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In quantum logic introduced by Birkhoff and von Neumann, De Morgan’s Laws play an impor-
tant role in the projection-valued truth value assignment for observational propositions in quantum
mechanics. Takeuti’s quantum set theory (QST) extends this assignment to all the set-theoretical
statements on the universe of quantum sets, in which the reals bijectively correspond to the quan-
tum observables. The Transfer Principle for Takeuti’s QST shows that the projection-valued truth
value of every bounded formula provable in ZFC (the Zermelo-Faenkel set theory with the axiom of
choice) is lower bounded by the commutator, the projection-valued truth value for the commutativ-
ity, of quantum sets appearing in the formula as constants. However, Takeuti’s QST has a problem
that De Morgan’s Laws between universal and existential bounded quantifications do not hold. In
this study, we solve this problem by reforming Takeuti’s QST with a new truth value assignment for
bounded quantifications to satisfy both the Transfer Principle and De Morgan’s Laws. We further
study QSTs with the most general class of truth value assignments. For QSTs with polynomially
definable logical operations, we determine exactly 36 QSTs that satisfy the Transfer Principle, and
exactly 6 QSTs that satisfy both the Transfer Principle and De Morgan’s Laws including the above
reform of Takeuti’s QST.

1 Introduction

As quantum logic introduced by Birkhoff and von Neumann [2] is an intrinsic logic governing obser-
vational propositions of quantum mechanics, it is an intriguing program to develop mathematics based
on quantum logic. However, the introduction of basic notions of sets and numbers in quantum logic
was not realized before Takeuti [10] introduced quantum set theory for this purpose. As a start, Takeuti
constructed the universe V (Q) of quantum sets based on quantum logic Q represented by the projection
lattice of a Hilbert space H , and to every formula φ(x1, . . . ,xn) in set theory he assigned the Q-valued
truth value [[φ(u1, . . . ,un)]] for quantum sets u1, . . . ,un ∈ V (Q) to satisfy φ(x1, . . . ,xn), in a manner anal-
ogous to Boolean-valued models of set theory introduced by Scott–Solovay and Vopěnka to reformulate
Paul Cohen’s forcing method for the independence proof of the continuum hypothesis [1]. For the well-
known arbitrariness of the implication in quantum logic, he adopted the Sasaki arrow → defined by
P → Q = P⊥∨ (P∧Q) for implication as the most favorable choice in the majority view [11].

He introduced the commutator ∨(u1, . . . ,un) of elements u1, . . . ,un of the universe V (Q), the projection-
valued truth value for the commutativity, and he showed that the axioms of ZFC hold in the universe V (Q)

if appropriately modified by the commutator. Based on his pioneering work on Boolean-valued analy-
sis [9], he showed that the real numbers in the universe V (Q) correspond bijectively to the self-adjoint
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2 Quantum Set Theory

operators on the underlying Hilbert space H , suggesting rich applications to quantum physics and anal-
ysis. Following Takeuti’s work, we explored the question as to how the theorems of ZFC hold in the
universe V (Q). In [5] we established the following Transfer Principle for Takeuti’s QST.

Transfer Principle. Every ∆0-formula1φ(x1, . . . ,xn) with free variables x1, . . . ,xn in the language of
set theory provable in ZFC satisfies the relation

[[φ(u1, . . . ,un)]] ≥ ∨(u1, . . . ,un)

for any elements u1, . . . ,un in the universe V (Q).

Since Q includes many complete Boolean subalgebras B, the universe V (Q) naturally includes many
Boolean-valued models V (B) as submodels, in which the ZFC set theory and hence classical mathematics
founded on the ZFC set theory hold. The Transfer Principle allows us to recover classical mathematics
to the extent precisely indicated by the commutators. Specifically, if ∨(u1, ...,un) = 1, there exists a
complete Boolean subalgebra B of Q such that u1, ...,un ∈ V (B) and that [[φ(u1, ...,un)]] = 1 for any
∆0-formula φ(x1, ...,xn) provable in ZFC.

In [8], Takeuti’s QST was extended to quantum logics Q represented by general complete orthomod-
ular lattices. This generalization makes QST to fully include Boolean-valued models of set theory as
the special case where Q is a Boolean algebra, and naturally incorporates powerful methods of forcing
through Boolean-valued analysis 2. Quantum set theory extended the Born rule for the probabilistic pre-
dictions of observational propositions to relations between observables, such as commutativity, equality,
and order relations [6, 7]. The relations to paraconsistent set theory and topos quantum mechanics are
also studied recently [3]. It was also applied to computer science [12].

In spite of the above successful development of the theory, one problem has eluded a solution.
Takeuti’s QST does not satisfy De Morgan’s Laws for bounded quantifications. Takeuti noted “In
Boolean-valued universes, [[(∀x ∈ u)φ(x)]] = [[∀x(x ∈ u → φ(x)]] and [[(∃x ∈ u)φ(x)]] = [[∃x(x ∈ u∧φ(x)]]
[hold]. But this is not the case for V (Q)” [10, p. 315], and he defined the truth values of bounded quan-
tifications using the Sasaki arrow → as follows.

(1) [[(∀x ∈ u)φ(x)]] =
∧

u′∈dom(u)(u(u′) → [[φ(u′)]]).

(2) [[(∃x ∈ u)φ(x)]] =
∨

u′∈dom(u)(u(u′)∧ [[φ(u′)]]).

However, it is problematic that the classical implication P→Q = P⊥∨Q was avoided in the bounded
universal quantification, and yet the classical conjunction ∧ was used in the bounded existential quan-
tification. Since the relation P∧Q = (P → Q⊥)⊥ does not hold for the classical conjunction ∧ and the
Sasaki arrow →, De Morgan’s Laws,

(3) [[¬(∀x ∈ u)φ(x)]] = [[(∃x ∈ u)¬φ(x)]],

(4) [[¬(∃x ∈ u)φ(x)]] = [[(∀x ∈ u)¬φ(x)]],

do not hold. In fact, there exist a predicate φ(x) and a quantum set u ∈V (Q) such that [[(∃x ∈ u)¬φ(x)]] =
0 but [[¬(∀x ∈ u)φ(x)]] > 0, while the relation [[(∃x ∈ u)¬φ(x)]] ≤ [[¬(∀x ∈ u)φ(x)]] always holds.

In this study, we consider the binary operation ∗ given by P∗Q = (P → Q⊥)⊥ and redefine the truth
values of membership relation and bounded existential quantification as follows.

(5) [[u ∈ v]] =
∨

v′∈dom(v)(v(v′)∗ [[v′ = u]]).
1A ∆0-formula is a formula not including unbounded quantifiers (∀x) or (∃x) but bounded quantifiers (∀x ∈ u) or (∃x ∈ u).
2See [9, 4] and [1, Chapter 7] for Boolean valued analysis. In [4] we resolved Kaplansky’s conjecture on the classification

of type I AW*-algebras applying the cardinal collapsing forcing through the technique of Boolean-valued analysis.
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(6) [[(∃x ∈ u)φ(x)]] =
∨

u′∈dom(u)(u(u′)∗ [[φ(u′)]]).

Then, De Morgan’s Laws for the pair of universal–existential bounded quantifications as well as the
Transfer Principle hold. Thus, for the language of quantum set theory we can assume only the nega-
tion, conjunction, and bounded and unbounded universal quantification as primitive, while disjunction,
bounded and unbounded existential quantification are considered to be introduced by definition to avoid
ramification and ambiguity in interpreting quantifications. The operation ∗ has been studied as the Sasaki
projection in connection with residuation theory, whereas up to our knowledge this operation has not been
used for defining bounded quantifiers in quantum logic.

We further consider a general class of binary operations → and ∗ for the implication and the conjunc-
tion, respectively, and we explore the consistency between the Transfer Principle and De Morgan’s Laws.
We show necessary and sufficient conditions for a pair (→,∗) of operations to support the Transfer Prin-
ciple, and to support both the Transfer Principle and De Morgan’s Laws, respectively. For polynomially
definable operations → and ∗, we determine all the 36 pairs (→,∗) that admit the Transfer Principle, and
we derive 6 out of 36 pairs that admit both the Transfer Principle and De Morgan’s Laws, including the
pair (→,∗) of the Sasaki arrow → and the Sasaki projection ∗ and also the pair (→,∗) of the classical
implication → and the classical conjunction ∗ as previously mentioned in [8].

The future study of QST is expected to focus on those 6 QSTs. It is an interesting problem whether
each of them has its own role in applications or only some of them do.
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