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Abstract

Clifton determined the maximal beable algebra for each faithful normal state in
a local algebra [Phys. Lett. A 271 (2000) 167, Proposition 1]. In the present paper
we will determine the maximal beable algebra for any normal state under the same
conditions as Clifton’s.
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1 Introduction

Clifton characterized the Kochen-Dieks modal interpretation of nonrelativistic quantum
mechanics as the interpretation that requires that the maximal set of projections which
have simultaneously definite values is determined solely in terms of the state and the
structure of the Hilbert space ([1] Section 6). Moreover, to extend the Kochen-Dieks modal
interpretation to algebraic quantum field theory, Clifton determined the maximal beable
algebra, which is defined in section 2 (Definition 1), for each faithful normal state in a von
Neumann algebra under the condition that that algebra was determined solely in terms
of this state and the algebraic structure of this von Neumann algebra ([2] Proposition 1).
But it seems still possible to extend Clifton’s theorem a little further because Clifton’s
beable algebra is determined only for each faithful normal state.

In Theorem 11 we will determine the maximal beable algebra for any normal state
under the same conditions as Clifton’s, and thereby show that Clifton’s conjecture ([2]
p.172) is valid.

2 Generalized Clifton’s theorem

In this paper, we use the following notation. If K is a subset of some Hilbert space H,
let [K] denote its closed, linear span. If T is a closed subspace of H, let PT denote the
projection onto T . For a vector x ∈ H, let Px denote the projection onto [x]. Let B(H)
denote the set of all bounded operators on a Hilbert space H.

Definition 1 ([3] p.2447). Let N be a unital C*-algebra, let B be a unital C*-subalgebra
of N and let ρ be a state on N. B is a beable algebra for ρ if and only if ρ|B is a mixture
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of dispersion-free states, that is, if and only if there is a probability measure µ on the space
S of dispersion-free states on B such that

ρ(A) =

∫
S

ωs(A)dµ(s) ∀A ∈ B

When ρ can be expressed as ρ(·) = tr(D·) with some density operator D, sometimes
we say “B is a beable algebra for D” instead “B is a beable algebra for ρ”.

Definition 2. Let ρ be a normal state on a von Neumann algebra N. Define

Cρ,N := {A ∈ N|ρ([A,B]) = 0 for all B ∈ N}

Cρ,N is called the centralizer of ρ of N.

Definition 3. Let ρ be a normal state on a von Neumann algebra N. Define

Pρ := sup{P |P is a projection of N such that ρ(P ) = 0}

I − Pρ is called the support of ρ.

If S is the support of a normal state ρ on a von Neumann algebra N, then ρ(SA) =
ρ(AS) = ρ(A) and ρ(S⊥A) = ρ(AS⊥) = 0 for all A ∈ N, S belongs to the centralizer Cρ,N
of a state ρ of a von Neumann algebra N, and ρ|SNS is faithful on SNS (c.f. [2] p.172).

Lemma 4. Let K be a closed subspace of a Hilbert space H and let A be a C*-algebra on
H. If Ax ∈ K for any self-adjoint operator A ∈ A and any vector x ∈ K, then PK ∈ A′.

Proof. Since APK = PKAPK for any self-adjoint operator A ∈ A, PKA = (APK)
∗ =

(PKAPK)
∗ = PKAPK = APK.

Any operator B ∈ A can be expressed in the form H+iK, where H and K are self-adjoint
operators in A. Therefore PK ∈ A′.

Lemma 5. Let N be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector, let ρ be a normal state on N, let S be the support of ρ and let S be the
range of S. Let B be a C*-subalgebra of N.
If B is a beable algebra for ρ, B is a beable algebra for Pψ where ψ is any vector in [BS].

Proof. Because N has a cyclic and separating vector, there exists a vector x ∈ H such
that ρ(A) = ⟨x,Ax⟩ for any operator A ∈ N ([4] Theorem 2.5.31). Since ρ|SNS is faithful
on SNS, x is a separating vector for SNS. A subset {Bx/∥Bx∥ |B ∈ (SNS)′, Bx ̸= 0}
of S is dense in S because x is a cyclic vector for (SNS)′ ([4] Proposition 2.5.3). For any
operator B ∈ (SNS)′ such that Bx ̸= 0 and any positive operator A ∈ N,

⟨Bx,ABx⟩ = ⟨Bx, (S⊥AS⊥ + SAS⊥ + S⊥AS + SAS)Bx⟩
= ⟨Bx, (SAS)Bx⟩ = ∥B(SAS)1/2x∥2

≤ ∥B∥2⟨x, (SAS)x⟩ = ∥B∥2ρ(A)

since Bx ∈ S and (SAS)1/2 ∈ SNS. For any operator X, Y ∈ B,

⟨ Bx

∥Bx∥
, [X, Y ]∗[X, Y ]

Bx

∥Bx∥
⟩ ≤ ∥B∥2

∥Bx∥2
ρ([X,Y ]∗[X, Y ]) = 0
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by [3] Proposition 2.2. Then B is a beable algebra for PBx/∥Bx∥ by [3] Proposition 2.2.
Because a subset {Bx/∥Bx∥ |B ∈ (SNS)′, Bx ̸= 0} of S is dense in S, B is a beable
algebra for Py where y is any vector in S by [3] Lemma 2.6 (i). We can prove that B is
a beable algebra for Pψ where ψ is any vector in [BS] in a similar way to the proof of [3]
Lemma 2.7.

We will prove Lemma 6, making reference to the proof of [3] Theorem 2.8 (i).

Lemma 6. Let N be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector, let ρ be a normal state on N, let S be the support of ρ and let S be the
range of S. Let B be a C*-subalgebra of N and define T := [BS].
When B is a beable algebra for ρ, B can be expressed as P⊥

T BP⊥
T ⊕ A where A is an

abelian subalgebra of PT NPT .

Proof. Suppose B is a beable algebra for ρ. Because T = [BS] is invariant under B,
PT ∈ B′ by Lemma 4. Therefore B can be expressed as P⊥

T BP⊥
T ⊕ PT BPT .

Next we must show that all operators in PT BPT commute with each other. We will
show that [PTXPT , PT Y PT ] = 0 for any operators X, Y ∈ B. Let x be any vector in
H. There are some vectors y ∈ T and y′ ∈ T ⊥ such that x = y + y′. Then we get
(PTXPT )(PT Y PT )x = XY y and (PT Y PT )(PTXPT )x = Y Xy.
Because B is a beable algebra for Py by Lemma 5, [X, Y ]y = 0 by [3] Remark 2.5.
Therefore (PTXPT )(PT Y PT )x = (PT Y PT )(PTXPT )x, that is, [PTXPT , PT Y PT ] = 0.

The following lemma can be isolated from the proof of [3] Theorem 4.5.

Lemma 7. Let N be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector, let ρ be a normal state on N, let S be the support of ρ and let S be
the range of S. Let B be a von Neumann subalgebra of N and let B satisfy the following
conditions.

1. B is a beable algebra for ρ.

2. σ(B) = B for any weakly continuous automorphism σ on N such that ρ ◦ σ = ρ.

Then B can be expressed as S⊥BS⊥⊕A, where A is an abelian von Neumann subalgebra
of SNS.

Proof. Let B be a von Neumann subalgebra of N and let B satisfy Conditions 1 and 2.
Define T as [BS]. By Condition 1 and Lemma 6, B can be expressed as P⊥

T BP⊥
T ⊕ Ā,

where Ā is an abelian von Neumann subalgebra of PT NPT . We will show that S ∈ B′.
Choose θ ∈ R such that e−iθ ̸= ±1. Observe that S ⊆ [BS] = T and define V̄ :=
P⊥
T ⊕ S ⊕ (eiθPT ∧S⊥) and V := S ⊕ (eiθPT ∧S⊥). Since PT ∈ B ⊆ N and S ∈ N,
V̄ ∈ N. Define a weakly continuous automorphism σ0 on N as σ0(A) := V̄ AV̄ ∗ for
any operator A in N. Because V̄ = S ⊕ S⊥V̄ S⊥, ρ(σ0(A)) = ρ(A) for any operator
A ∈ N. Then σ0(B) = B by Condition 2. Because V̄ = P⊥

T ⊕ V and B = P⊥
T BP⊥

T ⊕ Ā,
σ0(B) = P⊥

T BP⊥
T ⊕ V ĀV ∗. Therefore V ĀV ∗ = Ā.

Let Q̄ be any projection in B. There are some projections Q0 ∈ P⊥
T BP⊥

T and Q ∈ Ā such
that Q̄ = Q0+Q. Since V QV ∗ ∈ Ā, [Q, V QV ∗] = 0. Thus there are mutually orthogonal
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projections A,B and C on T such that Q = A+B and V QV ∗ = A+ C.
We will show B = 0. Let x be any vector in a range of B. Then

Qx = x (1)

V QV ∗x = 0 (2)

There are some vectors y ∈ S and y′ ∈ S⊥ ∧ T such that x = y + y′. By equation (2),
QV ∗(y + y′) = 0. By V ∗ = S ⊕ (e−iθPT ∧S⊥),

Q(y + e−iθy′) = 0 (3)

Then Q(x− y′ + e−iθy′) = 0 since y = x− y′. Using equation (1) and e−iθ ̸= 1,

Qy′ = (1− e−iθ)−1x (4)

By equation (2) and equation (4), V QV ∗Qy′ = (1 − e−iθ)−1V QV ∗x = 0. Because
[Q, V QV ∗] = 0 on T and y′ ∈ T ∧ S⊥ ⊆ T , QVQV ∗y′ = 0. Then QVQy′ = 0 using
V ∗ = S ⊕ (e−iθPT ∧S⊥), y′ ∈ T ∧ S⊥ and e−iθ ̸= 0. By equation (4) and (1− e−iθ)−1 ̸= 0,
QV x = 0. By the definition of V and x = y + y′,

Q(y + eiθy′) = 0 (5)

Because Q(y + e−iθy′ − (y + eiθy′)) = 0 by equation (3) and (5), Q((e−iθ − eiθ)y′) = 0.
e−iθ − eiθ ̸= 0 since e−iθ ̸= ±1. Then

Qy′ = 0 (6)

By equation (5), Qy = 0. Using equation (6)

Qx = Q(y + y′) = 0 (7)

By equation (1) and (7), x = 0. Thus B = 0.
Let x′ be any vector in a range of C. Then V QV ∗x′ = x′, V ∗(V QV ∗)V x′ = 0. We can
show C = 0 in a similar way to prove B = 0. Therefore V QV ∗ = Q, that is, [V,Q] = 0.
Because V = S + eiθ(PT − S) = (1 − eiθ)S + eiθPT , S = (1 − eiθ)−1(V − eiθPT ). So
[S,Q] = 0 by [V,Q] = 0. (I − PT )S = 0 since S ⊆ T . Then

Q̄S = [(I − PT )Q̄(I − PT ) +Q]S = QS = SQ = SQ̄

Because B is a von Neumann algebra, S ∈ B′. Thus B can be expressed as S⊥BS⊥ ⊕
SBS. Since SBS ⊆ Ā, SBS is an abelian von Neumann subalgebra of SNS.

Lemma 8. Let N be a von Neumann algebra on a Hilbert space H, let ρ be a normal
state on N, let S be the support of ρ, let Cρ,N be the centralizer of ρ of N and let Z(Cρ,N)
be the center of Cρ,N. Then

1. SCρ,NS = Cρ|SNS ,SNS.

2. Cρ,N and C′
ρ,NS is a von Neumann algebra.
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Proof. 1. Let A be any operator in SCρ,NS. Because A belongs to Cρ,N, ρ(AB) =
ρ(BA) for any operator B in SNS. Thus A belongs to Cρ|SNS ,SNS.

Let X be any operator in Cρ|SNS ,SNS. X = SXS since X ∈ SNS. For any oper-
ator Y ∈ N, ρ(XY ) = ρ(Y X) since Y = SY S + SY S⊥ + S⊥Y S + S⊥Y S⊥ and
ρ([SXS, SY S]) = 0. Then X ∈ Cρ,N. Since X = SXS, X ∈ SCρ,NS.

2. To show that Cρ,N is a von Neumann algebra, we will prove that the closed unit
ball of Cρ,N is σ-strongly* closed ([4] Theorem 2.4.11 (7a)). Let a net {Aα} in the
closed unit ball of Cρ,N converge σ-strongly* to A. Because A belongs to the closed
unit ball of N by [4] Theorem 2.4.11 (7a), we will show that A belongs to Cρ,N.
Because (Aα−A)∗(Aα−A)+(Aα−A)(Aα−A)∗ converges σ-weakly to 0 (the proof
of [5] Lemma II 2.5) and ρ is σ-weakly continuous ([4] Theorem 2.4.21), ρ((Aα −
A)∗(Aα−A)+ (Aα−A)(Aα−A)∗) converges to 0. Both ρ((Aα−A)∗(Aα−A)) and
ρ((Aα−A)(Aα−A)∗) are positive, so they converge to 0. For any operator B ∈ N,
|ρ([A,B])| ≤ |ρ((A−Aα)B)|+|ρ(B(Aα−A))| ≤ ρ((Aα−A)(Aα−A)∗)1/2ρ(B∗B)1/2+
ρ(BB∗)1/2ρ((Aα − A)∗(Aα − A))1/2 → 0. Therefore A ∈ Cρ,N.

Since S ∈ Cρ,N, SCρ,NS is a von Neumann algebra with commutant C′
ρ,NS by [5]

Proposition II 3.10.

Lemma 9. Let N be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector, let ρ be a normal state on N and let S be the support of ρ. Let B be a
C*-subalgebra of N and let B satisfy the following conditions.

1. B is a beable algebra for ρ.

2. σ(B) = B for any weakly continuous automorphism σ on N such that ρ ◦ σ = ρ.

Then B ⊆ S⊥NS⊥ ⊕ Z(Cρ,N)S, where Z(Cρ,N) is the center of the centralizer Cρ,N of ρ of
N.

Proof. Let B be a C*-subalgebra of N, let B satisfy Conditions 1 and 2 and let B− be the
closure of B in the weak topology. By [3] Corollary 2.9 (ii), B− is also a beable algebra
for ρ. Because σ(B−) = σ(B)− = B− for any weakly continuous automorphism σ on
N, B− also satisfies Condition 2. Therefore we can assume that B is a von Neumann
algebra.
By Lemma 7, B can be expressed as S⊥BS⊥ ⊕ A, where A is an abelian von Neumann
subalgebra of SNS. Therefore it suffices to show that A ⊆ Z(Cρ,N)S.

1. We will show A ⊆ C′
ρ,NS, making reference to the proof of [2] Proposition 1. Because

both A and C′
ρ,NS are von Neumann algebras by Lemma 8 (2), it suffices to show

that any projection in A is contained in C′
ρ,NS. Let R be any projection in A.

Let U be any unitary operator in Cρ,N. Define a weakly continuous automorphism
σ1 on N as σ1(A) := UAU∗ for any operator A ∈ N. Since ρ(σ1(A)) = ρ(UAU∗) =
ρ(AU∗U) = ρ(A) for any operator A ∈ N, σ1(B) = B by Condition 2. There are
operators R0 ∈ S⊥NS⊥ and R1 ∈ A such that URU∗ = R0 + R1 since URU∗ ∈ B.
Then R(URU∗) = RR1 = R1R = (URU∗)R. Because Cρ,N is a von Neumann
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algebra by Lemma 8 (2), Cρ,N = C′′
ρ,N. By [3] Lemma 4.2, R ∈ C′

ρ,N. Because
R ∈ A ⊆ SNS, R = SRS. Therefore R ∈ SC′

ρ,NS = C′
ρ,NS.

2. We will show A ⊆ SCρ,NS. Let X be any operator X in A. We assume that S ̸= I.
When S = I, we can prove it in a similar way to Proof (2)(b) or the proof of [2]
Proposition 1.

(a) Since N has a cyclic and separating vector, there is a vector x ∈ H such that
ρ(A) = ⟨x,Ax⟩ for any operator A ∈ N ([4] Theorem 2.5.31). Since ρ|SNS is
faithful on SNS, x is a separating vector for SNS. Let x′ be a separating
vector for N. Observe S⊥x′ ̸= 0 and define x⊥ as S⊥x′/∥S⊥x′∥. Then x⊥ is a
separating vector for S⊥NS⊥. Define a normal state ρ̄ on N as

ρ̄(A) := tr((wPx + (1− w)Px⊥)A)

= w⟨x,Ax⟩+ (1− w)⟨x⊥, Ax⊥⟩

for any operator A ∈ N, where w is a real number such that 0 < w < 1. We
will show that ρ̄ is a faithful normal state on N.

Let Q′ be the support of ρ̄ and let Q be I −Q′. Then ρ̄(Q) = 0.

⟨x, (SQS)1/2(SQS)1/2x⟩
= ⟨x⊥, (S⊥QS⊥)1/2(S⊥QS⊥)1/2x⊥⟩ = 0

since
ρ̄(Q) = w⟨x, SQSx⟩+ (1− w)⟨x⊥, S⊥QS⊥x⊥⟩,

SQS = (QS)∗(QS) and S⊥QS⊥ = (QS⊥)∗(QS⊥). Then SQS = S⊥QS⊥ = 0.
So,

Q = SQS + S⊥QS + SQS⊥ + S⊥QS⊥ = S⊥QS + SQS⊥.

Because Q = Q2,

Q = (S⊥QS + SQS⊥)(S⊥QS + SQS⊥) = SQS⊥QS + S⊥QSQS⊥.

⟨x, (SQS⊥QS)1/2(SQS⊥QS)1/2x⟩
= ⟨x⊥, (S⊥QSQS⊥)1/2(S⊥QSQS⊥)1/2x⊥⟩ = 0

since
ρ̄(Q) = w⟨x, SQS⊥QSx⟩+ (1− w)⟨x⊥, S⊥QSQS⊥x⊥⟩,

SQS⊥QS = (S⊥QS)∗S⊥QS and S⊥QSQS⊥ = (SQS⊥)∗SQS⊥. Then SQS⊥QS =
S⊥QSQS⊥ = 0.

Since Q = SQS⊥QS + S⊥QSQS⊥, Q = 0, that is, Q′ = I. Therefore ρ̄ is a
faithful normal state on N.

(b) Since N has a cyclic and separating vector and ρ̄ is a faithful normal state on
N, there is a cyclic and separating vector y ∈ H such that ρ̄(A) = ⟨y, Ay⟩
for any operator A ∈ N ([4] Theorem 2.5.31 and Proposition 2.5.30). There
is a modular automorphism σt associated with y such that σt(A) = ∆itA∆−it
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for any operator A ∈ N, where ∆ is the modular operator associated with y
([4] Definition 2.5.15). Then σt is a weakly continuous automorphism on N.
ρ̄◦σt = ρ̄ by [4] Proposition 5.3.3 and σt(S) = S by [4] Proposition 5.3.28 since
S belongs to the centralizer Cρ̄,N of ρ̄. Then

ρ(σt(A)) = ⟨x, σt(A)x⟩ = ⟨x, Sσt(A)Sx⟩

=
1

w
ρ̄(Sσt(A)S) =

1

w
ρ̄(σt(SAS)) =

1

w
ρ̄(SAS)

= ⟨x, SASx⟩ = ρ(A)

for any operator A ∈ N. Therefore σt(B) = B by Condition 2.

By [5] Theorem IX 4.2, there exists a mapping E of N onto B such that
E(B1AB2) = B1E(A)B2 and ρ̄(E(A)) = ρ̄(A) for any operator A ∈ N and
B1, B2 ∈ B. Let Y be any operator in SNS. Since E(Y ) ∈ B, there are
operators Y0 ∈ S⊥BS⊥ and Y1 ∈ A such that E(Y ) = Y0 + Y1. XE(Y ) =
X(Y0 + Y1) = XY1 = Y1X = E(Y )X since A is an abelian von Neumann
algebra. Because E(XY ) = E(Y X), ρ̄(E(XY )) = ρ̄(E(Y X)). Then ρ̄(XY ) =
ρ̄(Y X).

Since ρ̄(A) = wρ(A) for any operator A ∈ SNS, ρ(XY ) = ρ(Y X). Therefore
X ∈ Cρ|SNS ,SNS. By Lemma 8 (1), X ∈ SCρ,NS.

Lemma 10. Let N be a von Neumann algebra on a Hilbert space H, let ρ be a normal
state on N and let S be the support of ρ.
Then σ(S) = S and σ(S⊥NS⊥) = S⊥NS⊥ for any automorphism σ on N such that
ρ ◦ σ = ρ.

Proof. Let σ be an automorphism on N such that ρ ◦ σ = ρ. Then ρ(σ(S)) = ρ(S) = 1
and ρ(σ−1(S)) = ρ(σ ◦ σ−1(S)) = ρ(S) = 1. Since both σ(S) and σ−1(S) are projections
and S is the support of ρ, S ≤ σ(S) and S ≤ σ−1(S). Therefore S = σ(S). Since
σ(S⊥) = σ(I − S) = I − σ(S) = I − S = S⊥, σ(S⊥NS⊥) = S⊥NS⊥.

Theorem 11 (Generalized Clifton’s theorem). Let N be a σ-finite von Neumann algebra1

on a Hilbert space, let ρ be a normal state on N and let S be the support of ρ. Let B be
a C*-subalgebra of N and let B satisfy the following conditions.

1. B is a beable algebra for ρ.

2. σ(B) = B for any automorphism σ on N such that ρ ◦ σ = ρ.2

3. B is maximal with respect to Conditions 1 and 2.

Then B can be uniquely expressed as S⊥NS⊥ ⊕ Z(Cρ,N)S, where Z(Cρ,N) is the center of
the centralizer Cρ,N of ρ of N.

1Since local algebras have cyclic and separating vectors by the Reeh-Schlieder theorem, these algebras
are σ-finite von Neumann algebras ([4] Proposition 2.5.6).

2To represent that B is determined solely in terms of ρ and algebraic structure of N, Clifton assumed
this condition in [2] Proposition 1.
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Proof. By [3] Proposition 2.2, S⊥NS⊥ ⊕ Z(Cρ,N)S is a beable algebra for ρ. Since
σ(Z(Cρ,N)) = Z(Cρ,N) for any automorphism σ on N such that ρ ◦ σ = ρ, σ(S⊥NS⊥ ⊕
Z(Cρ,N)S) = S⊥NS⊥ ⊕ Z(Cρ,N)S for any automorphism σ on N such that ρ ◦ σ = ρ by
Lemma 10. We will show that any C*-subalgebra B which satisfies Conditions 1 and 2 is
contained in S⊥NS⊥ ⊕ Z(Cρ,N)S.
Because N is σ-finite, there is an isomorphism π such that π(N) is a von Neumann alge-
bra which has a cyclic and separating vector and ρ ◦ π−1 is a normal state on π(N) ([4]
Theorem 2.4.24 and Proposition 2.5.6). π(S) is the support of ρ ◦ π−1.
Because ρ ◦ π−1([π(A), π(B)]∗[π(A), π(B)]) = 0 for any operator A,B ∈ B, π(B) is a be-
able algebra for ρ ◦ π−1 by [3] Proposition 2.2. For any weakly continuous automorphism
σ on π(N) such that ρ◦π−1 ◦σ = ρ◦π−1, then σ ◦π(B) = π(B) since π−1 ◦σ ◦π(B) = B
by Condition 2.
Because π(N) has a cyclic and separating vector, π(B) ⊆ π(S)⊥π(N)π(S)⊥⊕Z(Cρ◦π−1,π(N))π(S)
by Lemma 9. Therefore B ⊆ S⊥NS⊥ ⊕ Z(Cρ,N)S.

3 Concluding remarks

We will consider connection between Theorem 11 and the Kochen-Dieks modal interpre-
tation of nonrelativistic quantum mechanics. As a corollary of Theorem 11, we have:

Corollary 12. Let D be a density operator on a separable Hilbert space H and let D be
the range of D. Let B be a C*-subalgebra of B(H) and B satisfy the following conditions.

1. B is a beable algebra for D.

2. σ(B) = B for any automorphism σ on B(H) such that tr(Dσ(A)) = tr(DA) for
any operator A ∈ B(H).

3. B is maximal with respect to Conditions 1 and 2.

Then B can be uniquely expressed as B(D⊥)⊕ {D}′′PD.

As easily seen, the set of all projections in B(D⊥) ⊕ {D}′′PD coincides with the set
(DefKD(W ) in [1] p. 42) of all projections which have simultaneously definite values under
the Kochen-Dieks modal interpretation. Therefore Corollary 12 can be regarded as one
of the theorems that motivate the Kochen-Dieks modal interpretation of nonrelativistic
quantum mechanics (cf. [1] Section 6).
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