
	Workshop ``Hilbert‘s Sixth Problem’’ 
University of Leicester, UK, May 2 (2--4), 2016 

 

Completion of von Neumann’s Axiomatization  
of Quantum Mechanics: 

 From the Repeatability Hypothesis  
to Quantum Instruments	

 
 
  

MASANAO OZAWA  
Nagoya University 

　	



Von Neumann’s Axioms for Quantum Mechanics
• Axiom 1 (States and observables). Every quantum system S is described by a

Hilbert space H called the state space of S. States of S are represented by den-
sity operators on H and observables of S are represented by self-adjoint operators
on H.

• Axiom 2 (Born statistical formula). If an observable A is measured in a state ρ,
the outcome obeys the probability distribution of A in ρ defined by

Pr{A ∈ ∆∥ρ} = Tr[EA(∆)ρ],

where ∆ ∈ B(R).

• Axiom 3 (Time evolution). Suppose that a system S is an isolated system with the
(time-independent) Hamiltonian H between time t and t + τ . If the system S is in
a state ρ(t) at time t then S is in the state ρ(t + τ ) at time t + τ satisfying

ρ(t + τ ) = e−iτH/h̄ρ(t)eiτH/h̄.
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Repeatability Hypothesis

• Axiom R (Repeatability hypothesis). If an observable is measured twice in succes-
sion in a system, then we get the same value each time.
J. von Neumann, Mathematische Grundlagen der Quantenmechanik (1932)

• Axiom M (Measurement axiom). If an observable A is measured in a system S
to obtain the outcome a, then the system S is left in an eigenstate of A belonging
to a.

• Theorem (von Neumann, 1932). Axiom R is equivalent to Axiom M.

• Schrödinger’s definition of measurement
The systematically arranged interaction of two systems (measured object and mea-
suring instrument) is called a measurement on the first system, if a directly-sensible
variable feature of the second (pointer position) is always reproduced within certain
error limits when the process is immediately repeated.
E. Schrödinger, Naturwissenshaften 23, 807, 823, 844 (1935).
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Approximate Repeatability Hypothesis

• Axiom AR (Approximate repeatability hypothesis). If an observable is measured
with error ε and immediately afterward measured without error, then the first out-
come is reproduced within error ε.

• Definition: A state ρ is called an ε-approximate eigenstate belonging to a if

∥A
√
ρ− a

√
ρ∥HS ≤ ε.

• Axiom AM (Approximate measurement axiom). If an observable A is measured
in a system S with mean error ε to obtain the outcome a, then the system S is left
in an ε-approximate eigenstate of A belonging to a.

• Theorem. Axiom AR is equivalent to Axiom AM.
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Uncertainty Principle: Heisenberg’s Original
Formulation

• Definition. Two observables Q, P are called canonically conjugate if

QP − PQ = ih̄.

• Theorem (under Axioms 1–3). The standard deviations σ(Q),
σ(P ) of canonically conjugate observables Q, P satisfy

σ(Q)σ(P ) ≥
h̄

2
.

W. Heisenberg, Z. Phys. 43,172 (1927); E. H. Kennard, 44, 326 (1927).

• Theorem (under Axioms 1–3 and Axiom AR)
(Heisenberg’s uncertainty principle). Canonicallyconjugate
observables can be measured simultaneously only with mean
errors ε(Q), ε(P ) satisfying

ε(Q)ε(P ) ≥
h̄

2
.

W. Heisenberg, Z. Phys. 43,172 (1927).
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Proof

• Let ρ be the state just after a simultaneous measurement of Q and P with the
mean errors ε(Q), ε(P ) to lead the outcomes q, p. By Axiom AR, we have

ε(Q) ≥ ∥Q
√
ρ− q

√
ρ∥HS,

ε(P ) ≥ ∥P
√
ρ− p

√
ρ∥HS..

On the other hand, we have

∥Q
√
ρ− q

√
ρ∥HS ≥ σ(Q),

∥P
√
ρ− p

√
ρ∥HS ≥ σ(P ).

Thus, Heisenberg’s uncertainty relation follows from

ε(Q)ε(P ) ≥ σ(Q)σ(P ) ≥
h̄

2
.

• Conclusion: Quantum Mechanics from 1932 to 1960’s was axiomatized by Ax-
ioms 1–3 and Axiom AR.
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Abandoning of RH in Modern Quantum Theory

• 1970: Davies-Lewis Thesis
One of the crucial notions is that of repeatability which we show is implicitly as-
sumed in most of the axiomatic treatments of quantum mechanics, but whose aban-
donment leads to a much more flexible approach to measurement theory.
E.B. Davies and J.T. Lewis, CMP 17, 239 (1970)

Devies-Lewis Instruments

• Notations.
τc(H)=the space of trace-class operators on H.
P (τc(H))=the space of positive maps on τc(H).

• Definition. An instrument for H is a P (τc(H))-valued Borel measure on R such
that I(R) is trace-preserving.
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Davies-Lewis Axiom

• Notations.
Pr{x ∈ ∆∥ρ}=the probability of obtaining the outcome x in a Borel set ∆.
ρ{x∈∆}=the state after the measurement for the ensemble given x ∈ ∆ for input
state ρ

• Axiom DL (Davies-Lewis axiom). For any measuring apparatus there exists an
instrument I such that its statistical properties are determined by

Pr{x ∈ ∆∥ρ} = Tr[I(∆)ρ],

ρ{x∈∆} =
I(∆)ρ

Tr[I(∆)ρ]
.
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Yuen’s Realization Problem

• What is the mathematical characterization of a general quantum measurement?
. . . I believe the (Davies-Lewis) operational approach is too general—many mea-
surements within this approach are not realizable in the above sense. . . . Since
precision measurement is a perennial problem, the characterization and realization
of general quantum measurements, besides being cornerstones in the structure of
quantum physics, will also be of perennial physical relevance.
H. P. Yuen, Characterization and Realization of General Quantum Measurements, Proc. ISQM-
TOKYO’86, 360 (1986).

9



Measuring Processes

• Definition. Measuring Process : (K, ξ, U, M) ⇔

K = a Hilbert space, modeling the state space of the probe
ξ = a unit vector on K, modeling the initial state of the probe

U = a unitary on H ⊗ K, modeling the measuring interaction
M = a self-adjoint operators on K, modeling the meter observable
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Measuring Processes Determine Completely
Positive Instruments

• Definition. An instrument I is called completely positive if I(∆) is completely
positive for all Borel sets ∆.

• Theorem. Any measuring process (K, ξ, U, M) determines a completely positive
instrument I by

I(∆) = TrK[U(ρ⊗ |ξ⟩⟨ξ|)U†(I ⊗ EM(∆))],

which is consistent with DL axiom:
(i) Output Probabiliy:
Pr{x ∈ ∆∥ρ} = Tr[U(ρ⊗ |ξ⟩⟨ξ|)U†(I ⊗ EM(∆))] = Tr[I(∆)ρ].

(ii) Posterior State:

ρ{x∈∆} =
TrK[U(ρ⊗ |ξ⟩⟨ξ|)U†(I ⊗ EM(∆))]

Tr[U(ρ⊗ |ξ⟩⟨ξ|)U†(I ⊗ EM(∆))]
=

I(∆)ρ

Tr[I(∆)ρ]
.

MO, JMP 25, 79 (1984).
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Realization Theorem

• Theorem (Realization theorem). For every completely positive instrument there
is a measuring process (K, ξ, U, M) determining I . Thus, physically realizable
quantum measurements are characterized by the mathematical notion of com-
pletely positive instruments.
MO, JMP 25, 79 (1984).
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Quantum Measurement Theory

• Axiom M1 (Output Distribution, Quantum State Reduction). Every apparatus
A(x) determines:
(i) Output Probability: ρ !→ Pr{x ∈ ∆∥ρ}
(ii) Posterior State: (ρ, x) !→ ρ{x∈∆}

• Axiom M2 (Composition Law).
Every pair A(x) and A(y) have their composition A(x, y):
(i) Pr{(x, y) ∈ ∆ × Γ∥ρ} = Pr{y ∈ Γ∥ρ{x∈∆}} Pr{x ∈ ∆∥ρ},

(ii) ρ{(x,y)∈∆×Γ} = (ρ{x∈∆}){y∈Γ}

• Axiom M3 (Mixing Law).
Output probability is an affin function of input state, i.e.,
Pr{x ∈ ∆∥pρ+ (1 − p)ρ′}=p Pr{x ∈ ∆∥ρ} + (1 − p) Pr{x ∈ ∆∥ρ′}
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• Axiom M4 (Trivial Extendability).
Every apparatus A(x) has its trivial extension A(x ⊗ I):
(i) Pr{x ⊗ I ∈ ∆∥ρ⊗ ρ′}=Pr{x ∈ ∆∥ρ}
(ii) (ρ⊗ ρ′){x⊗I∈∆} = ρ{x∈∆} ⊗ ρ′
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General Measurement Axiom

• Theorem. Axioms M1–M3 are equivalent to Axiom DL. Axioms M1-M4 and
Realization Theorem are equivalent to the following axiom:

• Axiom GM (General measurement axiom). For any measuring apparatus there
exists a completely positive instrument I such that its statistical properties are
determined by

Pr{x ∈ ∆∥ρ} = Tr[I(∆)ρ],

ρ{x∈∆} =
I(∆)ρ

Tr[I(∆)ρ]
,

and every completely positive instrument arises from a measuring apparatus in
this way.
MO, Ann. Physics 311, 350 (2004).

• Conclusion: Quantum mechanics after 1984 is axiomatized by Axioms 1– 3 and
Axiom GM.

15



Controversy over the Limit for Gravitational Wave
Detection

• In 1980, Braginsky, Thorne, Caves and collaborators derived the standard quan-
tum limit (SQL) to interferometer type gravitational wave detectors from Heisen-
berg’s uncertainty principle, promoting resonator type approach.
V. B. Braginsky, K. S. Thorne et al., Science 209, 547 (1980); C. M. Caves, K. S. Thorne et
al., Rev. Mod. Phys. 52, 341 (1980)

• In 1983, Yuen claimed that such a limit can be broken by a contractive state
measurement.
H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983).

• In 1985, Caves criticised Yuen’s argument with a new proof of SQL and ques-
tioned the realizability of the contractive state measurement.
C. M. Caves, Phys. Rev. Lett. 54, 2465 (1985).
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• In 1988, M.O. showed that a contractive state measurement can be
realized and indeed the SQL is broken to settle the debate.

1. Caves proof used the approximate repeatability hypothesis.
2. A solvable measuring process realizing Yuen’s idea is constructed to beat

the SQL.

M. O., Phys. Rev. Lett. 60, 385 (1988).

• In 1992, Thorne and coworkers obtained the NSF support for LIGO (Laser In-
terferometer Gravitational-Wave Observatory) project.

• In 2016, LIGO succeeded in detecting the gravitational wave.
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Ozawa’s calculation will undoubtedly lift the spirits of those 
involved with the design of gravitational wave detectors; it 
will be Interesting to see where this leads. 
	 [J. Maddox, Nature 331 (1988), 559]	



Universal Uncertainty Relation

• 2003: Universal uncertainty relations is proved under Axioms 1-3 and Axiom
GM:

ε(A)ε(B) + ε(A)σ(B) + σ(A)ε(B) ≥ CAB.

where
CAB =

1

2
|Tr([A, B]ρ)|.

• If ε(B) = 0 then
ε(A)σ(B) ≥ CAB.

MO, PRA 67, 042105 (2003); IJQI 1, 569 (2003)
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Experimental demonstration in neutron
spin measurements

• The apparatus make a projective measurement of σφ = σx cosφ+ σy sinφ for
the neutron spin.

• The apparatus is described by measurement operators Eφ(+1) = (1 + σφ)/2
and Eφ(−1) = (1 − σφ)/2 with OA =

∑
x=±1 xEφ(x).

• For A = σx, B = σy, and ρ = |σz = +1⟩⟨σz = +1|, we have

σ(A) = σ(B) = 1, ϵ(A) = 2 sin
φ

2
, η(B) =

√
2 cosφ.

Then for 0 ≤ φ ≤ π/2 we have the violation

ϵ(A)η(B) < 1.

• The experiment was carried out at the research reactor facility TRIGA Mark II
of the Vienna University of Technology (TU Vienna) by Yuji Hasegawa’s group.
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Atom institute at TU Vienna	
Research Reactor in Atom 
Institute , TU Vienna	
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Figure 3: Illustration of the experimental setup for demonstration of the universally valid uncer-
tainty relation for error and disturbance in neutron spin-measurements.
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Comparison Result	

l  Ozawa's relation holds: 

l  Heisenberg's relation fails:	

Brief Article

The Author

February 8, 2012

∆X∆Y + ∆Xσ(Y ) + σ(X)∆Y ≥
(

h

4π

)2

∆X∆Y ≥
(

h

4π

)2

1

Brief Article

The Author

February 8, 2012
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h

4π
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h
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Comparison between admissible regions	

(Heisenberg) 
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"This is certainly the first experiment to test 
Ozawa's formulation, so I think this should draw 
more attention to Ozawa's formulation, and how it 
is universally valid unlike a naive Heisenberg 
measurement-disturbance relation," said Howard 
Wiseman of Griffith University in Australia.	

	
Physics World - the member magazine of the Institute of 
Physics	



Media	



Summary	
l  In 1932 von Neumann axiomatized quantum mechanics assuming the repeatability 

hypothesis and this is incomplete about what are quantum measurements. 
l  In 1927 Heisenberg derived the uncertainty relation for simultaneous measurements 

under this assumption and this is not universally valid. 
l  In 1970 Davies and Lewis proposed to abandon the  repeatability hypothesis and 

introduced the mathematical notion of instruments.  
l  In 1980 Braginsky and Thorne claimed the standard quantum limit for gravitational 

wave detection based on Heisenberg’s uncertainty principle or the repeatability 
hypothesis and this was proved wrong in 1988.  

l  In 1986 Yuen claimed that instruments are too general and proposed the problem of 
mathematical characterization of realizable measurements.  

l  In 1984 this problem was solved by the notion of completely positive instruments and 
von Neumann’s axiomatization is completed.  

l  In 2003 a universally valid uncertainty relation was derived under this general axioms.   
l  In 2012 universally valid uncertainty relation was experimentally confirmed by neutron 

spin measurements. 
l  In 2016 LIGO project succeeded in detection of gravitational wave. 


