
Environmental Geotechnics

Segmentation of multi-phase X-ray 
computed tomography images
Kato, Takahashi, Kawasaki and Kaneko

Environmental Geotechnics
http://dx.doi.org/10.1680/envgeo.13.00036
Paper 13.00036
Received 13/05/2013; accepted 21/11/2013
Keywords: bitumen & tar/energy/granular materials

ICE Publishing: All rights reserved

1

3  Satoru Kawasaki DrEng
 Associate Professor, Faculty of Engineering, Hokkaido University, 

Sapporo, Japan
4  Katsuhiko Kaneko DrEng
 Professor, Faculty of Engineering, Hokkaido University, Sapporo, Japan

1  Masaji Kato DrEng
 Assistant Professor, Faculty of Engineering, Hokkaido University, 

Sapporo, Japan
2  Manabu Takahashi DrEng
 Chief Senior Researcher, Institute for Geology and Geoinformation, 

National Institute of Advanced Industrial Science and Technology 
(AIST), Tsukuba, Japan

Segmentation of multi-phase 
X-ray computed tomography 
images

X-ray computed tomography (CT) is useful for non-destructively visualising internal features of non-transparent objects. 

In addition, it provides quantitative information about the geometry and spatial distribution of an object’s constituent 

materials. However, X-ray CT images include blurs and noises. Herein, the authors focus on the partial volume effect 

that causes blurs depending on image resolution. Artificial materials (e.g., thin wire and threads) and natural materials 

(e.g., oil sand) were observed using a microfocus X-ray CT scanner. A maximum likelihood thresholding method 

considering the partial volume effect based on histogram data was applied for segmenting two- and three-phase X-ray 

CT images. Relative errors in measured cross-sectional areas of aluminium wires and nylon threads were evaluated for 

verifying the segmentation method. Occupancy ratios of each phase of oil sand to its bulk volume were quantified. The 

introduced segmentation method estimates the volume of each constituent of two- and three-phase porous materials 

with reasonable accuracy.

Notation
ai area proportion or volume proportion of 

constituent class i (0 £ ai £ 1)
1 2( , , , )nB m m m�  multivariate beta function for n-class 

mixel
fi(x) probability density function (PDF) of 

class i within pure voxels
JO(t), JD(t), JQ(t), JK(t) maximum likelihood thresholding 

criteria
M total number of classes

1 2 ( )ni i iM x�  PDF of n-class mixel for np-phase 
materials (2 £ n £ np)

µ σ 2( ; , )i iN x  normal distribution function

pnN  total number of class classifications in 
image of np-phase material

ni numbers of voxels within class i
t threshold vector where the number of 

vector elements equals M − 1
x intensity level

ipx  intensity level at peak of class i in 
histogram

xv intensity level at trough between two 
peaks in histogram

fi occupancy ratio of phase i volume to 
bulk volume in porous material

μa expectation of mixel class
μi expectation of class i

2σ�  expectation of variance within each 
class

2
aσ  variance of mixel class
2
iσ  variance of class i
2
kσ�  variance of class k

kω�  occurrence probability of class k

Introduction
X-ray computed tomography (CT) is useful not only in medical 

fields but also in geotechnical engineering. The technique aids 

non-destructive, non-disturbed observations of the internal 

structures of geomaterials such as soil and rocks. Through CT 

observations and subsequent calculations, greyscale CT images are 

obtained. Important information, hidden at times, obtained from 
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the images should be extracted. Segmentation of CT images is one 

of the simplest methods for investigating material properties. The 

segmentation of dried soil and rocks (similarly, water-saturated 

soil and rocks) consisting of solid (minerals) and fluid (air or water 

in pores) phases is a challenging problem, and it is only recently 

that robust methods have been proposed for dealing with the 

challenges imposed by soil (Houston et al., 2013; Schlüter et al., 

2010) and rock images (Kato et al., 2013). The image segmentation 

of such two-phase materials is related to problems associated with 

storage of the materials and fluid flow through them. Practically, 

three-phase materials consisting of the solid, liquid and gaseous 

phases exist and need to be segmented. In this study, the focus is 

on materials consisting of two or more phases, also called multi-

phase materials.

X-ray CT images of multi-phase materials are different from their 

real images because of the sampling and quantisation involved in 

generating digital images (Figure 1). Some level of blur is inevitable 

in both X-ray CT images and optical images. There are two primary 

causes of blur. The first is the penumbra effect, which depends on 

the focal spot size and the distances between the X-ray source, 

the object and the detector (Curry et al., 1990). The second is the 

partial volume effect, which is ascribed to the existence of multiple 

substances in each voxel of a CT image (Ketcham and Carlson, 

2001). The blur resulting from these effects can be minimised if 

the focal spot size can be reduced. This leads to enhanced spatial 

resolution, which is equivalent to minimising the voxel size. 

However, despite this, blur is not eliminated.

The partial volume effect appears intrinsically, without exception, 

in digital images captured using any optical instrument. This effect 

appears not only on the slice plane, shown in Figure 1, but also 

along the thickness direction (normal to the plane). The partial 

volume effect is a persistent problem in three-dimensional (3D) 

digital images of multi-phase materials.

To tackle this issue, Choi et al. (1991) introduced and applied the 

concept of mixed pixel, or mixel, to the classification of medical 

magnetic resonance images of the brain. Numerous studies have 

focused on the partial volume effect or mixels in various fields 

such as medical science (Kim et al., 2005; Shattuck et al., 2001; 

Tohka et al., 2004), remote sensing (Kageyama and Nishida, 

2004; Okamoto and Fukuhara, 1996), soil and rock engineering 

(Kato et al., 2013; Oh and Lindquist, 1999) and information 

technology (Kitamoto and Takagi, 1998a, 1998b, 1999, 2000). 

Mixels contain multiple-phase constituents within a single pixel 

(or voxel), leading to image blurring (Figure 2). Conversely, pixels 

(or voxels) with only a single phase are called pure pixels (or pure 

voxels). Even in high-resolution digital images, there exist some 

mixels (Figure 3). The higher the image resolution, the lower the 

mixel/pixel (or mixel/voxel) ratio, which is the ratio of the number 

of mixels to the total number of voxels in an image and is shown 

numerically in the caption in Figure 3. However, mixels are not 

eliminated practically.

Numerous thresholding techniques are described in the literature 

(see reviews in Pal and Pal, 1993; Sahoo et al., 1988; Sezgin and 

Sankur, 2004). Iassonov et al. (2009) presented an overview of the 

thresholding techniques applied in recent porous media research. 

However, the performance of each technique depends on the purpose 

and the object of analysis. Baveye et al. (2010) reported difficulty 

in applying thresholding to soil images and X-ray CT data and 

that the outcome depended on the observer. Therefore, there exist 

several binarised image patterns of the object observed by different 

researchers. The thresholding of digital images of two-phase objects 

considering the partial volume effect was originally introduced for 

satellite images by Kitamoto (1999) and was demonstrated for 

X-ray CT images of packed glass beads and sandstone by Kato et 

al. (2013). Thresholding digital images of materials with more than 

two phases was addressed by several groups (Bhattad et al., 2010; 

Kumar et al., 2010; Vinegar and Wellington, 1987). However, the 

partial volume effect has not been considered in any such study 

conducted thus far.

Oil sand is a non-conventional energy resource, and major oil sand 

deposits have been discovered in Alberta, Canada, and Orinoco, 

versions taking into account the partial volume effect, where 
boundary lines are remaining in (b)

Figure 1. Schematic of image acquisition. Greyscale digital images 
are made from a two-phase substance owing to sampling and 
quantisation. (a) is a real image and (b) and (c) are its quantised 
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Venezuela (Sekiguchi, 2006). Oil sand is a mixture of sand grains 

(siliceous material), water, bitumen (extra-heavy oil) and methane 

gas. The volume fraction of natural bitumen in oil sand is one of 

the parameters for evaluating extra-heavy oil reserves. X-ray CT 

can be used for determining oil’s internal structure as well as for 

basic data acquisition in the process of evaluating oil reserves. Oil 

sand samples are considered three-phase materials consisting of 

solid (sand grains), liquid (water and bitumen) and gaseous (air and 

methane) phases. Although bitumen does not act as a fluid at room 

temperatures, it corresponds to the liquid phase because its density 

is only slightly less than that of water. This ensures that there is 

a slight difference between the X-ray attenuation coefficients of 

water and bitumen.

In this study, the partial volume effect in X-ray CT images of 

multi-phase materials was modelled stochastically using Gaussian 

distribution for the different phases and beta distribution for the 

partial volume effect. In addition, an automatic image segmentation 

technique that considers the partial volume effect for CT imaging 

of porous materials was introduced. Then, the applicability of the 

developed segmentation technique was verified using two- and 

three-phase materials, including artificial materials such as metal 

wires and nylon threads as well as natural materials such as oil sand.

Segmentation method

Mixture model considering partial volume effect
For a multi-phase object, the spatial distribution data of its X-ray 

attenuation coefficients are obtained by X-ray CT scanning. Using 

these data, a greyscale image is drawn as a mixture of pure voxels 

and mixels (Figure 1). Histograms of the intensity level of CT images 

generated by scanning two-phase materials show either bimodal or 

unimodal distribution, and those generated using three-phase materials 

show either trimodal, bimodal or, occasionally, unimodal distribution. 

It is apparent that histograms are not generated only by the simple 

superposition of normal distributions, such as the clearly bimodal 

distribution of two-phase images and the clearly trimodal distribution 

of three-phase images, because of the partial volume effect.

In fact, the histogram of a class of pure voxels obeys a normal 

distribution because of slight inhomogeneities within a given 

one-phase substance and minute variations in the dispersion and 

absorption of X-rays. Accordingly, the probability density function 

(PDF) fi(x) of a constituent class i, corresponding to the pure voxels 

of phase i, can be expressed as follows

1. 

2

2

2
2

1 ( )
( ) ( ; , ) exp ( 1,2, )

22

i

i i i

i
i

x
f x N x i

µµ σ
σπσ

ì ü-= = - = ×í ý
î þ

�

where 
2

( ; , )i iN x µ σ  denotes the normal distribution function for 

intensity level x, expectation μi and variance 
2σ i  of constituent class 

i. For two-phase materials, i takes the integer value of either 1 or 2. 

For three-phase materials, i takes an integer value between 1 and 3. 

In both cases, the maximum value of i equals the number of phases.

Mixels, which correspond to voxels occupied by two or more phases, 

appear inevitably in a digital image. Two-class mixels (voxels 

occupied by two phases) and three-class mixels (voxels occupied by 

three phases) are required for the segmentation of two- and three-phase 

materials in this study. Two- and three-class mixels are explained 

below, and multi-class mixels are generalised in Appendix 1.

For two-phase materials, one type of two-class mixels exists that 

corresponds to pixels (or voxels) occupied by phases 1 and 2. 

The area proportion distribution of this class, which is defined by 

Kitamoto and Takagi (1998b, 2000) as the proportion of the area 

that each constituent class occupies within a mixel in 2D images, 

is assumed to obey beta distribution. It has also been stated that the 

beta distribution has adequate potential for describing various types 

of area proportion distributions such as uniform-shaped, U-shaped, 

J-shaped, L-shaped and bell-shaped. In this study, the area 

proportion in two dimensions is expanded to volume proportion 

in three dimensions. The PDF of two-class mixels of two-phase 

materials is expressed as follows

2. 
1 2

1
1 1 2

12 1 2 1
0

1 2

1
( ) ( ; , )d

( , )

m m

a a
M x a a N x a

B m m

µ σ- -= ò

Class 2

Class 1Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 1

Class 2Class 2

Class 1

(a) (b)

Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 3
(Mixel)

Class 1

Class 2

Figure 2. Digital images corresponding to Figure 1. (a) Original 
greyscale image and (b) image segmented with classes 1 and 2 
representing pure pixels and class 3 representing their mixel

(a) (b) (c)

Figure 3. Partial volume effect according to the resolution of 
digital images made from image shown in Figure 1(a). (a) Low 
resolution, (b) intermediate resolution and (c) high resolution. The 
mixel/voxel ratios for the above resolutions are (a) 0∙56, (b) 0∙36 
and (c) 0∙17, respectively
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where B(m1, m2) denotes the bivariate beta function, which is given 

by the following equation

3. 
1 2

1
1 1

1 2 1 2 1
0

( , )
m m

B m m a a da
- -= ò

where ai is the volume proportion of constituent class i (0 £ ai £ 1), 

and the relation a1 + a2 = 1 holds; parameters m1 and m2 are greater 

than 0; and μa and 
2σ a are given as follows

4. 1 1 2 2a a aµ µ µ= +

5. 2 2 2 2 2

1 1 2 2a
a aσ σ σ= +

Accordingly, for two-phase materials, each pure voxel can be 

assigned to classes 1 and 2, and the two-class mixel to class 3.

For an image of a three-phase material, more than one type of mixel 

is needed. It is possible to choose a pair from among three phases 

or to consider all three. Accordingly, the mixels in an image of a 

three-phase material can be classified into four types: three types 

of pairs from among three phases and one type for all three phases. 

The PDFs of two-class mixels of three-phase materials are obtained 

by replacing a1, a2 and M12(x) with 
1i

a , 
2i

a  and 
1 2

( )i iM x , respectively, 

where i1, i2 Î1, 2, 3 and i1 < i2.

The PDFs of three-class mixels of three-phase materials are 

expressed as follows

6. 
1 2 3

1 1
1 1 1 2

123 1 2 3 1 2

0 0
1 2 3

1
( ) ( ; , )d d

( , , )

m m m

a aM x a a a N x a a

B m m m

µ σ- - -= ò ò

where the trivariate beta function is

7. 
1 2 3

1 1
1 1 1

1 2 3 1 2 3 1 2
0 0

( , , ) d d
m m m

B m m m a a a a a
- - -= ò ò

where ai is the volume proportion of constituent class i (0 £ ai £ 1), 

such that the relation 
3

1

1i
i

a
=

=å  holds; parameters m1, m2 and m3 

are greater than 0; and μa and 
2σ a are as follows

8. 

3

1

a i i

i

aµ µ
=

= å

9. 

3

2 2 2

1

a i i

i

aσ σ
=

= å

Here, by assuming a few aspects of the phase distribution, the 

authors can simplify the problem and apply the model for solving it.

Thresholding method
First, the scope of investigation was limited to two-class 

segmentation problems with a bimodal histogram obtained from 

digital images. Kitamoto (1999, 2000) applied a mixel model 

for distinguishing between the cloud and sea phases in satellite 

images. In this study, the maximum likelihood thresholding method 

proposed by Kitamoto (1999), which considers the effect of mixels, 

was adopted for two-class segmentation problems.

For two-class segmentation problems with a bimodal histogram, the 

total number of classes M is three (two for pure voxels and one for 

mixels), and two thresholds are employed: one between classes 1 and 

3, and another between classes 2 and 3. These thresholds are referred 

to as t1 and t2, respectively, and can be expressed by the vector t = 

(t1, t2), where the number of vector components equals M – 1. The 

maximum likelihood thresholding criteria used in this study are 

functions of the threshold vector t along with the associated statistical 

properties of each class and are shown in Appendix 2.

After obtaining histogram data from the images, the threshold 

vector t was selected according to the following steps.

 ■ Check whether the histogram exhibits bimodal distribution 

geometrically.

 ■ Set the intensity levels to xp1 and xp2 at the left and right peaks 

(where xp1 < xp2), respectively, and to xv in the trough between 

the two histogram peaks temporarily. The threshold vector 

components t1 and t2 should be between xp1 and xv and between 

xv and xp2, respectively.

 ■ Calculate the logarithmic likelihood shown in Appendix 

2, which is a function of threshold vector t along with the 

associated statistical properties of each class. Given the 

threshold vector t, the expectations, variances and occurrence 

probabilities of classes 1 and 2 for pure voxels are calculated 

from the histogram data. Then, based on these statistical 

values, the stochastic parameters of class 3 for mixels 

are obtained analytically using Equations 2–5. Here, for 

simplicity, the parameters m1 and m2 in the beta function are 

set to 1 under the assumption that the volume proportion has 

a uniform-shaped distribution because the boundary between 

two phases of a material is simple and smooth.

 ■ Accordingly, determine the optimum threshold vector t in the 

possible range to maximise the above-mentioned likelihood.

The authors automated the above procedure for the selection 

of threshold values. The occurrence probabilities and variances 

of classes 1 and 2 in the digital images were unknown before 

thresholding. Accordingly, a likelihood criterion JK(t)
 
was selected 

and tested as the first thresholding criterion (see Appendix 2). 

However, thresholding in this manner sometimes resulted in both 

thresholds being almost the same. In such cases, the authors applied 

other criterion, such as JD(t).
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The above-mentioned thresholding method can be applied to multi-

phase digital images. However, the challenge in doing so is that 

the number of thresholds would increase with an increase in the 

number of phases (see Appendix 1). In this case, by adopting some 

suppositions of spatial phase distribution for an image, the problem 

can be simplified. For example, oil sand is composed of the solid 

(sand grain), liquid (water and bitumen) and gaseous (methane gas 

and air penetrating after coring) phases. The bitumen remains on 

the surfaces of the sand grains and in the spaces between the sand 

grains. Therefore, the liquid phase wets the surface of the solid 

phase, and the gaseous phase occupies the remainder of the pores’ 

volume, as shown in Figure 4. A few mixels consist of the solid and 

gaseous phases or all three phases.

Figure 5 shows an example of the histogram generated from the 

three-phase image for oil sand. In this figure, the lines show the 

probability distributions of five classes (three for pure voxels and 

two for mixels), and their superposition, which corresponds to the 

histogram. The mixel types that consist of the solid and gaseous 

phases as well as all three phases are lacking, as mentioned above.

Calculation of volume or occupancy ratio
Once the thresholds are set, the volume (or cross-sectional area) and 

occupancy ratio, which is the ratio of object phase volume to total 

volume of porous material, can be evaluated. For two-phase images, 

the ratio of all three classes (two classes for pure voxels and one 

class for mixels) was obtained. The area (volume) of mixels must 

eventually be divided into two phases for evaluating the occupancy 

ratio. It is reasonable to assume that the area of mixels can be divided 

into two phases according to the ratio of the numbers of voxels in 

classes 1 and 2 (Kato et al., 2008, 2013; Kobayashi et al., 2009, 2010). 

Thus, the occupancy ratio f1 of phase 1 can be calculated as follows

10. 
1

1

1 2

n

n n

φ =
+

where n1 and n2 are the numbers of voxels in classes 1 and 2, 

respectively. Note that the number of mixels (i.e., voxels in class 

3) does not appear in this calculation (Kato et al., 2013). The 

occupancy ratio of phase 2 can be evaluated in the same manner.

The above-mentioned calculation can also be applied to the images 

of multi-phase materials. For example, in three-phase images, the 

occupancy ratio of phase 1 in porous material f1 can be calculated on 

the basis of a few assumptions regarding spatial phase distribution 

in the image using the following equation

11. 
1

1

1 2 3

n

n n n

φ =
+ +

where n1, n2 and n3 are the numbers of voxels in classes 1, 2 and 3, 

respectively. Note that the numbers of mixels (i.e., voxels in classes 

4 and 5) do not appear in this calculation. The occupancy ratio of 

another phase can be evaluated in the same manner.

X-ray CT

Microfocus X-ray CT
X-ray CT is a non-destructive, non-invasive 3D visualisation 

and quantification tool for non-transparent objects. Microfocus 

X-ray CT is based on recording X-ray projections of an object at 

different angles and stacking several sequential slices. A filtered 

back-projection algorithm is then used for reconstructing a slice 

image through the object to reveal the linear attenuation coefficient 

distribution. The attenuation coefficient depends on the applied 

Sand 
grain Bitumen

Water

Methane 
gas or air

Figure 4. Schematic of spatial distribution and contact between 
each constituent in oil sand
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Figure 5. Example of histogram obtained from a three-phase 
image with lines showing the probability distributions of five 
classes and their superposition
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X-ray energy, and the atomic number and density of a given 

object. Descriptions of microfocus X-ray CT instruments and 

reconstruction algorithms can be found in the work of Kak and 

Slaney (1988).

In this study, a microfocus X-ray CT scanner (TOSCANER 31300 

μhd, Toshiba IT and Control Systems Co.) installed at Hokkaido 

University, Japan, was used (Kato et al., 2009, 2013; Kawaragi et 

al., 2009; Kobayashi et al., 2009, 2010; Yamanaka et al., 2011). 

The focal spot size of the X-ray source assembly is 5 μm. Scans 

were conducted at 130 kV (the maximum tube voltage of the 

device) and 62 μA. Furthermore, the full-scan mode of a single 

slice was selected for this study. It is possible to set the number 

of views (number of angular projections, £4800) and number of 

stacks per angle (number of exposures per frame, £50) arbitrarily. 

For this study, 1500 views and 20 stacks per angle were selected. 

In addition, the distance between the focal spot of the X-ray source 

and the centre of rotation (focus–centre distance (FCD)) can be 

adjusted (£50 cm) for varying CT image resolution.

In this study, a tiny elongated voxel with cross-sectional dimensions 

of 6∙3 μm × 6∙3 μm for slice scan and 10∙7 μm × 10∙7 μm for cone 

beam scan, respectively, and a voxel height of approximately 20 μm 

depending on the FCD, were used. The matrix size was set to 2048 

× 2048 and 1024 × 1024 pixels for slice scan and cone beam scan, 

respectively.

The gain and position of the CT scanner’s rotational centre were 

calibrated carefully for reducing artefacts and obtaining clear 

images. However, residual blur is inevitable in X-ray CT images. 

There are two primary causes of blur: the penumbra effect, which 

depends on focal spot size and distances between the X-ray source, 

object and detector (Curry et al., 1990); and the partial volume 

effect, which results from the existence of multiple substances in 

each voxel of the CT images (Ketcham and Carlson, 2001). In this 

study, the partial volume effect was modelled stochastically, and the 

developed model was used for image segmentation.

Samples
The authors used artificial and natural porous materials. The 

artificial materials were thin line shapes such as aluminium wires 

and nylon threads. The diameter and density of these objects were 

0∙50 mm and 2∙65 g/cm
3
 (aluminium wire), and 0∙52 mm and 

1∙5 g/cm
3
 (nylon thread). These objects were homogeneous, and 

their densities were close to those of geomaterials. Furthermore, 

the cross-sectional areas of these objects were constant throughout 

(air), white regions represent class 2 (nylon threads) and grey 
regions represent class 3 (mixels)

Figure 6. (a) Original X-ray CT image of only nylon threads 
(size 3∙7 × 3∙0 mm) and (b) image segmented using thresholding 
method based on mixel model; black regions represent class 1 
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their lengths. For observations, bundles comprising 20 wires of only 

one type as well as bundles of ten wires each of both aluminium 

and nylon were used. 

The natural material used was an oil sand sample cored from a depth 

of 284 m in a part of the Hangingstone area in Athabasca, Alberta, 

Canada. This sample was preserved by freezing after coring. 

However, it was assumed that the volatile constituent of crude oil 

in the sample had evaporated. Bitumen remained on the surface 

of the sand grains and in the spaces between them. The oil sand 

sample comprised sand grains, bitumen, water and air. The liquid 

phase (bitumen and water) wetted the surface of the solid phase 

(sand grains). The gaseous phase existed in the remainder of the 

inter-grain volume. The oil sand sample was cut into approximately 

1-cm
3
 pieces for CT scanning.

In this study, sand grain was considered as the solid phase, water 

and bitumen as the liquid phase and air trapped in the pores as the 

gaseous phase. However, bitumen was not in the liquid state at 

room temperature.

Results and validation

Artificial materials
Bundled thin lines (aluminium wires and nylon threads separately) 

were scanned using an X-ray CT scanner. For example, the original 

CT image of bundled nylon threads is shown in Figure 6(a). Its 

size is mentioned in the corresponding figure caption. In this 

figure, light grey circles represent nylon threads. The number of 

threads is 20. The histogram of this image is shown in Figure 7. 

The histogram has a bimodal distribution, thus implying that the 

image is of a two-phase material. Using this histogram along with 

the procedure for setting the threshold vector t, explained above 

(‘Thresholding method’), two types of logarithmic likelihood 

distributions corresponding to threshold vector t were obtained, as 

shown in Figure 8. The authors found that the JK(t) criterion was 

unsuitable because both thresholds were almost the same at the 

point of maximum JK(t). Therefore, the JD(t) criterion was adopted 

instead of the JK(t) criterion, and the thresholds were determined 

at the point of maximum JD(t). In Figure 7, the lines indicate the 

probability distribution of three classes (two of pure voxels and one 

of a mixel) calculated using the thresholds and their superposition. 

After applying the thresholding method based on the mixel model, 

described above (‘Segmentation method’), to the histogram, the 

segmented image shown in Figure 6(b) was obtained. Using the 
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segmented image, the authors calculated the cross-sectional areas 

of the nylon threads and aluminium wires (Table 1).

Next, a bundle comprising ten aluminium wires and ten nylon 

threads was scanned. The original X-ray CT image is shown in 

Figure 9. Its size is mentioned in the corresponding figure caption. 

In the figure, the black regions represent air, the white regions 

represent aluminium wires and the grey regions represent nylon 

threads. The histogram of this CT image is shown in Figure 10. 

The histogram has a trimodal distribution, thus implying that this 

image is of a three-phase material. The lines in Figure 10 indicate 

the probability distributions of five classes (three of pure voxels 

and two of mixels) and their superposition. Figure 11 shows the 

image segmented using the thresholding method based on the mixel 

model for oil sand. Using the segmented image, the cross-sectional 

area of each constituent in a bundle comprising nylon threads and 

aluminium wires was calculated (Table 2).

Material
Actual cross-sectional 

area: mm2

Area estimated by this 
segmentation method: mm2 Relative error

Nylon threads 4∙31 4∙42 0∙03
Aluminium wires 4∙12 4∙50 0∙09

Table 1. Comparison of cross-sectional areas in two-phase 
segmentation

Figure 9. Original X-ray CT image of nylon threads and aluminium 
wires (size 3∙2 × 3∙3 mm); black regions represent air, white 
regions represent aluminium wires and grey regions represent 
nylon threads
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Natural material
The oil sand specimen used in this study as a natural porous material 

was scanned using an X-ray CT scanner. The original X-ray CT 

image of the oil sand is shown in Figure 12(a). Figure 12(b) shows 

an enlarged view of the part of Figure 12(a) that was used for image 

segmentation. In the figure, the black regions represent air, and the 

light-grey regions represent sand grains. The histogram of this image 

is shown in Figure 13. The histogram has a trimodal distribution, 

thus implying that this image is of a three-phase material. The lines 

in the graph indicate the probability distributions of five classes 

(three for pure voxels and two for mixels) and their superposition. 

Figure 14 shows the image segmented using the thresholding 

method based on the mixel model for oil sand. Using the segmented 

image, the authors calculated the occupied area and occupancy ratio 

of each constituent in the oil sand (Table 3).

The original 3D X-ray CT image of oil sand reconstructed using 

40 slices is shown in Figure 15(a). Figure 15(b) shows a 3D 

image reconstructed by stacking 40 slices segmented using the 

aforementioned thresholding method, as shown in Figure 14. The 

legend in Figure 15(b) is the same as that in Figure 14.

Validation of results
The authors can verify the segmentation method introduced in this 

study by comparing the cross-sectional area of the thin wires as 

calculated from the voxel number of the segmented image with 

their actual cross-sectional area. The ratio of these two values 

represents the relative error of this method.

For two-phase materials, the relative error in the cross-sectional 

area of the bundled aluminium wires was 0∙09, while that for 

bundled nylon threads was 0∙03 (Table 1). These results are in 

good agreement with the actual cross-sectional areas of the wires 

and threads used herein. Therefore, the segmentation method is 

effective for two-phase materials.

For three-phase materials, relative error can be evaluated in a manner 

similar to that described above. Relative error in the cross-sectional 

2 mm

(a) (b)

Figure 12. (a) Original X-ray CT image of oil sand and 
(b) enlarged view (size 1∙4 × 1∙6 mm); black regions represent air 
and light-grey regions represent sand grains

Material
Actual cross-sectional 

area: mm2

Area estimated by this 
segmentation method: mm2 Relative error

Nylon threads 2∙12 2∙57 0∙21
Aluminium wires 1∙96 2∙04 0∙04
Air 6∙41 5∙89 0∙08

Table 2. Comparison of cross-sectional areas in three-phase 
segmentation
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area of the ten aluminium wires in the bundle of aluminium wires 

and nylon threads was 0∙04 and that of the ten nylon threads in 

the same bundle was 0∙21 (Table 2). The calculated cross-sectional 

area of aluminium wires agrees well with the actual cross-sectional 

area. However, that is not the case with the nylon threads. This is 

because in the CT image shown in Figure 11, halation occurred 

against the aluminium wires and strengthened the intensity of the 

air region, thus resulting in an overestimation of the nylon thread 

area. However, it is believed that this error can be minimised as the 

device and the technique are refined.

According to Figure 14, oil sand comprises sand grains, liquid 

(water and bitumen) and air. The liquid wets the surfaces of the 

Constituent
Occupied 
area: mm2

Occupancy 
ratio: %

Sand grain 67∙5 58∙8
Water and bitumen 32∙9 28∙7
Air 14∙4 12∙5

Table 3. Occupancy ratio of each phase constituting oil sand

(a)

(b)

Figure 15. (a) Original 3-D X-ray CT image of oil sand and (b) 3-D 
image segmented using the thresholding method based on the 
mixel model; legend is the same as in Figure 14
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sand grains, and air exists in the remainder of the pore volume. 

The liquid phase could not be sub-classified because the density 

difference between bitumen and water is small. This is evident from 

the histogram shown in Figure 13.

Herein, the occupancy ratio, which is the ratio of object phase 

volume to bulk volume of oil sand, is evaluated. The occupancy 

ratios of sand grain, liquid (bitumen and water) and air are 58∙8%, 

28∙7% and 12∙5%, respectively (Table 3). If bitumen can be 

separated from liquid, fundamental data for quantifying resources 

in oil sand formations can be obtained.

Figure 15(b) illustrates not only the arrangement of sand grains but 

also the pore connectivity network. In the case that a numerical 

simulation of immiscible fluid behaviour is needed, the geometry 

and connectivity of pores can be used for effective estimation.

Conclusions
This paper introduces a thresholding method that considers the 

partial volume effect for two- and three-phase digital images. The 

method was verified using X-ray CT images of thin line shapes 

such as aluminium wires and nylon threads, and then successfully 

applied to the CT images of oil sand. The segmentation method 

introduced in the study allows us to estimate the volume and 

occupancy ratio of each constituent forming a porous material with 

reasonable accuracy.

A solution to the problem of separating bitumen and water from 

each other would afford us with fundamental data for quantifying 

resources in oil sand formation. The geometry and connectivity of 

pores in oil sand can be used in numerical simulations for estimating 

the behaviour of immiscible fluids. These are considerations for 

future work.
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Appendix 1: Mixture model for 
multi-phase objects
Spatial distribution data of the X-ray attenuation coefficients of a 

multi-phase object are obtained by X-ray CT scanning. Using these 

data, a greyscale image is drawn as a mixture of pure pixels, which 

correspond to pixels covered by a single phase, and mixels, which 

correspond to pixels occupied by two or more phases (Figure 1). 

In addition, a histogram of the attenuation coefficient or intensity 

level of the image is generated. In fact, the histogram of pure pixels 

follows a normal distribution 
2

( ; , )i iN x µ σ  with the expectation μi 

and variance 
2σ i  of constituent class i. Accordingly, the PDF fi(x) of 

constituent class i corresponding to the pure pixels of phase i can be 

expressed as Equation 1.

For materials with more than two phases, the authors need mixels 

comprising more than two classes. In reference to Kitamoto 

(2000), the PDF of an n-class mixel for np-phase materials 

(2 £ n £ np) can be generalised according to the following equation

12. 
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where the multi-variate beta function (Letaca et al., 2001; Mauldon, 

1959) is as follows

13. 
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- - -= ò ò ò… … … …

where ai is the area proportion of constituent class i and 
1

1
ni

j
j i

a
=

=å  

(aj ≥ 0) holds, and μa and 
2σ a are as follows

14. 1

ni

a j j

j i

aµ µ
=

= å

15. 1

2 2 2

ni

a j j

j i

aσ σ
=

= å

The total number of class classifications (pure pixels and mixels) in 

an image of a multi-phase material 
pnN  obeys the relation expressed 

by the following progression

16. 1
2( 1) 1 ( 1,2, )

p pn n p
N N n+ = + - = …

Accordingly, the total number of class classifications can be 

expressed as follows

17. 2 1 ( 1,2, )
p

p

n

n p
N n= - = …

For example, when an image is of a single-phase material, that is, 

np = 1, N1 is apparently 1, calculated using Equation 17 as N1 = 2 – 

1 = 1. When an image is of a two-phase material, showing its 

bimodal histogram, that is, np = 2, N2 = 2
2
 – 1 = 3. Repeating this 

calculation, N3 = 2
3
 – 1 = 7; if np = 3, N4 = 2

4
 – 1 = 15; if np = 4, 
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N5 = 2
5
 – 1 = 31; if np = 5 and so on. Similarly, for images of multi-

phase materials, the number of pixel classifications increases 

rapidly as the number of phases in a material increases.

Here, the total number of mixel classifications is obtained by 

subtracting the number of pure pixel classifications np from 
pnN , 

then 2 1( 1,2, )
pn

p pn n- - = … . In the segmentation carried out in 

this study, the number of thresholds is double the total number 

of mixel classifications, resulting in the number 
1

2 2 2
+ - -pn

pn . 

Furthermore, the number of thresholds increases rapidly as the 

number of phases in a material increases.

Appendix 2: Maximum likelihood 
thresholding criteria
Let ω�k and 

2σ�k  be the occurrence probability and variance, 

respectively, of class k. Using the occurrence probability, ω�k, and 

variance, 
2σ�k , of class k, the expectation of variance within each 

class, 
2σ� , is expressed as follows

18. 

2 2

1

M

k k

k

σ ω σ
=

= å� � �

Here, four types of maximum logarithmic likelihoods are 

summarised in relation to statistical properties of each class with 

reference to Sekita et al. (1995). For the first case that wk and 
2σ k  of 

each class are almost the same, the following maximum likelihood 

thresholding criterion was introduced by Otsu (1979)

19. ( ) ln
O

J σ= -t �

For the second case that wk is almost the same but 
2σ k  is different, 

Sekita et al. (1995) proposed the following criterion 

20. 1

( ) ln

M

D k k

k

J ω σ
=

= -åt � �

For the third case that w k is different but 
2σ k  is almost the same, 

Kurita et al. (1992) proposed the following criterion 

21. 1

( ) ln

M

k

Q k

k

J
ωω
σ=

= åt

��
�

For the fourth case that both w k and 
2σ k  are different, Kitller and 

Illingworth (1986) proposed the following criterion 

22. 1

( ) ln

M

k

K k

kk

J
ωω
σ=

= åt

��
�

Accordingly, all the above-mentioned maximum likelihood 

thresholding criteria are determined using both ω�k and 
2σ�k .
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WHAT DO YOU THINK?

To discuss this paper, please submit up to 500 words to the 
editor at journals@ice.org.uk. Your contribution will be 
forwarded to the author(s) for a reply and, if considered 
appropriate by the editorial panel, will be published as a 
discussion in a future issue of the journal.
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