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New Uncertainty Relations (2003)

• Measurement–Disturbance Relation:

ε(A)η(B) + ε(A)σ(B) + σ(A)η(B) ≥
1

2
| 〈[A,B]〉 |.

• Joint–Measurement Relation:

ε(A)ε(B) + ε(A)σ(B) + σ(A)ε(B) ≥
1

2
| 〈[A,B]〉 |.

• Uncertainty relations should “generally” lead to the impossibility of si-
multaneous measurements of non-commuting observables.

• State-dependent formulation: Heisenberg’s γ-ray microscope thought
experiment is state-dependent! (Error∼Resolution Power∼Wave Length)

• State-dependent prior information make it possible to simultaneously
measure non-commuting observables (Schödinger 1935, Hall 2004).



Debate

• State-dependent formulation is impossible (Busch-Lahti-Werner 2014,
Korzekwa-Jennings-Rudolph 2014).

• State-dependent formulation is possible (2019).

“Thus, we already have a well-developed theory of state-dependent mea-
surement uncertainty relations based on a sound and complete q-rms
error, in contrast to a prevailing claim that the state-dependent formula-
tion of measurement uncertainty relations is not tenable.”

[MO, Soundness and completeness of quantum root-mean-square errors.
npj Quantum Inf. 5, 1 (2019)]



The point: What is an accurate measurement?

• Any measurement of A(0) is described by interaction U(τ ) with appa-
ratus prepared in |ξ〉, and the meter readingM(τ ), where

U(τ ) : HS ⊗ HE → HS ⊗ HE, unitary

A(0) = A⊗ I, M(τ ) = U(τ )†(I ⊗M)U(τ )

• Probability Reproducibility:

Pr{A(0) = x} = Pr{M(τ ) = x}

• Value Reproducibility:

Pr{A(0) = x,M(τ ) = y} = 0 if x 6= y.

or equivqalently
Pr{A(0) = M(τ )} = 1,



Quantum root-mean-square-errors

• Noise-operator based root mean square error:

εNO(A, |ψ〉) = ‖M(τ ) |ψ〉 |ξ〉 −A(0) |ψ〉 |ξ〉 ‖

• Noise-operator based root-mean-square error is not well-behaved with
respect to the probability reproducibility.

• Pr{A(0) = x} = Pr{M(τ ) = x} 6⇒ εNO(A, |ψ〉) = 0.

• εNO(A, |ψ〉) = 0 6⇒ Pr{A(0) = x} = Pr{M(τ ) = x},

• However, well-behaved with respect to the value reproducibility.

• Pr{A(0) = M(τ )} = 1 ⇒ εNO(A, |ψ〉) = 0.

• supt εNO(A, e−itA |ψ〉) = 0 ⇔ Pr{A(0) = M(τ )} = 1.



Probability reproducibility

• The POVM Π of the measurement (U, |ξ〉 ,M) is defined by

Π(x) =
〈
ξ|PM(τ)(x)|ξ

〉
,

where PX is the spectral measure of an observable X .

• Theorem: Being probability reproducible for all input states |ψ〉 if and
only if Π = EA.

• In the conventional approach, probability reproducibility is considered
as a necessary condition for accurate measurements.



Repeatability

• Repeatability: Pr{A(τ ) = x,M(τ ) = y} = 0 if x 6= y.

• In the conventional approach, accurate measurements are required to
satisfy repeatability, as substitute for the value reproducibility.

• Schrödinger 1935:

The rejection of realism has logical consequences. In general, a variable
has no definite value before I measure it; then measuring it does not
mean ascertaining the value that it has. But then what does it mean? [. . .
] Now it is fairly clear; if reality does not determine the measured value,
then at least the measured value must determine reality [. . . ] That is, the
desired criterion can be merely this: repetition of the measurement must
give the same result.



Measuring process

• von Neumann (1932) found the interactionU(τ ) satisfying the probabil-
ity reproducibility and the repeatability for A =

∑
n an |φn〉〈φn| and

M =
∑

n an |ξm〉〈ξm|:

U(τ ) |φn〉 |ξ〉 = |φn〉 |ξn〉.

• If the input state is a superposition |ψ〉 =
∑

n cn |φn〉 then

U(τ ) |ψ〉 |ξ〉 =
∑

n cn |φn〉 |ξn〉.

• Then we have

(i) P-Reproducibility: Pr{A(0) = an} = Pr{M(τ ) = an} = |cn|2.

(ii) Repeatability: Pr{A(τ ) = an,M(τ ) = am} = 0 if n 6= m.



Is repeatability necessary?

• It has long been overlooked that von Neumann’s measuring process sat-
isfies V-Reprodubility.

• Note that Repeatability is equivalent to

|ψ〉 |ξ〉 =
∑

n cn |A(τ ) = an,M(τ ) = an〉.

• Similarly, V-Reproducibility is equivalent to

|ψ〉 |ξ〉 =
∑

n cn |A(0) = an,M(τ ) = an〉.

• We shall show this supposing more generally:

U(τ ) |φn〉 |ξ〉 =
∣∣∣φ′

n

〉
|ξn〉,

where {
∣∣∣φ′

n

〉
} is arbitrary not necessarily orthogonal.



P-reproducibility implies V-reproducibility

• We have

A(0) |φn〉 |ξ〉 = (A⊗ I) |φn〉 |ξ〉 = an |φn〉 |ξ〉 .
M(τ ) |φn〉 |ξ〉 = U(τ )†(I ⊗M)U(τ ) |φn〉 |ξ〉

= U(τ )†(I ⊗M)
∣∣∣φ′

n

〉
|ξn〉

= anU(τ )†
∣∣∣φ′

n

〉
|ξn〉

= an |φn〉 |ξ〉 .

• Thus, V-Reproducibility holds:

|ψ〉 |ξ〉 =
∑

n cn |A(0) = an,M(τ ) = an〉 ,

with
|A(0) = an,M(τ ) = an〉 = |φn〉 |ξ〉.



What is an accurate measurement?

• Theorem: The following conditions are all equivalent:

(i) Π = EA.

(ii) The P-reproducibility condition is satisfied for all input state.

(ii) The V-reproducibility condition is satisfied for all input state.

• Definition: A measurement of A in a state |ψ〉 is accurate if the V-
reproducibility condition is satisfied for |ψ〉, i.e.,

Pr{A(0) = M(τ )} = 1.



Requirements for Quantum RMS Errors

(i) Device-independent definability: The error measure should be definable
by the POVM Π, the observableA, and the state |ψ〉.

(ii) Correspondence principle: The error measure should be identical with
the classical rms error if the joint probability distribution of M(τ ) and
A(0) exists.

(iii) Soundness: The error measure should take the value zero if the measure-
ment is accurate.

(iv) Completeness: The error measure should take the value zero only if the
measurement is accurate.

• Noise operator based rms error satisfies (i)–(iii) but not (iv).



Device-Independent Definability

• The NO based QRMSE εNO, satisfies the device-independent definabil-
ity.

• The POVM of M: Π(x) =
〈
ξ|EM(τ)(x)|ξ

〉
• Moment operator of POVM Π: m(n)(Π) =

∑
x∈R x

nΠ(x)

• εNO(A, |ψ〉) satisfies

εNO(A, |ψ〉)2 = Re
〈
ψ|m(2)(Π) − 2m(Π)A + A2|ψ

〉
.



Correspondence Principle

• εNO satisfies the correspondence principle.

• IfM(τ ) andA(0) commute in |ψ〉 |ξ〉, there exists the joint probability
distribution

µ(a,m) = Pr{A(0) = a,M(τ ) = m}

and we have

εNO(A, |ψ〉)2 =
∑
a,m

(m− a)2µ(a,m).

• Note that any error notions having been proposed based on the distance
between the probability distributions do not satisfy the Correspondence
Principle.



Soundness

• εNO satisfies the soundness condition.

• If Pr{A(0) = M(τ )} = 1 then

µ(a,m) = 0 ifm 6= a,

and hence

εNO(A, |ψ〉)2 =
∑
a,m

(m− a)2µ(a,m) = 0.

• Thus, εNO satisfies the device-independent-definability, the correspon-
dence principle, and the soundness.



Example

A =

 1 1

1 1

 , M =

 1 1

1 −1

 , |ψ〉 =

 1

0


with Π(y) = PM(y). Then we have

εNO(A, |ψ〉) = 0,

but the measurement is not accurate, since A and Π are not identically
distributed as

〈
ψ|PA(2)|ψ

〉
= 1/2 but 〈ψ|Π(2)|ψ〉 = 0.



Locally Uniform Quantum Root Mean Square Er-
ror

• For any t ∈ R, define

εt(A, |ψ〉) = ε(A, e−itA |ψ〉).

• The locally uniform rms error is defined by

ε(A) = ε(A, |ψ〉) = supt∈R εt(A, |ψ〉).

• Quantization of the squared difference. Let

d2(X,Y ) = supt∈R e
itX(Y −X)2e−itX.

Then, d2(X,Y ) = (Y −X)2 if [X,Y ] = 0, and

ε(A,ψ) = 〈ψ, ξ|d2(A(0),M(τ ))|ψ, ξ〉1/2 .



• Theorem: (1) IfA(0) andM(τ ) commute in |ψ〉 |ξ〉, then

ε(A) = εNO(A).

(2) ε satisfies all the requirements (i)–(iv).

(3) εNO(A) ≤ ε(A).

(4) IfA(0)2 = M(τ )2 = I , then ε(A) = εNO(A).

(5) The relation

ε(Q)ε(P ) ≥
h̄

2
is violated.



Uncertainty Relations for Simultaneous Measure-
ments

• Let CAB =
1

2
| 〈ψ|[A,B]|ψ〉 |.

• The following relations hold for

ε(A) = ε(A,ψ, f(M)) and

ε(B) = ε(B,ψ, g(M)).

• ε(A)ε(B) + σ(B)ε(A) + σ(A)ε(B) ≥ CAB.

• σ(B)2ε(A)2 + σ(A)2ε(B)2

+2ε(A)ε(B)
√
σ(A)2σ(B)2 − C2

AB ≥ C2
AB.


