt.(45)

By using (44) and (45), we can also prove Lemma 6.1.

Theorem 6. Let 0 ≤ a < b. For 0 < s < t < 1 and x, y ∈ (0, b), we

have

P (Ra(t) ∈ dy | τa,b = 1) =
q
(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy,(46)

P (Ra(t) ∈ dy | Ra(s) = x, τa,b = 1) =
q
(b)
1 (s, x, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1 − s, x)

dy.(47)

Proof. Using the Markov property of Ra, for 0 < t < u, it holds that

P (Ra(t) ∈ dy, τa,b > u) = P (Ra(t) ∈ dy,Mu(R
a) < b)

= P (Ra(t) ∈ dy,Mt(R
a) < b)P (Mu−t(R

y) < b)

= P (Ra(t) ∈ dy,Mt(R
a) < b)P (τy,b > u− t) .
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Since the density of τa,b is a derivative of the distribution function, we obtain

P (Ra(t) ∈ dy, τa,b ∈ du)(48)

= − d

du
P (Ra(t) ∈ dy, τa,b > u)

= P (Ra(t) ∈ dy,Mt(R
a) < b)P (τy,b ∈ du− t) .

We can calculate the first term of the right-hand side of (48) as

P (Ra(t) ∈ dy,Mt(R
a) < b)(49)

= P (Ra(t) ∈ dy) P (Ra(t) ∈ dy,Mt(R
a) < b)

P (Ra(t) ∈ dy)
= P (Ra(t) ∈ dy)P

(
M[0,t](r

a→y
[0,t] ) < b

)
= q

(b)
1 (0, a, t, y)dy.

Therefore, by (48), (49), (40), (41), and L’Hôpital’s rule, we can prove (46)

as follows:

P (Ra(t) ∈ dy | τa,b = 1)

= P (Ra(t) ∈ dy,Mt(R
a) < b)

P (τy,b ∈ du− t)
P (τa,b ∈ du)

∣∣∣
u=1

=
q
(b)
1 (0, a, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, a)

dy.

Next, we prove (47). Using the Markov property of Ra, for 0 < s < t < u,

it holds that

P (Ra(t) ∈ dy,Ra(s) ∈ dx, τa,b > u)
= P (Ra(t) ∈ dy,Ra(s) ∈ dx,Mu(R

a) < b)

= P (Ra(s) ∈ dx,Ms(R
a) < b)P (Rx(t− s) ∈ dy,Mt−s(R

x) < b)

× P
(
Mu−(t−s)(R

y) < b
)

= P (Ra(s) ∈ dx,Ms(R
a) < b)P (Rx(t− s) ∈ dy,Mt−s(R

x) < b)

× P (τy,b > u− (t− s)) .
Thus, it follows that

P (Ra(t) ∈ dy,Ra(s) ∈ dx, τa,b ∈ du)

= − d

du
P (Ra(t) ∈ dy,Ra(s) ∈ dx, τa,b > u)
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= P (Ra(s) ∈ dx,Ms(R
a) < b)P (Rx(t− s) ∈ dy,Mt−s(R

x) < b)

× P (τy,b ∈ du− (t− s)) .

On the other hand, by (48), we obtain

P (Ra(s) ∈ dx, τa,b ∈ du) = P (Ra(s) ∈ dx,Ms(R
a) < b)P (τx,b ∈ du− s) .

Combining this equality, (49), (40), and L’Hôpital’s rule, we can prove (47)

as follows:

According to Theorem 1, the right sides of (46) and (47) are the transi-

tion densities of Ha→b. Therefore, the proof of Proposition 1.2 is completed.

7. Proof of Proposition 1.3

The proof is similar to that in Chapter 2, Theorem 2.8 in [4]. We fix

γ ∈
(
0, 1

2

)
. Then, we can find m0 ∈ N so that γ < m0−3ν−6

2m0
holds. For

this m0, combining Theorem 1, Skorohod’s theorem, Fatou’s lemma, and

Lemma 3.3, we can take a positive number Cm0,ν,a,b that satisfies

E

[∣∣∣Ha→b(r) − a
∣∣∣2m0

]
≤ Cm0,ν,a,b

rν+1−m0(1 − r)ν+ 5
2

,

E

[∣∣∣Ha→b(1 − r) − b
∣∣∣2m0

]
≤ Cm0,ν,a,b

rν+2−m0(1 − r)ν+ 3
2

,

E

[∣∣∣Ha→b(t) −Ha→b(s)
∣∣∣2m0

]
≤ Cm0,ν,a,b

(t− s)ν+1−m0sν+ 3
2 (1 − t)ν+ 5

2

for t, s, r ∈ (0, 1) with s < t. Now, for n ∈ N, we define

Fn =

{
max

1≤k≤2n

∣∣∣∣Ha→b

(
k − 1

2n

)
−Ha→b

(
k

2n

)∣∣∣∣ ≥ 2−nγ

}
,
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a(n, k) = P

(∣∣∣∣Ha→b

(
k − 1

2n

)
−Ha→b

(
k

2n

)∣∣∣∣ ≥ 2−nγ

)
, 1 ≤ k ≤ 2n.

Then, Chebyshev’s inequality yields

a(n, 1) ≤ 22nm0γE

[∣∣∣Ha→b(1/2n) − a
∣∣∣2m0

]
≤ Cm0,ν,a,b2

−n(m0−2m0γ−2ν− 7
2
),

a(n, 2n) ≤ 22nm0γE

[∣∣∣Ha→b(1 − 1/2n) − b
∣∣∣2m0

]
≤ Cm0,ν,a,b2

−n(m0−2m0γ−2ν− 7
2
),

and, for 2 ≤ k ≤ 2n − 1,

a(n, k) ≤ 22nm0γE

[∣∣∣Ha→b((k − 1)/2n) −Ha→b(k/2n)
∣∣∣2m0

]
≤ Cm0,ν,a,b2

−n(m0−2m0γ−3ν−5).

Therefore, P (Fn) ≤ Cm0,ν,a,b × 2−n(m0−2m0γ−3ν−6), and because m0 −
2m0γ − 3ν − 6 > 0, we have P (lim infn→∞ F c

n) = 1 by the first Borel–

Cantelli lemma. If ω ∈ lim infn→∞ F c
n, then there exists n∗(ω) ∈ N such

that ω ∈
⋂

n≥n∗(ω) F
c
n. For n ≥ n∗(ω), we can deduce that∣∣∣Ha→b(t) −Ha→b(s)

∣∣∣ ≤ 2

∞∑
j=n+1

2−γj

=
2

1 − 2−γ
2−(n+1)γ , 0 < t− s < 2−n.

Now, let t, s ∈ [0, 1] satisfy 0 < t − s < 2−n∗(ω) and choose n ≥ n∗(ω) so

that 2−(n+1) ≤ t− s < 2−n. Then, the above inequality yields∣∣∣Ha→b(t) −Ha→b(s)
∣∣∣ ≤ 2

1 − 2−γ
|t− s|γ .

Hence, Ha→b is locally Hölder-continuous with exponent γ for ω ∈
lim infn→∞ F c

n. �

8. The Space-Time Reversal Property of the BES(3) House-

Moving and Numerical Examples

In this section, we show that the BES(3) house-moving has the space-

time reversal property. Furthermore, we demonstrate numerical examples

for H0→b.
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Although the following proposition is showed by [9, Proposition 4.8], we

prove it based on our setting for completeness.

Proposition 8.1. Let δ = 3 (ν = 1
2) and b > 0. For 0 < t < 1 and

y ∈ (0, b), we have

P
(
H0→b(t) ∈ dy

)
= P

(
H0→b(1 − t) ∈ b− dy

)
.

Proof. The Fourier expansion of the heat kernel shows that the fol-

lowing equality

∞∑
k=−∞

(nt(y − x+ 2k) − nt(y + x+ 2k))(50)

= 2
∞∑
n=1

sinxnπ sin ynπ exp

(
−(nπ)2

2
t

)

holds for x, y ∈ R and t > 0. So, we obtain

2

∞∑
k=−∞

y + 2k

t
nt(y + 2k)(51)

= lim
x↓0

∞∑
k=−∞

1

x
(nt(y − x+ 2k) − nt(y + x+ 2k))

= lim
x↓0

2
∞∑
n=1

sinxnπ

x
sin ynπ exp

(
−(nπ)2

2
t

)

= 2

∞∑
n=1

nπ sin ynπ exp

(
−(nπ)2

2
t

)
, y ∈ R, t > 0.

Also, in [11], we have

J 1
2
(x) =

√
2

πx
sinx, J 3

2
(x) =

√
2

πx

(
sinx

x
− cosx

)
,

j 1
2
,n = nπ (n ∈ N).

(52)
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Using (50), (51), (52), and Theorem 5, for 0 < s < t < 1, 0 < x, y < η, we

can obtain the expressions for q
(η)
1 (s, x, t, y) and q

(η)
1 (0, 0, t, y) in the case of

ν = 1
2 :

q
(η)
1 (s, x, t, y) =

y

x

∞∑
k=−∞

(nt−s(y − x+ 2kη) − nt−s(y + x+ 2kη)),(53)

q
(η)
1 (0, 0, t, y) = y

∞∑
k=−∞

2
y + 2kη

t
nt(y + 2kη).(54)

On the other hand, according to (53), we obtain

q
(η+ε)
1 (t, y, 1, η)(55)

=
η

y

∞∑
k=−∞

(n1−t(η − y + 2k(η + ε)) − n1−t(y + (2k + 1)η + 2kε))

=
η

y

∞∑
k=−∞

(n1−t(η − y + 2k(η + ε)) − n1−t(η − y − 2(k + 1)η − 2kε))

=
η

y

∞∑
k=−∞

(n1−t(η − y + 2k(η + ε)) − n1−t(η − y + 2kη + 2(k + 1)ε))

for ε > 0. Using (54) and (55), we get

q
(η)
2 (1 − t, y)

= lim
ε↓0

∂

∂ε
q
(η+ε)
1 (t, y, 1, η)

=
η

y

∞∑
k=−∞

(
−2k

η − y + 2kη

1 − t n1−t(η − y + 2kη)

+2(k + 1)
η − y + 2kη

1 − t n1−t(η − y + 2kη)

)
=
η

y

∞∑
k=−∞

2
η − y + 2kη

1 − t n1−t(η − y + 2kη)

=
η

y(η − y)q
(η)
1 (0, 0, 1 − t, η − y).
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Thus, it holds that

P
(
H0→b(t) ∈ dy

)
=
q
(b)
1 (0, 0, t, y)q

(b)
2 (1 − t, y)

q
(b)
2 (1, 0)

dy

=
b

y(b− y) · q
(b)
1 (0, 0, t, y)q

(b)
1 (0, 0, 1 − t, b− y)
q
(b)
2 (1, 0)

dy

= P
(
H0→b(1 − t) ∈ b− dy

)
,

and the proof is completed. �

The densities of H0→b(k/10) (1 ≤ k ≤ 9) are shown in Figs 1, 2, 3, and

4.

Fig. 1. The densities of {H0→b(k/10)}9
k=1

for b = 1.5 and δ = 2.
Fig. 2. The densities of {H0→b(k/10)}9

k=1

for b = 1.5 and δ = 3.

Fig. 3. The densities of {H0→b(k/10)}9
k=1

for b = 1.5 and δ = 6.
Fig. 4. The densities of {H0→b(k/10)}9

k=1

for b = 1.5 and δ = 10.
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Fig. 5. The graphs of {E[H0→b(t)]}t∈[0,1] for b = 1.5 and δ = 2, 3, 6, 10.

Further, the graphs of {E[H0→b(t)]}t∈[0,1] are shown in Fig 5.

We can also see the space-time reversal property of the BES(3) house-

moving in Fig 2 and Fig 5. Figs 1-5 were created using Python.

9. Future Work

We are interested in finding the stochastic differential equations for the

BES(δ) house-moving. We are currently investigating this problem by using

Theorem 3.

In addition, let R = {R(t)}t≥0 be a regular one-dimensional diffusion on

[0,∞). For an R-bridge r0→b = {r0→b(s)}s∈[0,1] (b > 0) from 0 to b on [0, 1],

we are also interested in the weak convergence of r0→b|K−(b+η) as η ↓ 0.

Appendix A.

A.1 Bessel functions

Let Jα(z) and Iα(z) denote the Bessel function and modified Bessel

function of the first kind with index α ∈ R, respectively. They are defined
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as

Jα(z) =

(
1

2
z

)α ∑
k∈Z+

(
−1

4z
2
)k

k!Γ(α+ k + 1)
,

Iα(z) =

(
1

2
z

)α ∑
k∈Z+

(
1
4z

2
)k

k!Γ(α+ k + 1)

for z ∈ C \ R−. In addition, for z ∈ C \ R−, we define

Kα(z) :=
π (I−α(z) − Iα(z))

2 sin(απ)
,

when α ∈ R \ Z, and

Kα(z) := lim
β→α

Kβ(z)

when α ∈ Z. Kα(z) is called the modified Bessel function with index α of

the second kind. Moreover, the values of z−αJα(z) and z−αIα(z) at zero

are written as

z−αJα(z)|z=0 =
1

2αΓ(α+ 1)
, z−αIα(z)|z=0 =

1

2αΓ(α+ 1)
.

We obtain the following derivatives:

d

dz
(zαJα(z)) = zαJα−1(z),

d

dz

(
z−αJα(z)

)
= −z−αJα+1(z),(56)

z ∈ C \ R−,

d

dz
(zαIα(z)) = zαIα−1(z),

d

dz

(
z−αIα(z)

)
= z−αIα+1(z),(57)

z ∈ C \ R−.

Moreover, using (56) and (57), we have

d

dz
Jα(z) = Jα−1(z) −

α

z
Jα(z) = −Jα+1(z) +

α

z
Jα(z),

d

dz
Iα(z) = Iα−1(z) −

α

z
Iα(z) = Iα+1(z) +

α

z
Iα(z).
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In the rest of this section, we assume that α > −1. According to [10,

(2.2), and (2.8)], there exists Cα > 0 such that

z−α|Jα(z)| ≤ Cα
1

(1 + z)α+ 1
2

, z ≥ 0,(58)

z−αIα(z) ≤ Cα
1

(1 + z)α+ 1
2

ez, z ≥ 0.(59)

The sequence of positive zeros of the Bessel function Jα is denoted by

{jα,n}∞n=1. According to [11], we have

Jα+1(jα,n) �= 0 and jα,n < jα+1,n < jα,n+1 (n = 1, 2, . . . ).

In addition, from [11] we find the following asymptotics as n→ ∞:

jα,n ∼ nπ, Jα+1(jα,n) ∼ (−1)n−1

√
2

πjα,n
∼ (−1)n−1 1

π

√
2

n
.(60)

A.2 General results on continuous processes

In this subsection, we introduce some general results used in this paper.

The proofs of them are found in [1].

Theorem 7 ([4, Chapter 2, Theorem 4.15]). Let {Xn}∞n=1 be the fam-

ily of C([0, 1],Rd)-valued random variables. If the family {Xn}∞n=1 is tight

and the finite-dimensional distribution of Xn converges to that of some X,

then Xn
D→ X holds.

Lemma A.1 ([1, Appendix]). Let a, b ∈ R
d, and let Xn and X are R

d-

valued Markovian bridges from a to b on [0, 1] for n ∈ N. Let Xn and X

have the respective transition densities

P (Xn(t) ∈ dy) = qn(t, y)dy,

P (Xn(t) ∈ dy | Xn(s) = x) = qn(s, x, t, y)dy,

P (X(t) ∈ dy) = q(t, y)dy, P (X(t) ∈ dy | X(s) = x) = q(s, x, t, y)dy

for 0 < s < t < 1, x, y ∈ R
d, and n ∈ N. If

lim
n→∞

qn(t, y) = q(t, y), a.e. y ∈ R
d,

lim
n→∞

qn(s, x, t, y) = q(s, x, t, y), a.e. (x, y) ∈ R
d × R

d,
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for 0 < s < t < 1, then the finite-dimensional distribution of Xn converges

to that of X as n→ ∞.

Theorem 8 ([1, Appendix]). For ε ∈ E, X(ε) is a (C([0, 1],Rd),

B(C([0, 1],Rd)))-valued random variable defined on (Ω(ε),F (ε), P (ε)). As-

sume that {X(ε)(0)}ε∈E is uniformly integrable and that the following con-

ditions hold:

(1) For each u ∈
(
0, 1

2

)
, {π[u,1−u] ◦X(ε)}ε∈E is tight.

(2) For each ξ > 0, it holds that

lim
u↓0

sup
ε∈E

P (ε)

(
sup

0≤t≤u
|X(ε)(t) −X(ε)(0)| > ξ

)
= 0,

lim
u↓0

sup
ε∈E

P (ε)

(
sup

1−u≤t≤1
|X(ε)(t) −X(ε)(1)| > ξ

)
= 0.

Then, the family {X(ε)}ε∈E is tight.

Lemma A.2 (Chapter 2, Problem 4.11 in [4]). For ε ∈ E, X(ε) is

a (C([0, 1],Rd),B(C([0, 1],Rd)))-valued random variable defined on

(Ω(ε),F (ε), P (ε)). Assume that {X(ε)}ε∈E satisfies the following conditions:

(1) There exists some ν > 0 that satisfies

sup
ε∈E

E(ε)
[∣∣∣X(ε)(0)

∣∣∣ν] <∞.

(2) There exist α, β, C > 0 that satisfy

sup
ε∈E

E(ε)
[∣∣∣X(ε)(t) −X(ε)(s)

∣∣∣α] ≤ C |t− s|1+β , t, s ∈ [0, 1].

Then {X(ε)}ε∈E is tight.

Lemma A.3 ([1, Appendix]). Let γ > 0. For ε ∈ E, X(ε) is a

(C([0, 1],Rd),B(C([0, 1],Rd)))-valued random variable defined on

(Ω(ε),F (ε), P (ε)). Assume that

F ε
l :=

{
max

1≤k≤2l−1

∣∣∣∣X(ε)

(
k − 1

2l

)
−X(ε)

(
k

2l

)∣∣∣∣ ≥ 2−lγ

}
∈ F (ε),

ε ∈ E , l = 1, 2, . . .
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satisfy
∑∞

l=1 supε∈E P
(ε)(F ε

l ) <∞, then we have

lim
u↓0

sup
ε∈E

P (ε)

(
sup

0≤t≤u

∣∣∣X(ε)(t) −X(ε)(0)
∣∣∣ > ξ) = 0, ξ > 0.

Lemma A.4 ([1, Appendix]). Under the same assumption of

Lemma A.3, if

F̃ ε
l =

{
max

2l−1≤k≤2l

∣∣∣∣X(ε)

(
k − 1

2l

)
−X(ε)

(
k

2l

)∣∣∣∣ ≥ 2−lγ

}
∈ F (ε),

ε ∈ E , l = 1, 2, . . .

satisfy
∑∞

l=1 supε∈E P
(ε)(F̃ ε

l ) <∞, then we have

lim
u↓0

sup
ε∈E

P (ε)

(
sup

0≤t≤u

∣∣∣X(ε)(1 − t) −X(ε)(1)
∣∣∣ > ξ) = 0, ξ > 0.

Lemma A.5 ([1, Appendix]). Let S1 and S2 be Polish spaces, and let

Xn and Yn be random variables defined on (Ωn,Fn, Pn) that take values in

S1 and S2, respectively. If Xn and Yn are independent and Pn ◦ X−1
n and

Pn◦Y −1
n converge to probability measures Q on S1 and R on S2, respectively,

then Pn ◦ (Xn, Yn)
−1 converges to the product measure Q×R.
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