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Classical Root-Mean-Square Error

Definition. If a quantity A is indirectly measured by measuring another
quantity M with the joint probability distribution p(a, m) of A and M,
the root-mean-square error £ (1) of the measurement of A is defined by

1/2
ea(t) = (Zam(m — a)?u(a,m)) .
Theorem. e () = O if and only if u{M = A} = 1, where

I’L{M — A} — Z(a,m):m:a ,LL(CL, m)



Universal Models for Quantum Measurements

e Definition. M = (IC, &, U, M ): Measuring Process for the system de-
scribed by 'H <

JIC = a Hilbert space, modeling the state space of the probe

& = aunit vector on /)C, modeling the initial state of the probe
U = aunitary on H & K, modeling the measuring interaction
M = aself-adjoint operator on /C, modeling the meter observable

e For any A, B € O('H), the measuring process M from time 0 to 7 de-
termines

A(0)=AQ®I, B(0)=B®I, M(0)=1IQM,
A(T) = UTA(0)U, B(r) =U'B(0)U, M(r)=UIM(0)U.



H
p @ S »Pixen}
=|pxy| U

peg Q@ == = U(p=X)

3
m
K
M

XEA

Figure 1: Measuring Preocess

4



e When is the measurement M = (/C, &, U, M) of A in ) considered ac-
curate? —The joint probability distribution p of M (7), A(0) exists and
satisfies u{ M (7) = A(0)} = 1.



State-Dependent Commutativity

e Definition: X and Y commutein ¥ (X g Y)iff[f(X),g(Y)]|¥ =0
for all polynomials f(X), g(Y).

e Definition: A joint probability distribution (JPD) of observables X, Y in
state W is a probability distribution p3 ’Y(a:, y) on R? satisfying

(|F(X,Y)|T) =5, f(z,y) pg" (z,y)
for any polynomial f(X,Y).
e Theorem: There exists a JPD of A, B in W.
S A -y B
< W is a superposition of common eigenstates of A and B, i.e.,

U=>,,Cey|lA=2z,B=y).



Weak Joint Distribution

e Definition: The weak joint distribution (WJD) v5"” (x, y) of observables
A, B in state WV is defined by

vyl (@,y) = (V| PA(x)PP(y)|¥).

e Remark: The WJD can be measured by weak measurement and post-
selection, i.e.,

vy (z,y) = <PB(y)>,w, aeww M (@),



Quantum Perfect Correlation

Definition: A and B are perfectly correlated in ¥ (A =y B)
& A g B and the JPD ué’B satisfies

> “é’B(wv z) = 1.

Theorem (MO 2005):

A=y B & Vﬁ’B(m,y) =0 ifx#y
< <PB(y)>w,A=a:,‘Il = Oy

Remark: Perfect correlation is experimentally accessible.

Theorem (MO 2005): The relation =y is an equivalence relation among
observables. In particular,if A =y Band B =y C,then A =y C.



State-Dependent Accurate Measurements

Definition (MO 2005): A measuring process M = (IC, &, U, M) accu-
rately measures A in ¢ &

A(0) =yge M(T).

Remark: The above condition is operationally accessible, since it is

equivalent to

A(0),M (T
2iazty |V¢Q(Z>€) ( )(a:,y)| = 0.

Theorem A measuring process M = (IC, &, U, M) accurately measures
Ainy &

Y R®E =23, |A0) =, M(T) =),
where |c.|* = | (Y| A = z) |2



Noise Operator based Quantum Root-Mean-Square
Error

e Definition. For any measuring process M = (IC, &, U, M) the noise op-
erator IN (A) for measuring A is defined by

N(A) = M(1) — A(0).
e The NO based QRMSE for measuring A in W is defined by
eno(A, 1) = (N(A)A)Y? = ||[[M(T) — A(0)]% ® £].

e Theorem (Lund-Wiseman 2010) The NO based QRMSE eno( A, 1) can
be measured by weak measurement and post-selection

eno(A,9)? = Y (m — a)*Revygy” (m, a).
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Requirements for Quantum RMS Errors

(i) Device-independent definability: The error measure should be definable
by the POVM of the measuring process, the observable to be measured,
and the state of the object.

(ii) Correspondence principle: The error measure should be identical with
the classical rms error if the joint probability distribution of M (7) and
A(0) exists.

(iii) Soundness: The error measure should take the value zero for any accu-
rate measurements.

(iv) Completeness: The error measure should take the value zero if and only
if the measurement is accurate.
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Device-Independent Definability

The NO based QRMSE e o, satisfies the device-independent definabil-
ity.

The POVM of M: TI(z) = (£§|EM(™)(z)|¢)
Moment operator of POVM IT: m(™ (I1) = g z"T1(x)

eno(A, 1) satisfies

eno(A,1)* = Re (¢p|m® (IT) — 2m(IN A + A%|y).
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Correspondence Principle

e The NO based QRMSE e o satisfies the correspondence principle.

o If M (7) and A(0) commute in ) ® &, there exists the joint probability

distribution p(a, m) = pu/rO"M™ (g m) and we have
PRE

eno(A,¥)? = ) (m — a)’u(a, m).

e Note that any error notions having been proposed based on the distance
between the probability distributions do not satisfy the Correspondence
Principle.
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Soundness

e The NO based QRMSE e o satisfies the soundness condition.
o If A(0) =ygo M (7) then
ufé?’A(O)(m, a) =0 form # a,

and hence

envo(A, )2 = S (m — a)?uy 4 (m,a) = 0.

a,m

e The NO based QRMSE satisfies the device-independent-definability, the
correspondence principle, and the soundness.

14



Locally Uniform Quantum Root Mean Square Er-

ror

e For any ¢ € R, define
et(A, ) = eno(A, e_itA¢)°

e The locally uniform rms error is defined by

E(Aa ’l,b) — SUP¢cr €t(A7 ’l,b)
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e Theorem: (1) If A(0) and M (7) commute in ¢ Q &, then
e(A,v¢) =eno(A,9).

(2) € satisfies all the requirements (i)—(iv).
3) €NO(449 ¢) < E(A, 'Qb)
4 If A(0)?2 = M(1)? = I, theng(A, ) = eno(A, V).
(5) The relation
h
E(Q’ ¢)§(P, ?#) Z 5

is violated.
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Example

1 1 1 1 1
Lol
with II(y) = P™(y). Then we have

5NO(Aa I1, ’l,b) =0,

but the measurement is not accurate, since A and II are not identically
distributed as (| P4(2)|4) = 1/2 but (1|TL(2)|¢) = 0.

We have
et(A,II, ) = 2|sint|, and z(A,II,¢) = 2, (1)
despite of the relation e no (A, I1, ¢) = 0, the relation £( A, I1, ¢) = 2

correctly indicate that the above measurement of A is not accurate.
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Simultaneous Measurements

o Let M = (IC, &, U, M) be a measuring process. For any function f de-
fine £(M) = (KC, &, U, £(M))

e Definition. A simultaneous measurement for A, B in W is is defined as a
pair of measuring processes (f (M), g(M)).

e Definition: A simultaneous measurement ( f (M), g(IM)) for A, B in &
is accurate iff

fF(M(7)) =wge A(0),
g(M(7)) =wge B(0).
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Uncertainty Relations for Simultaneous Measure-

ments

e Definition. The error (£€(A),2(B)) of a simultaneous measurement
(f(M),g(M)) for A, B in £ is defined by £(A) = £(A, v, f(M)) and
g(B) = &(B,¥,g(M)).

e Theorem. (f(M), g(M)) is accurate if and only if (€(A),g(B)) = (0, 0).

1
e Theorem. Let Cap = 5| (V|[A, B]|) |. The following relations
hold

(i)g(A)e(B) + o(B)g(A) + 0(A)e(B) > Cyp.

(i) 0(B)?e(A)? + o (A)%(B)?
+28(A)e(B), /o (A)2(B)? — C3p > C%p.
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