The 13th International Conference on Quantum Physics and Logic
(QPL2016), University of Strathclyde, Glasgow, Scotland, June 10 (6-10), 2016

Operational meanings of orders of observables defined through quantum set theories with different conditionals

Masanao Ozawa
Nagoya University, Graduate School of Information Science

Supported by JSPS KAKENHI, No. 26247016, No. 15K13456.

Classical Physics

- Physical system \Leftrightarrow Borel space (Ω, \mathcal{F})
- Observables \Leftrightarrow Real Borel functions $\boldsymbol{X}(\omega)$
- States \Leftrightarrow Probability measures P
- $\operatorname{Pr}\{X \in I \| P\}=P(\{\omega \in \Omega \mid X(\omega) \in I\})$

Quantum Physics

- Physical system \Leftrightarrow Hilbert space \mathcal{H}
- Observables \Leftrightarrow Self-adjoint operators X
- States \Leftrightarrow Density operators ρ
- $\operatorname{Pr}\{X \in I \| \rho\}=\operatorname{Tr}\left[\boldsymbol{E}^{X}(\boldsymbol{I}) \rho\right]$

Problem

- In classical physics, the probabilities for equality and order are defined.
- Equality: $\operatorname{Pr}\{X=Y \| P\}=P(\{\omega \in \Omega \mid X(\omega)=Y(\omega)\})$
- Order: $\operatorname{Pr}\{X \leq Y \| P\}=P(\{\omega \in \Omega \mid X(\omega) \leq Y(\omega)\})$
- Problem: How should we define the probabilities for equality and order of quantum observables? $\operatorname{Pr}\{X=Y \| \rho\}=?, \operatorname{Pr}\{X \leq Y \| \rho\}=$?,
- Method: Systematic use of quantum set theory.
- But, quantum logic has ambiguity for conditional: three candidates
- Conclusion: Each conditional defines a quantum set theory satisfying the ZFC transfer principle. Equality does not depend on the choice of conditional. Order depends on it, but has clear operational meaning.

Quantum Logic

- $\mathcal{Q}=$ the set of projection operators on \mathcal{H}.

$$
\begin{aligned}
& P \leq Q \Leftrightarrow P Q=P \\
& P^{\perp}=I-P
\end{aligned}
$$

$\Rightarrow \mathcal{Q}$ is a complete orthomodular lattice.

$$
\begin{aligned}
& P \wedge Q=\operatorname{wo-lim}(P Q)^{n} \\
& P \vee Q=\left(P^{\perp} \wedge Q^{\perp}\right)^{\perp}
\end{aligned}
$$

Quantum Conditionals

- Hardegree's condition for material conditional:
(LB) If $[P, Q]=0$ then $P \rightarrow Q=P^{\perp} \vee Q$.
(E) $P \rightarrow Q=1$ if and only if $P \leq Q$.
(MP) $P \wedge(P \rightarrow Q) \leq Q \quad$ (modus ponens).
(MT) $Q^{\perp} \wedge(P \rightarrow Q) \leq P^{\perp} \quad$ (modus tollens).
- There are exactly three polynomial material conditionals:
(S) $P \rightarrow{ }_{S} Q:=P^{\perp} \vee(P \wedge Q) \quad$ (Sasaki),
(C) $P \rightarrow{ }_{C} Q:=(P \vee Q)^{\perp} \vee Q \quad$ (Contrapositive Sasaki),
(R) $P \rightarrow{ }_{R} Q:=(P \wedge Q) \vee\left(P^{\perp} \wedge Q\right) \vee\left(P^{\perp} \wedge Q^{\perp}\right) \quad$ (Relevance).
- Note: $P \rightarrow Q=P^{\perp} \vee Q$ does not satisfy (E).

Characterization

- For any $P, Q \in \mathcal{Q}$, we have the following relations.
(i) $P \rightarrow_{S} Q=\operatorname{ran}\left(P^{\perp} Q\right)$.
(ii) $P \rightarrow_{C} Q=\operatorname{ran}\left(Q P^{\perp}\right)$.
(iii) $P \rightarrow{ }_{R} Q=\operatorname{ran}\left(P^{\perp} Q\right) \wedge \operatorname{ran}\left(Q P^{\perp}\right)$.
- Biconditional is defined by

$$
P \leftrightarrow Q:=(P \rightarrow Q) \wedge(Q \rightarrow P) .
$$

- Biconditionals are the same:

$$
P \leftrightarrow_{S} Q=P \leftrightarrow_{C} Q=P \leftrightarrow_{R} Q=(P \wedge Q) \vee\left(P^{\perp} \wedge Q^{\perp}\right) .
$$

Quantum Set Theory

- $V_{\alpha}^{(\mathcal{Q})}$ is defined for every ordinal α by

$$
V_{\alpha}^{(\mathcal{Q})}=\left\{u \mid u: \mathcal{D}(u) \rightarrow \mathcal{Q},(\exists \beta<\alpha) \mathcal{D}(u) \subseteq V_{\beta}^{(\mathcal{Q})}\right\}
$$

where $\mathcal{D}(u)$ is the domain of u.

- The \mathcal{Q}-valued universe $V^{(\mathcal{Q})}$ is defined by

$$
\boldsymbol{V}^{(\mathcal{Q})}=\bigcup_{\alpha \in \mathbf{O n}} V_{\alpha}^{(\mathcal{Q})}
$$

\mathcal{Q}-Valued Interpretation

- \mathcal{Q}-valued ruth value $\llbracket \phi \rrbracket$ is define by the following recursion.

1. $\llbracket u=v \rrbracket=\bigwedge_{u^{\prime} \in \mathcal{D}(u)}\left(u\left(u^{\prime}\right) \rightarrow \llbracket u^{\prime} \in v \rrbracket\right) \wedge \bigwedge_{v^{\prime} \in \mathcal{D}(v)}\left(v\left(v^{\prime}\right) \rightarrow \llbracket v^{\prime} \in u \rrbracket\right)$.
2. $\llbracket u \in v \rrbracket=\bigvee_{v^{\prime} \in \mathcal{D}(v)}\left(v\left(v^{\prime}\right) \wedge \llbracket u=v^{\prime} \rrbracket\right)$.
3. $\llbracket \neg \phi \rrbracket=\llbracket \phi \rrbracket^{\perp}$.
4. $\llbracket \phi_{1} \rightarrow \phi_{2} \rrbracket=\llbracket \phi_{1} \rrbracket \rightarrow \llbracket \phi_{2} \rrbracket$.
5. $\llbracket \phi_{1} \wedge \phi_{2} \rrbracket=\llbracket \phi_{1} \rrbracket \wedge \llbracket \phi_{2} \rrbracket$.
6. $\llbracket(\forall x \in u) \phi(x) \rrbracket=\bigwedge_{u^{\prime} \in \mathcal{D}(u)}\left(u\left(u^{\prime}\right) \rightarrow \llbracket \phi\left(u^{\prime}\right) \rrbracket\right)$.
7. $\llbracket(\exists x \in u) \phi(x) \rrbracket=\bigvee_{u^{\prime} \in \mathcal{D}(u)}\left(u\left(u^{\prime}\right) \wedge \llbracket \phi\left(u^{\prime}\right) \rrbracket\right)$.

Embedding the Standard Universe

- The universe V of ZFC set theory is embedded by $v \mapsto \check{v}$, where \check{v} is defined by

$$
\begin{aligned}
\mathcal{D}(\check{v}) & =\{\check{u} \mid u \in v\} \\
\check{v}(\check{u}) & =1
\end{aligned}
$$

Theorem 1 (Elementary Equivalence Principle) Independent of the choice of conditional, for any $\phi\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
V \models \phi\left(u_{1}, \ldots, u_{n}\right) \quad \text { if and only if } \llbracket \phi\left(\check{u}_{1}, \ldots, \check{u}_{n}\right) \rrbracket=I
$$

Commutativity

- For any subset $\mathcal{A} \subseteq \mathcal{Q}$, the commutant of \mathcal{A} is defined by

$$
\mathcal{A}^{!}=\{P \in \mathcal{Q} \mid[P, Q]=0 \text { for all } Q \in \mathcal{A}\}
$$

- The commutator of \mathcal{A} is defined by

$$
\Perp(\mathcal{A})=\bigvee\left\{E \in \mathcal{A}^{!} \cap \mathcal{A}^{!!} \mid\left[P_{1}, P_{2}\right] E=0 \text { for all } P_{1}, P_{2} \in \mathcal{A}\right\}
$$

- The support $L(u)$ of $u \in V^{(\mathcal{Q})}$ is defined by recursion on the rank of u :

$$
L(u)=\bigcup_{x \in \mathcal{D}(u)} L(x) \cup\{u(x) \mid x \in \mathcal{D}(u)\}
$$

- The commutator of $u_{1}, u_{1}, \ldots, u_{n}$ is defined by

$$
\underline{\vee}\left(u_{1}, \ldots, u_{n}\right)=\Perp\left(L\left(u_{1}\right) \cup \cdots \cup L\left(u_{n}\right)\right)
$$

Transfer Principle

Theorem 2 Independent of the choice of conditional, for every formula $\phi\left(x_{1}, \ldots, x_{n}\right)$,
if $\mathrm{ZFC} \vdash \phi\left(x_{1}, \ldots, x_{n}\right)$ then $\underline{\vee}\left(u_{1}, \ldots, u_{n}\right) \leq \llbracket \phi\left(u_{1}, \ldots, u_{n}\right) \rrbracket$.

Quantum Observables as Quantum Real Numbers

- Let Q be a rational numbers in V. The set of rational numbers in $V^{(\mathcal{Q})}$ corresponds to Q .
- A real number is defined to be an upper segment of a Dedekind cut of the set of rational numbers.
- The predicate $\mathrm{R}(x)$ meaning " x is a real number" is expressed by

$$
\begin{aligned}
& x \subseteq \check{\mathrm{Q}} \wedge \exists y \in \check{\mathrm{Q}}(y \in x) \wedge \exists y \in \check{\mathrm{Q}}(y \notin x) \\
& \quad \wedge \forall y \in \check{\mathrm{Q}}(y \in x \leftrightarrow \forall z \in \check{\mathrm{Q}}(y<z \rightarrow z \in x))
\end{aligned}
$$

- The set $\mathrm{R}^{(\mathcal{Q})}$ of "real numbers in $V^{(\mathcal{Q})}$ " is defined by

$$
\mathbf{R}^{(\mathcal{Q})}=\left\{u \in V^{(\mathcal{Q})} \mid \mathcal{D}(u)=\mathcal{D}(\check{\mathrm{Q}}) \text { and } \llbracket \mathrm{R}(u) \rrbracket=1\right\}
$$

Theorem 3 Independent of the choice of conditional, there is a one-to-one correspondence between a real number $\tilde{A}=u \in \mathrm{R}^{(\mathcal{Q})}$ in $V^{(\mathcal{Q})}$ and a selfadjoint operator A on \mathcal{H} such that
(i) $E^{A}(\lambda)=\bigwedge_{\lambda<r \in \mathrm{Q}} u(\check{r})$ for every $\lambda \in \mathrm{R}$,
(ii) $u(\check{r})=E^{A}(r)$ for every $r \in \mathrm{Q}$.

Equality for Quantum Observables

- Independent of the choice of conditional, for any self-adjoint operators A, B

$$
\llbracket \tilde{A}=\tilde{B} \rrbracket=\bigwedge_{r \in Q} \llbracket \tilde{A} \leq \check{r} \rrbracket \leftrightarrow \llbracket \tilde{B} \leq \check{r} \rrbracket=\bigwedge_{r \in Q} E^{A}(r) \leftrightarrow E^{B}(r)
$$

- The probability of equality

$$
\operatorname{Pr}\{A=B \| \rho\}=\operatorname{Tr}[\llbracket \tilde{A}=\tilde{B} \rrbracket \rho]
$$

is independent of the choice of conditional, since so is \leftrightarrow.

Characterization of Equality

Theorem 4 For any observables A and B on \mathcal{H} and any state $\psi \in \mathcal{H}$, the following conditions are equivalent:
(i) $\psi \Vdash \tilde{A}=\tilde{B}$, i.e., $\psi \in \mathcal{R}(\llbracket \tilde{A}=\tilde{B} \rrbracket)$
(ii) $E^{A}(\lambda) \psi=E^{B}(\lambda) \psi$ for any $\lambda \in \mathrm{R}$.
(iii) $f(A) \psi=f(B) \psi$ for every Borel function f.
(iv) $\left\langle\psi, E^{A}(\lambda) E^{B}(\mu) \psi\right\rangle=\left\langle\psi, E^{A}(\lambda \wedge \mu) \psi\right\rangle$ for any λ, μ.
(v) The joint probability distribution $\mu_{\psi}^{A, B}$ exists and satisfies

$$
\mu_{\psi}^{A, B}\left(\left\{(a, b) \in \mathbf{R}^{2} \mid a=b\right\}\right)=I
$$

Spectral Order of Self-Adjoint Operators

- Definition. $\boldsymbol{X} \preccurlyeq \boldsymbol{Y} \Leftrightarrow \boldsymbol{E}^{Y}(\lambda) \leq E^{X}(\lambda)$ for all $\boldsymbol{\lambda} \in \mathrm{R}$.
- Theorem (Olson, 1971). Coincides with linear order for projections and commuting self-adjoint operators.
- Theorem (Olson, 1971). $0 \leq X \preccurlyeq \boldsymbol{Y} \Leftrightarrow \mathbf{0} \leq X^{n} \leq Y^{n}$ for large n.
- Theorem 5 Independent of the choice of conditional, we have

$$
\llbracket \tilde{\boldsymbol{X}} \leq \tilde{\boldsymbol{Y}} \rrbracket=1 \quad \Leftrightarrow \quad \boldsymbol{X} \preccurlyeq \boldsymbol{Y}
$$

- Proof: In any choice of \rightarrow, we have
$I=\llbracket \tilde{\boldsymbol{X}} \leq \tilde{\boldsymbol{Y}} \rrbracket=\bigwedge_{r \in Q} \llbracket \tilde{\boldsymbol{Y}} \leq \check{\boldsymbol{r}} \rrbracket \rightarrow \llbracket \tilde{\boldsymbol{X}} \leq \check{r} \rrbracket=\bigwedge_{r \in Q} E^{\boldsymbol{Y}}(r) \rightarrow \boldsymbol{E}^{\boldsymbol{X}}(r)$.
Thus, $E^{Y}(r) \rightarrow E^{X}(r)=I$ and $E^{Y}(r) \leq E^{X}(r)$ by (E) for all $r \in \mathrm{Q}$.

Probabilistic Interpretation of the Order of Observables

- We assume $\operatorname{dim}(\mathcal{H})<\infty$.
- The joint probability of obtaining the outcomes $X=x$ and $Y=y$ in the projective measurement of Y immediately followed by a measurement of X is given by

$$
P_{\psi}^{X, Y}(x, y)=\left\|E^{X}(\{x\}) E^{Y}(\{y\}) \psi\right\|^{2}
$$

- The joint probability of obtaining the outcomes $X=x$ and $Y=y$ in the projective measurement of X immediately followed by a measurement of Y is given by

$$
P_{\psi}^{Y, X}(y, x)=\left\|E^{Y}(\{y\}) E^{X}(\{x\}) \psi\right\|^{2}
$$

- Theorem 6 For any observables X, Y and a state vector ψ, we have the following.
(i) $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{S} \| \psi\right\}=1 \Leftrightarrow \sum_{(x, y): x \leq y} P_{\psi}^{X, Y}(x, y)=1$.
(ii) $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{C} \| \psi\right\}=1 \Leftrightarrow \sum_{(x, y): x \leq y} P_{\psi}^{Y, X}(y, x)=1$.
(iii) $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{R} \| \psi\right\}=1$
$\Leftrightarrow \sum_{(x, y): x \leq y} P_{\psi}^{X, Y}(x, y)=1$ and $\sum_{(x, y): x \leq y} P_{\psi}^{Y, X}(y, x)=1$.

Conclusion

- In quantum mechanics, we can define the probability of equality and order relation for observables.
- Equality: $\operatorname{Pr}\{X=Y \| \rho\}=\operatorname{Tr}\left[\bigwedge_{r \in \mathrm{Q}} \boldsymbol{E}^{\boldsymbol{X}}(\boldsymbol{r}) \leftrightarrow \boldsymbol{E}^{Y}(r) \rho\right]$
- Order: $\operatorname{Pr}\{\boldsymbol{X} \leq \boldsymbol{Y} \| \rho\}=\operatorname{Tr}\left[\bigwedge_{r \in \mathrm{Q}} \boldsymbol{E}^{Y}(\boldsymbol{r}) \rightarrow \boldsymbol{E}^{\boldsymbol{X}}(\boldsymbol{r}) \rho\right]$
- Equality implies commutativity: $\llbracket \tilde{\boldsymbol{X}}=\tilde{\boldsymbol{Y}} \rrbracket \leq \underline{\vee}(\tilde{X}, \tilde{\boldsymbol{Y}})$
- We have

$$
\operatorname{Pr}\{\boldsymbol{X}=\boldsymbol{Y} \| \rho\}=\sum_{x \in \mathbf{R}} \operatorname{Tr}\left[\boldsymbol{E}^{\boldsymbol{X}}(\{x\}) \wedge \boldsymbol{E}^{Y}(\{x\}) \rho\right]
$$

- Order relation depends on the choice of conditional:
- $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{S} \| \psi\right\}=1: X \leq Y$ holds in projective Y - X measurement (inference from past large to future small).
- $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{C} \| \psi\right\}=1: X \leq Y$ holds in projective $X-Y$ measurement (inference from past small to future large).
- $\operatorname{Pr}\left\{(\tilde{X} \leq \tilde{Y})_{R} \| \psi\right\}=1: X \leq Y$ holds in both projective $X-Y$ measurement and projective Y - X measurement (inference from both sides).

