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Abstract

No-cloning theorem says that there is no unitary operation that makes perfect
clones of non-orthogonal quantum states. The objective of the present paper is
to examine whether an imperfect cloning operation exists or not in a C*-algebraic
framework. We define a universal ϵ-imperfect cloning operation which tolerates
a finite loss ϵ of fidelity in the cloned state, and show that an individual system’s
algebra of observables is abelian if and only if there is a universal ϵ-imperfect cloning
operation in the case where the loss of fidelity is less than 1/4. Therefore in this case
no universal ϵ-imperfect cloning operation is possible in algebraic quantum theory.

Keywords: No-cloning theorem; Fidelity; Completely positive map; Algebraic
quantum field theory

1 Introduction

Dieks [7] and Wootters and Zurek [21] showed that there is no unitary operation that
makes clones of non-orthogonal quantum states (cf. [12, p.532]). It is called no-cloning
theorem, and this property is one of the fundamental differences between classical and
quantum information. Clifton, Bub and Halvorson [6] generalized the notion of cloning
to C*-algebraic states, and showed that an individual system’s algebra of observables is
abelian if and only if there is a universal cloning operation.

No-cloning theorem applied only to perfect cloning. If we allow imperfect cloning
operations which are ‘good’ according to fidelity, do they exist in quantum mechanics?
Bužek and Hillery [5] showed that there exists a universal imperfect cloning operation
which tolerates a finite loss of fidelity in the cloned state. The essential point of this
operation is that the original and the cloned states are entangled. The objective of the
present paper is to examine the case where the original and the cloned states are not
entangled and a finite loss of fidelity in the cloned state is tolerated, and it is shown that
such a universal imperfect cloning operation does not exist in algebraic quantum theory.

This paper is organized as follows. We begin, in section 2, by laying out a C*-algebraic
framework. After introducing the framework, we examine the relations between a fidelity
and a transition probability in section 3, which play an important role in no-cloning
theorem. In section 4 we define a universal ϵ-imperfect cloning operation, which tolerates
a finite loss ϵ of fidelity in the cloned state (Definition 11). In Theorem 12 it is shown that
any individual system’s algebra of observables is abelian if there is a universal ϵ-imperfect
cloning operation in the case where the loss of fidelity is less than 1/4. On the other
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hand, such an algebra is not abelian in algebraic quantum theory. Therefore in this case
no universal ϵ-imperfect cloning operation is possible in algebraic quantum theory.

2 Preliminary

In this section, we shall introduce a C*-algebraic framework in order to apply it to alge-
braic quantum field theory. Algebraic quantum field theory exists in two versions: the
Haag-Araki theory which uses von Neumann algebras on a Hilbert space, and the Haag-
Kastler theory which uses abstract C*-algebras (cf. [9]). Here we examine no-cloning
theorem in the Haag-Kastler theory.

In this theory, each bounded open region O in the Minkowski space is associated with
a unital C*-algebra A(O). Such a C*-algebra is called a local algebra. The set theoretic
union of all A(O) is a normed *-algebra. Taking its completion we get a C*-algebra A0.
Thus each local algebra is contained in A0. The following assumptions are made in the
Haag-Kastler theory ([8], cf. [9]).

Microcausality If O1 and O2 are space-like separated, then X1X2 −X2X1 = 0 for any
X1 ∈ A(O1) and X2 ∈ A(O2).

C*-independence If O1 and O2 are space-like separated, for any states ψ1 of A(O1) and
ψ2 of A(O2), there exists a state ψ of A0 such that ψ|A(O1) = ψ1 and ψ|A(O2) = ψ2.

Relativistic covariance Let g = (Λ, a) denote a Poincaré transformation x ∈ M →
Λx+a ∈M , where a ∈M is the amount of space-time translation and Λ is a Lorentz
transformation. There exists a representation of the Poincaré transformation by the
automorphisms α(a,Λ) of A0 such that

α(a,Λ)(A(O)) = A(Λ−1(O − a)).

The following C*-algebraic framework can be applied to the Haag-Kastler theory (cf.
[6, Section 3.3]). Let A1 and A2 be unital C*-subalgebras of a unital C*-algebra A.
Throughout this paper, we suppose that they satisfy the following conditions;

• A1A2 − A2A1 = 0 for any A1 ∈ A1 and A2 ∈ A2;

• For any states ψ1 of A1 and ψ2 of A2, there exists a state ψ of A such that ψ|A1 = ψ1

and ψ|A2 = ψ2;

• There is a *-isomorphism α of A1 onto A2. We say that states ψ1 of A1 and ψ2 of
A2 are isomorphic when ψ1(A1) = ψ2(α(A1)) for any A1 ∈ A1.

Let define a map η from the *-algebra generated by A1 and A2 onto the algebraic
tensor product A1 ⊙ A2 by η(A1A2) = A1 ⊗ A2 for all A1 ∈ A1 and A2 ∈ A2 and let
A1 ⊗ A2 be the completion of A1 ⊙ A2 under the injective C*-cross norm ∥ · ∥min. This
norm is given by

∥A∥min = sup ∥(π1 ⊗ π2)(A)∥
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for any A ∈ A1 ⊙A2, where the supremum is taken over all representations of A1 and A2,
respectively.

Then η is an algebraic isomorphism with respect to the injective C*-cross norm on
A1⊙A2, and can be extended to a continuous homomorphism η̄ from A1∨A2 onto A1⊗A2,
where A1 ∨A2 is a C*-algebra generated by A1 and A2 ([17] and [18, Theorem IV.4.9], cf.
[9, Theorem 1.3.25]). So we use A1 ⊗ A2 to denote the product of A1 ∈ A1 and A2 ∈ A2.

For any state ω of A1 ⊗ A2, let define the state η̄∗ω of A1 ∨ A2 by setting

(η̄∗ω)(A) = ω(η̄(A))

for any A ∈ A1 ∨ A2. If ψ1 and ϕ2 are states of A1 and A2, respectively, η̄
∗(ψ1 ⊗ ϕ2) is

a product state of A1 ∨ A2 with marginal states ψ1 and ϕ2. Clifton, Bub and Halvorson
[6, Lemma 1] showed that η̄∗(ψ1 ⊗ ϕ2) is the unique product state of A1 ∨ A2 with these
marginal states. When it will not cause confusion, we will use ψ1 ⊗ ϕ2 to denote the
unique product state of A1 ∨ A2 with marginals ψ1 and ϕ2.

For representations π1 of A1 on a Hilbert space H1 and π2 of A2 on a Hilbert space H2,
the representation π1⊗π2 of A1⊙A2 onH1⊗H2 is uniquely extended to a representation of
A1⊗A2, which is denoted again by π1⊗π2 [18, p.208]. Thus (π1⊗π2)◦η̄ is a representation
of A1 ∨ A2. We will omit reference to η̄ and use π1 ⊗ π2 to denote (π1 ⊗ π2) ◦ η̄ when it
will not cause confusion.

This C*-algebraic framework can also be applied to a case of a finite-dimensional
Hilbert space. Let B(Hn) be the set of all operators on a finite-dimensional Hilbert space
Hn, and let I be an identity operator on Hn. Then B(Hn)⊗I and I⊗B(Hn) are mutually
commuting and C*-independent. Let α be a mapping from B(Hn)⊗ I to I ⊗B(Hn) such
that α(A⊗ I) = I ⊗A for any A ∈ B(Hn). This is an isomorphism from B(Hn)⊗ I onto
I ⊗ B(Hn). Therefore we can apply this C*-algebraic framework to such a case.

3 Fidelity

In this section, we examine a fidelity, which plays an important role in no-broadcasting
theorem. The fidelity F (ψ, ϕ) is defined as follows ([4, Definition 1.2], cf. [12, Section
9.2.2]).

Definition 1. Suppose that π is a representation of A on a Hilbert space H. For each
state ψ of A define by

S(π, ψ) = {x ∈ H|ψ(A) = ⟨x, π(A)x⟩ for all A ∈ A}.

Let ψ and ϕ be states of A, let Π(A) be the set of all representations of A, and let π be
in Π(A). If either S(π, ψ) or S(π, ϕ) is empty, define Dπ(ψ, ϕ) =

√
2 and Fπ(ψ, ϕ) = 0;

otherwise define

Dπ(ψ, ϕ) = inf{∥x− y∥|x ∈ S(π, ψ), y ∈ S(π, ϕ)},

Fπ(ψ, ϕ) = sup{|⟨x, y⟩||x ∈ S(π, ψ), y ∈ S(π, ϕ)}.
Moreover we define as follows.

D(ψ, ϕ) = inf{Dπ(ψ, ϕ)|π ∈ Π(A)},

F (ψ, ϕ) = sup{Fπ(ψ, ϕ)|π ∈ Π(A)}.
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D(ψ, ϕ) can be written by F (ψ, ϕ) [4, Lemma 1.4] and satisfies the triangle inequality
[4, Proposition 1.7];

D(ψ, ϕ)2 = 2− 2F (ψ, ϕ); (1)

D(ψ, ϕ) ≤ D(ψ, ω) +D(ω, ϕ) (2)

for any states ψ, ϕ and ω of A.
Uhlmann [19, Section 5] showed that F (ψ, ϕ) = tr(D

1/2
ψ DϕD

1/2
ψ )1/2 when A is the

algebra B(H) of all bounded operators on a Hilbert space H, and ψ and ϕ are states of

B(H) which are written by density operators Dψ and Dϕ, respectively. tr(D
1/2
ψ DϕD

1/2
ψ )1/2

is called a fidelity, which is a quantitative measure of similarity between two states (cf.
[12, Section 9.2.2]).

There are many works about properties of a fidelity. For example, Araki and Raggio
[3, 15] examine them in a von Neumann algebraic framework, using the theory of von
Neumann algebra in standard form, and Alberti and Uhlmann [1, 2, 19, 20] examine
them in a C*-algebraic framework. In this section, we state its properties which are
needed for the proof of the main theorem.

Let ψi and ϕi be states of Ai for i = 1, 2. Suppose that ψ2 and ϕ2 are isomorphic
and ψ1 and ϕ1, respectively, that is, there is a *-isomorphism α of A1 onto A2 such
that ψ1(A1) = ψ2(α(A1)) and ϕ1(A1) = ϕ2(α(A1)) for any A1 ∈ A1. If x1 ∈ S(π, ψ1) and
y1 ∈ S(π, ϕ1), then x1 ∈ S(π◦α−1, ψ2) and y1 ∈ S(π◦α−1, ϕ2). Thus |⟨x1, y1⟩| ≤ F (ψ2, ϕ2).
Taking the supremum over x1 ∈ S(π, ψ1) and y1 ∈ S(π, ϕ1), F (ψ1, ϕ1) ≤ F (ψ2, ϕ2).
Similarly F (ψ1, ϕ1) ≥ F (ψ2, ϕ2). Therefore

F (ψ1, ϕ1) = F (ϕ2, ϕ2). (3)

Although Bures [4, Proposition 1.6] showed the following proposition in the case of
W*-algebras, it also holds in the case of C*-algebras.

Proposition 2. There exists a representation π of A on a Hilbert space H such that
F (ψ, ϕ) = Fπ(ψ, ϕ) for any states ψ and ϕ of A.

Definition 3. We call the representation in Proposition 2 Bures representation of A.

Next we introduce a transition probability. Roberts and Roepstorff [16, Definition 4.7]
proved the following proposition.

Proposition 4. Let B be a C*-algebra on a Hilbert space H and let ωx and ωy be the
pure states of B induced by the unit vectors x and y. Then

|⟨x, y⟩|2 = 1− 1

4
∥ωx − ωy∥2.

Based on this proposition they defined a transition probability ψ · ϕ between pure
states ψ and ϕ of A as follows [16, Definition 4.7].

Definition 5. Let ψ and ϕ be pure states of A. Let define

ψ · ϕ = 1− 1

4
∥ψ − ϕ∥2.
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In the following proposition, we examine the relation between F (ψ, ϕ) and ψ · ϕ in a
C*-algebraic framework.

Proposition 6. Let ψ and ϕ be pure states of A. Then ψ · ϕ = F (ψ, ϕ)2.

In order to prove Proposition 6 and Proposition 8, the following lemma is needed.

Lemma 7. Let ψ be a pure state of A, let (πψ,Hψ, xψ) be GNS representation induced by
ψ, let y be a unit vector in Hψ and let ϕ be a state of A such that ϕ(A) = ⟨y, π(A)y⟩ for
any A ∈ A. Then ∥ψ − ϕ∥ = 2(1− |⟨xψ, y⟩|2)1/2.

Proof. Let P and Q be projections whose ranges are subspaces generated by xψ and y,
respectively. Then

ψ(A)− ϕ(A) = tr((P −Q)πψ(A)) (4)

for any A ∈ A.
If P = Q, then ∥ψ − ϕ∥ = 0 = 2(1− |⟨xψ, y⟩|2)1/2. Suppose that P ̸= Q. Then there

are orthogonal projections R1 and R2 and a1, a2 ∈ R such that

P −Q = a1R1 − a2R2. (5)

By taking the trace of Equation (5), we obtain a1 = a2. By squaring Equation (5) and
taking the trace

2− 2|⟨xψ, y⟩|2 = 2a21. (6)

Thus |ψ(A) − ϕ(A)| = a1tr((R1 − R2)π(A)) ≤ 2a1 ≤ 2(1 − |⟨xψ, y⟩|2)1/2 for any A ∈ A
such that ∥A∥ ≤ 1 by Equations (4), (5) and (6) (cf. [19, Section 3]). Therefore

∥ψ − ϕ∥ ≤ 2(1− |⟨xψ, y⟩|2)1/2. (7)

Let V 0 = R1 −R⊥
1 and let z1 and z2 be unit vectors which are in the range of R1 and

R2, respectively. Then V
0z1 = z1 and V 0z2 = −z2. Since V 0 is a unitary operator, there

is a unitary element V ∈ A such that πψ(V )z1 = z1 and πψ(V )z2 = −z2 [11, Theorem
10.2.1]. By Equations (4), (5) and (6),

∥ψ − ϕ∥ ≥ |ψ(V )− ϕ(V )| = |tr((P −Q)πψ(V ))| = |tr((a1R1 − a2R2)πψ(V ))|
= 2a1 = 2(1− |⟨xψ, y⟩|2)1/2.

(8)

Equations (7) and (8) imply ∥ψ − ϕ∥ = 2(1− |⟨xψ, y⟩|2)1/2.

In the present paper, if A is a set of operators acting on a Hilbert space H, let A′

represent its commutant, the set of all bounded operators on H which commute with all
elements of A.

Proof of Proposition 6. Let (πψ, xψ,Hψ) and (πϕ, xϕ,Hϕ) be GNS representations induced
by ψ and ϕ, respectively.
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1. Suppose that πψ and πϕ are not unitarily equivalent. Then ∥ψ − ϕ∥ = 2 by [11,
Corollary 10.3.8]. Thus ψ · ϕ = 0.

Let π be Bures representation of A on a Hilbert space H. Let x ∈ S(π, ψ) and
y ∈ S(π, ϕ), let E ′ ∈ π(A)′ and F ′ ∈ π(A)′ be projections whose range are subspaces
generated by {π(A)x} and {π(A)y}, respectively, and let πE′ and πF ′ be represen-
tations on E ′H and F ′H such that πE′(A) = E ′π(A)E ′ and πF ′(A) = F ′π(A)F ′ for
any A ∈ A, respectively. Then πE′ and πF ′ are unitarily equivalent to πψ and πϕ,
respectively [10, Proposition 4.5.3]. Since πψ and πϕ are unitarily inequivalent, so
are πE′ and πF ′ . Thus πE′ and πF ′ are disjoint [11, Proposition 10.3.7]. In this case
E ′F ′ = 0 [11, Proposition 10.3.3]. Since x ∈ E ′H and y ∈ F ′H, ⟨x, y⟩ = 0. Thus
F (ψ, ϕ) = 0. Therefore ψ · ϕ = F (ψ, ϕ)2.

2. Suppose that πψ and πϕ are unitarily equivalent. Then there is a unitary element
U in A such that ϕ(A) = ψ(U∗AU) for any A ∈ A [11, Theorem 10.2.6]. Then
xψ ∈ S(πψ, ψ) and πψ(U)xψ ∈ S(πψ, ϕ), which imply

|⟨xψ, πψ(U)xψ⟩| ≤ F (ψ, ϕ). (9)

By Lemma 7 and Equation (9),

∥ψ − ϕ∥ = 2(1− |⟨xψ, πψ(U)xψ⟩|2)1/2 ≥ 2(1− F (ψ, ϕ)2)1/2.

On the other hand, ∥ψ − ϕ∥ ≤ 2(1 − F (ψ, ϕ)2)1/2 holds [19, Section 3]. Thus
∥ψ−ϕ∥ = 2(1−F (ψ, ϕ)2)1/2, which implies F (ψ, ϕ)2 = 1−(1/4)∥ψ−ϕ∥2. Therefore
ψ · ϕ = F (ψ, ϕ)2.

Next we characterize a nonabelian C*-algebra in terms of a fidelity, which is needed
for the proof of the main theorem (Theorem 12).

Proposition 8. The following conditions are equivalent.

1. A is not abelian.

2. There are pure states ψ and ϕ of A such that 0 < F (ψ, ϕ) < 1.

3. For any real number α such that 0 ≤ α ≤ 1, there are pure states ψ and ϕ of A such
that F (ψ, ϕ) = α.

Proof. 1 ⇔ 2 A is not abelian if and only if there are pure states ψ and ϕ of A such that
0 < ∥ψ−ϕ∥ < 2 [10, Exercise 4.6.26]. Thus A is not abelian if and only if there are
pure states ψ and ϕ of A such that 0 < F (ψ, ϕ) < 1 by Proposition 6.

3 ⇒ 2 Trivial.
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1 ⇒ 3 Suppose that A is not abelian. Then there are elements A and B in A such that
[A,B] ̸= 0 and there is a pure state ψ of A such that ψ([A,B]) ̸= 0, where [A,B] =
AB − BA [10, Theorem 4.3.8]. Let (πψ,Hψ, xψ) be the GNS representation of A
induced by ψ. The dimension of the Hilbert space Hψ exceeds one; for, otherwise,
ψ([A,B]) = ⟨xψ, πψ([A,B])xψ⟩ = 0 in contradiction with the fact that ψ([A,B]) ̸= 0.
Thus there is a unit vector y ∈ Hψ which is orthogonal to xψ [6, Proof of Lemma
4].

Let α be a real number such that 0 ≤ α ≤ 1, let θ be a real number such that
cos θ = α and let z = cos θ · xψ + sin θ · y and let ϕ be a state of A such that
ϕ(A) = ⟨z, πψ(A1)z⟩ for any A ∈ A. Then ϕ is a pure state of A [11, Corollary
10.2.5]. By Lemma 7, ∥ψ − ϕ∥ = 2(1 − |⟨xψ, z⟩|2)1/2 = 2 sin θ. By Proposition 6,
F (ψ, ϕ) = cos θ = α.

4 No-cloning theorem

In this section we examine no-cloning theorem in the above-mentioned C*-algebraic frame-
work. Before defining a perfect cloning operation, we must define a completely positive
map, which gives the most general dynamical evolution in a C*-algebraic framework. Re-
call that a linear mapping T of A is positive just in case A ≥ 0 entails T (A) ≥ 0. T can
be extended to a linear map Tn of Mn(A) by

Tn

A11 . . . A1n

· · ·
An1 . . . Ann

 =

T (A11) . . . T (A1n)
· · ·

T (An1) . . . T (Ann)

 ,

where Mn(A) is the set of n by n matrices with entries which are elements from the C*-
algebra A. If Tn is positive, T is said to be n-positive. If T is n-positive for any n ∈ N, T
is said to be completely positive. A positive map T satisfying T (I) = I is called a unital
positive map.

If T is a unital 2-positive map of A, then T (A)∗T (A) ≤ T (A∗A) for any A ∈ A [13,
Proposition 3.3]. Thus for any state ψ and ϕ of A and any unital 2-positive map T of A,

F (ψ, ϕ) ≤ F (T ∗ψ, T ∗ϕ) (10)

by [20, Theorem 4.2].
If T is a unital completely positive map of A and ψ is a state of A, then the mapping

T ∗ of the set of all states of A can be defined by (T ∗ψ)(A) = ψ(T (A)) for any state ψ
of A and any A ∈ A. T captures the dynamic change which occurs as the result of some
physical process. ψ is the initial state before the process, and T ∗ψ is the final state after
the process occurs.

A universal perfect cloning operations is defined as follows (cf. [6, p.1578]).

Definition 9. Let T be a unital completely positive map of A1 ∨ A2 and let σ2 be a
state of A2. We say that T is a universal perfect cloning operation just in case that
T ∗(ψ1 ⊗ σ2) = ψ1 ⊗ ψ2 for any pure state ψ1 of A1, where ψ2 is a state of A2 which is
isomorphic to ψ1.
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The perfect cloning operation in Definition 9 takes ψ1 as an input, and returns ψ2 as
an output. Since ψ2 is isomorphic to ψ1, ψ2 is a perfect clone of ψ1. Clifton, Bub and
Halvorson [6, Theorem 2 and Theorem 3] showed the following theorem.

Theorem 10 (Clifton-Bub-Halvorson). The following conditions are equivalent.

1. There is a universal perfect cloning operation of A1 ∨ A2.

2. A1 is abelian.

Since any individual system’s algebra of observables is not abelian in algebraic quan-
tum theory, there is no universal perfect cloning operation in algebraic quantum theory.
Next we examine whether an imperfect cloning operation exists or not. In order to tackle
this problem, we define an imperfect cloning operation which tolerates a finite loss ϵ of
fidelity in the cloned state.

Definition 11. Let T be a unital completely positive map of A1 ∨ A2, let σ2 be a state
of A2, and let ϵ be a real number such that 0 ≤ ϵ ≤ 1. We say that T is a universal
ϵ-imperfect cloning operation just in case that for any pure state ψ1 of A1 there is a pure
state ψ̄2 of A2 such that T ∗(ψ1⊗σ2) = ψ1⊗ ψ̄2 and F (ψ2, ψ̄2) ≥ 1− ϵ, where ψ2 is a state
of A2 which is isomorphic to ψ1.

The universal ϵ-imperfect cloning operation in Definition 11 takes ψ1 as an input, and
returns ψ̄2 as an output. The original state ψ1 and the cloned state ψ̄2 are not entangled,
and the loss of fidelity is less than ϵ. If ϵ is 0, then ψ̄2 = ψ2, that is, ψ̄2 is a perfect clone of
ψ1. Thus a universal 0-imperfect cloning operation is equal to a universal perfect cloning
operation.

In the following theorem, we examine whether a universal ϵ-imperfect cloning operation
which is ‘good’ according to fidelity exists or not in algebraic quantum theory. The term
‘good’ means that the loss of fidelity is less than 1/4.

Theorem 12. Let ϵ be a real number such that 0 ≤ ϵ < 1/4. If there is a universal
ϵ-imperfect cloning operation of A1 ∨ A2, then A1 is abelian.

Using Theorem 10 and Theorem 12, we can get the following corollary.

Corollary 13. Let ϵ be a real number such that 0 ≤ ϵ < 1/4. The following conditions
are equivalent.

1. There is a universal perfect cloning operation of A1 ∨ A2.

2. There is a universal ϵ-imperfect cloning operation of A1 ∨ A2.

3. A1 is abelian.

Generally any individual quantum system’s algebra of observables is not abelian. So
the universal ϵ-imperfect cloning operations do not exist in algebraic quantum theory in
the case where 0 ≤ ϵ < 1/4.

For the proof of Theorem 12, we will need to invoke technical lemmas.
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Lemma 14. Let ψ be a state of A, let ϕ be a pure state of A, and let π be a representation
of A on a Hilbert space H such that S(π, ψ) and S(π, ϕ) are not empty. Then F (ψ, ϕ) =
Fπ(ψ, ϕ).

Proof. Let π′ be a representation of A on a Hilbert space H′ such that S(π′, ψ) and
S(π′, ϕ) are not empty. We will show that Fπ(ψ, ϕ) = Fπ′(ψ, ϕ).

Let x, y, x′ and y′ be vectors in S(π, ψ), S(π, ϕ), S(π′, ψ) and S(π′, ϕ), respectively,
and let E ∈ π(A)′ and E ′ ∈ π′(A)′ be projections whose ranges are subspaces gener-
ated by {π(A)x} and {π′(A)x′}, respectively. Define representations πE and π′

E′ of A as
πE(A) = Eπ(A)E and π′

E′ = E ′π′(A)E ′ for any A ∈ A, respectively. Then (πE, EH, x)
and (π′

E′ , E ′H′, x′) are GNS representations induced by ψ. Thus there is a unitary oper-
ator U from EH onto E ′H′ such that Ux = x′ and U∗π′

E′(A)U = πE(A) for any A ∈ A
[10, Proposition 4.5.3]. Therefore Ux ∈ S(π′, ψ).

There are vectors y1 ∈ EH and y2 ∈ (I − E)H such that y = y1 + y2. Then

ϕ(A) = ⟨y, π(A)y⟩ = ⟨y1, π(A)y1⟩+ ⟨y2, π(A)y2⟩

for any A ∈ A. Since ϕ is a pure state of A, y1 = 0 or y2 = 0. Thus y ∈ EH or
y ∈ (I − E)H.

Suppose that y ∈ EH. Then

⟨Uy, π′(A)Uy⟩ = ⟨y, U∗π′
E′(A)Uy⟩ = ⟨y, πE(A)y⟩ = ⟨y, π(A)y⟩ = ϕ(A)

for any A ∈ A. Thus Uy ∈ S(π′, ϕ). Therefore |⟨x, y⟩| = |⟨Ux, Uy⟩| ≤ Fπ′(ψ, ϕ).
Suppose that y ∈ (I − E)H. Then |⟨x, y⟩| = 0 ≤ Fπ′(ψ, ϕ).
Taking the supremum over x ∈ S(π, ψ) and y ∈ S(π, ϕ), Fπ(ψ, ϕ) ≤ Fπ′(ψ, ϕ). Simi-

larly Fπ(ψ, ϕ) ≥ Fπ′(ψ, ϕ). Therefore Fπ(ψ, ϕ) = Fπ′(ψ, ϕ). Since F (ψ, ϕ) = supπ Fπ(ψ, ϕ),
F (ψ, ϕ) = Fπ(ψ, ϕ).

Lemma 15. Let ψ and ϕ be states of A, let π be Bures representation and let x be in
S(π, ψ). If ϕ ≤ aψ for some a > 0, there exists a positive operator Z ∈ π(A)′′ such that
ϕ(A) = ⟨Zx, π(A)Zx⟩ for any A ∈ A.

Proof. Since π is Bures representation, there is a vector y in S(π, ϕ). For any A ∈ A,
⟨y, π(A∗A)y⟩ ≤ a⟨x, π(A∗A)x⟩. So for any X ∈ π(A)′′, ⟨y,X∗Xy⟩ ≤ a⟨x,X∗Xx⟩.

By Sakai-Radon-Nykodým theorem [11, Theorem 7.3.6], there is a positive operator
Z ∈ π(A)′′ such that ⟨y,Xy⟩ = ⟨Zx,XZx⟩ for any X ∈ π(A)′′. Thus ϕ(A) = ⟨y, π(A)y⟩ =
⟨Zx, π(A)Zx⟩ for any A ∈ A.

Lemma 16. Let ψ and ϕ be states of A, let π be a representation of A, let x be in S(π, ψ)
and let Z be a positive operator in π(A)′′ such that ϕ(A) = ⟨Zx, π(A)Zx⟩ for any A ∈ A.
Then Fπ(ψ, ϕ) = ⟨x, Zx⟩.
Proof. Since x ∈ S(π, ψ) and Zx ∈ S(π, ϕ), ⟨x, Zx⟩ ≤ Fπ(ψ, ϕ). We will show that
Fπ(ψ, ϕ) ≤ ⟨x, Zx⟩.

Let x′ ∈ S(π, ψ) and y′ ∈ S(π, ϕ). Since x and x′ induce the same state relative
to π, there is a partial isometry U in π(A)′ such that x′ = Ux. Similarly there is a
partial isometry V in π(A)′ such that y′ = V Zx. Therefore |⟨x′, y′⟩| = |⟨Ux, V Zx⟩| =
|⟨V ∗UZ1/2x, Z1/2x⟩| ≤ ∥V ∗UZ1/2x∥∥Z1/2x∥ ≤ ∥Z1/2x∥2 = ⟨x, Zx⟩. Taking the supre-
mum over x′ ∈ S(π, ψ) and y′ ∈ S(π, ϕ), Fπ(ψ, ϕ) ≤ ⟨x, Zx⟩. Therefore Fπ(ψ, ϕ) =
⟨x, Zx⟩.
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The following lemma can be shown in a similar way to the proof of [14, Lemma 2.3].

Lemma 17. Let ψi and ϕi be states of Ai and let ϕ′
j = (1−a)ϕj +aψj for j = 1, 2, where

a is a real number such that 0 < a < 1. Then

• |F (ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2)− F (ψ1 ⊗ ψ2, ϕ
′
1 ⊗ ϕ′

2)| < 20a1/2,

• |F (ψi, ϕi)− F (ψi, ϕ
′
i)| < 10a1/2.

The following lemma can be found in [18, Proposition IV.4.13].

Lemma 18. Let π1 and π2 be representations of A1 and A2, respectively. Then Z1⊗Z2 ∈
{(π1 ⊗ π2)(A1 ⊗ A2)}′′ for any Z1 ∈ π1(A1)

′′ and Z2 ∈ π2(A2)
′′.

Lemma 19. Let ψj and ϕj be states of Aj, and let πj be Bures representation of Aj for
j = 1, 2. Then Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2) = F (ψ1, ϕ1)F (ψ2, ϕ2).

Proof. For any 0 < a < 1, let ϕ′
j be defined as ϕ′

j := (1 − a)ϕj + aψj. Then ψj(A
∗A) ≤

(1/a)ϕ′
j(A

∗A) for all Aj ∈ Aj. Let xj ∈ S(πj, ϕ
′
j). By Lemma 15, there exists a positive

operator Zj ∈ πj(Aj)
′′ such that ψj(Aj) = ⟨Zjxj, πj(Aj)Zjxj⟩ for any Aj ∈ Aj. Then

x1 ⊗ x2 ∈ S(π1 ⊗ π2, ϕ
′
1 ⊗ ϕ′

2) and (Z1 ⊗ Z2)(x1 ⊗ x2) ∈ S(π1 ⊗ π2, ψ1 ⊗ ψ2). By Lemma
18, Z1 ⊗ Z2 ∈ {(π1 ⊗ π2)(A1 ⊗ A2)}′′. Thus Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ

′
1 ⊗ ϕ′

2) = ⟨x1 ⊗ x2, (Z1 ⊗
Z2)(x1 ⊗ x2)⟩ = ⟨x1, Z1x1⟩⟨x2, Z2x2⟩ and F (ψj, ϕ′

j) = ⟨xj, Zjxj⟩ by Lemma 16. Therefore

Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ
′
1 ⊗ ϕ′

2) = F (ψ1, ϕ
′
1)F (ψ2, ϕ

′
2) (11)

By Lemma 17, |Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2) − Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ
′
1 ⊗ ϕ′

2)| ≤ 20a1/2 and
|F (ψj, ϕ′

j)− F (ψj, ϕj)| < 10a1/2. Using Equation (11),

|Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2)− F (ψ1, ϕ1)F (ψ2, ϕ2)|
= |Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2)− Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ

′
1 ⊗ ϕ′

2)

+ F (ψ1, ϕ
′
1)F (ψ2, ϕ

′
2)− F (ψ1, ϕ1)F (ψ2, ϕ2)|

≤ |Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2)− Fπ1⊗π2(ψ1 ⊗ ψ2, ϕ
′
1 ⊗ ϕ′

2)|
+ |F (ψ1, ϕ

′
1)F (ψ2, ϕ

′
2)− F (ψ1, ϕ

′
1)F (ψ2, ϕ2)|

+ |F (ψ1, ϕ
′
1)F (ψ2, ϕ2)− F (ψ1, ϕ1)F (ψ2, ϕ2)|

≤ 20a1/2 + 10a1/2 + 10a1/2 = 40a1/2.

Since a is an arbitrary real number such that 0 < a < 1, Fπ1⊗π2(ψ1 ⊗ ψ1, ϕ1 ⊗ ϕ2) =
F (ψ1, ϕ1)F (ψ2, ϕ2).

Proof of Theorem 12. Let T be a universal ϵ-imperfect cloning operation of A1∨A2. The
proof proceeds by contradiction.

Suppose that A1 is not abelian. By Proposition 8, there exist pure states ψ1 and ϕ1

such that 0 < F (ψ1, ϕ1) < 1− 4ϵ since ϵ < 1/4. By Equation (3),

0 < F (ψ2, ϕ2) < 1− 4ϵ, (12)
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where ψ2 and ϕ2 are isomorphic to ψ1 and ϕ1, respectively. By the definition of T , there
are pure states ψ̄2 and ϕ̄2 of A2 and a state σ2 of A2 such that T ∗(ψ1 ⊗ σ2) = ψ1 ⊗ ψ̄2,
T ∗(ϕ1 ⊗ σ2) = ϕ1 ⊗ ϕ̄2, F (ψ2, ψ̄2) ≥ 1− ϵ and F (ϕ2, ϕ̄2) ≥ 1− ϵ. In this case,

D(ψ2, ψ̄2) ≤
√
2ϵ, D(ϕ2, ϕ̄2) ≤

√
2ϵ (13)

by Equation (1).
Since ψ1 ⊗ ψ̄2 is a pure state of A1 ⊗ A2,

F (ψ1 ⊗ ψ̄2, ϕ1 ⊗ ϕ̄2) = Fπ1⊗π2(ψ1 ⊗ ψ̄2, ϕ1 ⊗ ϕ̄2) = F (ψ1, ϕ1)F (ψ̄2, ϕ̄2) (14)

F (ψ1, ϕ1) = F (ψ1, ϕ1)F (σ2, σ2) = Fπ1⊗π2(ψ1 ⊗ σ2, ϕ2 ⊗ σ2), (15)

by Lemma 14 and Lemma 19.
Using Equations (10), (14) and (15),

F (ψ1, ϕ1) = Fπ1⊗π2(ψ1 ⊗ σ2, ϕ1 ⊗ σ2)

≤ F (ψ1 ⊗ σ2, ϕ1 ⊗ σ2)

≤ F (T ∗(ψ1 ⊗ σ2), T
∗(ϕ1 ⊗ σ2))

= F (ψ1 ⊗ ψ̄2, ϕ1 ⊗ ϕ̄2)

= F (ψ1, ϕ1)F (ψ̄2, ϕ̄2).

Since F (ψ1, ϕ1) ̸= 0, F (ψ̄2, ϕ̄2) = 1. It implies ψ̄2 = ϕ̄2. By Equation (2),

D(ψ2, ϕ2) ≤ D(ψ2, ψ̄2) +D(ψ̄2, ϕ2) = D(ψ2, ψ̄2) +D(ϕ̄2, ϕ2). (16)

Inequalities (13) and (16) imply that D(ψ2, ϕ2) ≤ 2
√
2ϵ. By Equation (1),

F (ψ2, ϕ2) ≥ 1− 4ϵ. (17)

It contradicts with Inequality (12). Therefore A1 is abelian.

5 Summary

Clifton, Bub and Halvorson [6] defined a perfect cloning operation in the C*-algebraic
framework, and showed that an individual system’s algebra of observables is abelian if
and only if there is a universal perfect cloning operation (Theorem 10). Thus there is
no universal perfect cloning operation in algebraic quantum theory. On the other hand,
Bužek and Hillery [5] showed that there exists a universal imperfect cloning operation
which tolerates a finite loss of fidelity in the cloned state in quantum mechanics. In this
operation, the original and the cloned states are entangled.

In the present paper, we examined the case where the original and the cloned states
are not entangled, and a finite loss of fidelity in the cloned state is tolerated. In Definition
11 we defined a universal ϵ-imperfect cloning operation. This operation takes ψ1 as an
input, and returns ψ̄2 as an output. The original state ψ1 and the cloned state ψ̄2 are
not entangled, and the loss of fidelity is less than or equal to ϵ. In Corollary 13 it is
shown that A1 is abelian if and only if there is a universal ϵ-imperfect cloning operation
in the case where the loss of fidelity is less than 1/4. Therefore in this case no universal
ϵ-imperfect cloning operation is possible in algebraic quantum theory.
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