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Classical Physics

• Physical system ⇔ Borel space (Ω,F)

• Observables ⇔ Real Borel functionsX(ω)

• States ⇔ Probability measures P
• Pr{X ∈ I‖P} = P ({ω ∈ Ω|X(ω) ∈ I})

Quantum Physics

• Physical system ⇔ Hilbert space H
• Observables ⇔ Self-adjoint operatorsX
• States ⇔ Density operators ρ
• Pr{X ∈ I‖ρ} = Tr[EX(I)ρ]
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Problem

• In classical physics, the probabilities for equality and order are defined.

• Equality: Pr{X = Y ‖P} = P ({ω ∈ Ω|X(ω) = Y (ω)})

• Order: Pr{X ≤ Y ‖P} = P ({ω ∈ Ω|X(ω) ≤ Y (ω)})

• Problem: How should we define the probabilities for equality and order
of quantum observables? Pr{X = Y ‖ρ} =?, Pr{X ≤ Y ‖ρ} =?,

• Method: Systematic use of quantum set theory.

• But, quantum logic has ambiguity for conditional: three candidates

• Conclusion: Each conditional defines a quantum set theory satisfying
the ZFC transfer principle. Equality does not depend on the choice of
conditional. Order depends on it, but has clear operational meaning.
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Quantum Logic

• Q = the set of projection operators on H.

P ≤ Q ⇔ PQ = P

P⊥ = I − P

⇒Q is a complete orthomodular lattice.

P ∧Q = wo-lim(PQ)n

P ∨Q = (P⊥ ∧Q⊥)⊥
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Quantum Conditionals

• Hardegree’s condition for material conditional:

(LB) If [P,Q] = 0 then P → Q = P⊥ ∨Q.
(E) P → Q = 1 if and only if P ≤ Q.

(MP) P ∧ (P → Q) ≤ Q (modus ponens) .
(MT) Q⊥ ∧ (P → Q) ≤ P⊥ (modus tollens).

• There are exactly three polynomial material conditionals:

(S) P → SQ := P⊥ ∨ (P ∧Q) (Sasaki) ,
(C) P → CQ := (P ∨Q)⊥ ∨Q (Contrapositive Sasaki) ,
(R) P → RQ := (P ∧Q) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥) (Relevance).

• Note: P → Q = P⊥ ∨Q does not satisfy (E).
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Characterization

• For any P,Q ∈ Q, we have the following relations.

(i) P→SQ = ran(P⊥Q).

(ii) P→CQ = ran(QP⊥).

(iii) P→RQ = ran(P⊥Q) ∧ ran(QP⊥).

• Biconditional is defined by

P ↔ Q := (P → Q) ∧ (Q → P ).

• Biconditionals are the same:

P ↔S Q = P ↔C Q = P ↔R Q = (P ∧Q) ∨ (P⊥ ∧Q⊥).
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Quantum Set Theory

• V (Q)
α is defined for every ordinal α by

V (Q)
α = {u| u : D(u) → Q, (∃β < α) D(u) ⊆ V

(Q)
β },

where D(u) is the domain of u.

• The Q-valued universe V (Q) is defined by

V (Q) =
∪

α∈On
V (Q)
α
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Q-Valued Interpretation

• Q-valued ruth value [[φ]] is define by the following recursion.

1. [[u = v]] =
∧

u′∈D(u)

(u(u′) → [[u′ ∈ v]]) ∧
∧

v′∈D(v)

(v(v′) → [[v′ ∈ u]]).

2. [[u ∈ v]] =
∨

v′∈D(v)

(v(v′) ∧ [[u = v′]]).

3. [[¬φ]] = [[φ]]⊥.

4. [[φ1 → φ2]] = [[φ1]] → [[φ2]].

5. [[φ1 ∧ φ2]] = [[φ1]] ∧ [[φ2]].

6. [[(∀x ∈ u)φ(x)]] =
∧

u′∈D(u)

(u(u′) → [[φ(u′)]]).

7. [[(∃x ∈ u)φ(x)]] =
∨

u′∈D(u)

(u(u′) ∧ [[φ(u′)]]).

8



Embedding the Standard Universe

• The universe V of ZFC set theory is embedded by v 7→ v̌, where v̌ is
defined by

D(v̌) = {ǔ| u ∈ v},
v̌(ǔ) = 1.

Theorem 1 (Elementary Equivalence Principle) Independent of the
choice of conditional, for any φ(x1, . . ., xn) we have

V |= φ(u1, . . ., un) if and only if [[φ(ǔ1, . . . , ǔn)]] = I.
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Commutativity

• For any subset A ⊆ Q, the commutant of A is defined by

A! = {P ∈ Q | [P,Q] = 0 for allQ ∈ A}.

• The commutator of A is defined by

⊥⊥(A) =
∨

{E ∈ A! ∩ A!! | [P1, P2]E = 0 for all P1, P2 ∈ A}.

• The support L(u) of u ∈ V (Q) is defined by recursion on the rank of u:

L(u) =
∪
x∈D(u) L(x) ∪ {u(x) | x ∈ D(u)}.

• The commutator of u1, u1, . . . , un is defined by

∨(u1, . . . , un) =⊥⊥(L(u1) ∪ · · · ∪ L(un)) .
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Transfer Principle

Theorem 2 Independent of the choice of conditional, for every formula
φ(x1, . . ., xn),

if ZFC ` φ(x1, . . ., xn) then ∨(u1, . . . , un) ≤ [[φ(u1, . . . , un)]].
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Quantum Observables as Quantum Real Numbers

• Let Q be a rational numbers in V . The set of rational numbers in V (Q)

corresponds to Q̌.

• A real number is defined to be an upper segment of a Dedekind cut of
the set of rational numbers.

• The predicate R(x) meaning “x is a real number” is expressed by

x ⊆ Q̌ ∧ ∃y ∈ Q̌(y ∈ x) ∧ ∃y ∈ Q̌(y 6∈ x)

∧∀y ∈ Q̌(y ∈ x ↔ ∀z ∈ Q̌(y < z → z ∈ x)).

• The set R(Q) of “real numbers in V (Q)” is defined by

R(Q) = {u ∈ V (Q)| D(u) = D(Q̌) and [[R(u)]] = 1}.
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Theorem 3 Independent of the choice of conditional, there is a one-to-one
correspondence between a real number Ã = u ∈ R(Q) inV (Q) and a self-
adjoint operatorA on H such that

(i) EA(λ) =
∧

λ<r∈Q

u(ř) for every λ ∈ R,

(ii) u(ř) = EA(r) for every r ∈ Q.
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Equality for Quantum Observables

• Independent of the choice of conditional, for any self-adjoint operators
A,B

[[Ã = B̃]] =
∧
r∈Q

[[Ã ≤ ř]] ↔ [[B̃ ≤ ř]] =
∧
r∈Q

EA(r) ↔ EB(r)

• The probability of equality

Pr{A = B‖ρ} = Tr[[[Ã = B̃]]ρ]

is independent of the choice of conditional, since so is ↔.
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Characterization of Equality

Theorem 4 For any observables A andB on H and any state ψ ∈ H, the
following conditions are equivalent:

(i) ψ `̀ Ã = B̃, i.e., ψ ∈ R([[Ã = B̃]])

(ii) EA(λ)ψ = EB(λ)ψ for any λ ∈ R .

(iii) f(A)ψ = f(B)ψ for every Borel function f .

(iv) 〈ψ,EA(λ)EB(µ)ψ〉 = 〈ψ,EA(λ ∧ µ)ψ〉 for any λ, µ．
(v) The joint probability distribution µA,Bψ exists and satisfies

µA,Bψ ({(a, b) ∈ R2 | a = b}) = I.
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Spectral Order of Self-Adjoint Operators

• Definition. X 4 Y ⇔ EY (λ) ≤ EX(λ) for all λ ∈ R.

• Theorem (Olson, 1971). Coincides with linear order for projections and
commuting self-adjoint operators.

• Theorem (Olson, 1971). 0 ≤ X 4 Y ⇔ 0 ≤ Xn ≤ Y n for large n.

• Theorem 5 Independent of the choice of conditional, we have

[[X̃ ≤ Ỹ ]] = 1 ⇔ X 4 Y

• Proof: In any choice of →, we have

I = [[X̃ ≤ Ỹ ]] =
∧
r∈Q

[[Ỹ ≤ ř]] → [[X̃ ≤ ř]] =
∧
r∈Q

EY (r) → EX(r).

Thus,EY (r) → EX(r) = I andEY (r) ≤ EX(r) by (E) for all r ∈ Q.
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Probabilistic Interpretation of the Order of Ob-
servables

• We assume dim(H) < ∞.

• The joint probability of obtaining the outcomes X = x and Y = y in
the projective measurement of Y immediately followed by a measure-
ment ofX is given by

PX,Y
ψ (x, y) = ‖EX({x})EY ({y})ψ‖2.

• The joint probability of obtaining the outcomes X = x and Y = y in
the projective measurement of X immediately followed by a measure-
ment of Y is given by

P Y,X
ψ (y, x) = ‖EY ({y})EX({x})ψ‖2.
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Probabilistic Interpretation of the Order of Ob-

serv ables

• W e assu m e dim(H) < ∞.

• T he joint probability of obtaining the ou tcom es X = x and Y = Y in

the projectiv e m easu rem ent of Y im m ediately follow ed by a m easu re-

m ent of X is g iv en by

P
X,Y

ψ (x, y) = ‖EX({x})EY ({y})ψ‖2
.

• T he joint probability of obtaining the ou tcom es X = x and Y = y in

the projectiv e m easu rem ent of Y im m ediately follow ed by a m easu re-

m ent of X is g iv en by

P
Y,X

ψ (y, x) = ‖EY ({y})EX({x})ψ‖2
.
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• Theorem 6 For any observables X,Y and a state vector ψ, we have the
following.

(i) Pr{(X̃ ≤ Ỹ )S‖ψ} = 1 ⇔
∑

(x,y):x≤y

PX,Y
ψ (x, y) = 1.

(ii) Pr{(X̃ ≤ Ỹ )C‖ψ} = 1 ⇔
∑

(x,y):x≤y

P Y,X
ψ (y, x) = 1.

(iii) Pr{(X̃ ≤ Ỹ )R‖ψ} = 1

⇔
∑

(x,y):x≤y

PX,Y
ψ (x, y) = 1 and

∑
(x,y):x≤y

P Y,X
ψ (y, x) = 1.
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Conclusion

• In quantum mechanics, we can define the probability of equality and
order relation for observables.

• Equality: Pr{X = Y ‖ρ} = Tr[
∧
r∈QE

X(r) ↔ EY (r)ρ]

• Order: Pr{X ≤ Y ‖ρ} = Tr[
∧
r∈QE

Y (r) → EX(r)ρ]

• Equality implies commutativity: [[X̃ = Ỹ ]] ≤ ∨(X̃, Ỹ )

• We have

Pr{X = Y ‖ρ} =
∑
x∈R Tr[EX({x}) ∧ EY ({x})ρ].
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• Order relation depends on the choice of conditional:

• Pr{(X̃ ≤ Ỹ )S‖ψ} = 1: X ≤ Y holds in projective Y -X measure-
ment (inference from past large to future small).

• Pr{(X̃ ≤ Ỹ )C‖ψ} = 1: X ≤ Y holds in projective X-Y measure-
ment (inference from past small to future large).

• Pr{(X̃ ≤ Ỹ )R‖ψ} = 1: X ≤ Y holds in both projective X-Y mea-
surement and projective Y -X measurement (inference from both sides).
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