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Heisenberg’s original derivation of the uncertainty principle and its universally valid reformulations
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Heisenberg’s uncertainty principle was originally posed for the limit of the accuracy of simultaneous mea-

surement of non-commuting observables as stating that canonically conjugate observables can be measured

simultaneously only with the constraint that the product of their mean errors should be no less than a limit set

by Planck’s constant. However, Heisenberg with the subsequent completion by Kennard has long been credited

only with a constraint for state preparation represented by the product of the standard deviations. Here, we show

that Heisenberg actually proved the constraint for the accuracy of simultaneous measurement but assuming an

obsolete postulate for quantum mechanics. This assumption, known as the repeatability hypothesis, formu-

lated explicitly by von Neumann and Schrödinger, was broadly accepted until the 1970s, but abandoned in the

1980s, when completely general quantum measurement theory was established. We also survey the author’s re-

cent proposal for a universally valid reformulation of Heisenberg’s uncertainty principle under the most general

assumption on quantum measurement.

Keywords: quantum measurement, uncertainty principle, simultaneous measurement, repeatability hypothesis, instruments,

root mean square error

I. INTRODUCTION

The uncertainty principle proposed by Heisenberg1 in 1927

revealed that we cannot determine both position and momen-

tum of a particle simultaneously in microscopic scale as stat-

ing “the more precisely the position is determined, the less

precisely the momentum is known, and conversely”1 (p. 64),

and had overturned the deterministic world view based on

the Newtonian mechanics. By the famous γ ray microscope

thought experiment Heisenberg1 derived the relation

ε(q̂)ε(p̂)∼ h (1)

for ε(q̂), the “mean error” of the position measurement, and

ε(p̂), thereby caused “discontinuous change” of the momen-

tum, or more generally the mean error of the simultaneous

momentum measurement, where h is Planck’s constant:

Let ε(q̂) [originally, q1] be the precision with

which the value q is known (ε(q̂) is, say, the mean

error of q), therefore here the wavelength of the

light. Let ε(p̂) [originally, p1] be the precision

with which the value p is determinable; that is,

here, the discontinuous change of p in the Comp-

ton effect1 (p. 64).

Heisenberg claimed that this relation is a “straightforward

mathematical consequence”1 (p. 65) of fundamental postu-

lates for quantum mechanics. In his mathematical derivation

of relation (1), he derived

σ(q̂)σ(p̂) =
h̄

2
(2)

for standard deviations σ(q̂) and σ(p̂) of position q̂ and

momentum p̂ for a class of Gaussian wave functions, later

known as minimum uncertainty wave packets. Subsequently,

Kennard2 proved the inequality

σ(q̂)σ(p̂)≥ h̄

2
(3)

for arbitrary wave functions. By this relation, the lower bound

of relation (1) was later set as

ε(q̂)ε(p̂)≥ h̄

2
, (4)

where h̄ = h/(2π).
Text books3–6 up to the 1960s often explained that the

physical meaning of Heisenberg’s uncertainty principle is ex-

pressed by Eq. (4), but it is formally expressed by Eq. (3). This

explanation is later considered to be confusing. In fact, it was

said that Eq. (4) expresses a limitation of measurements, while

mathematically derived relation Eq. (3) expresses a statistical

property of quantum state, or a limitation of state preparations,

so that they have different meanings7. Thus, Heisenberg with

the subsequent completion by Kennard has long been cred-

ited only with a constraint for state preparation represented by

Eq. (3).

This paper aims to resolve this long standing confusion. It

will be shown that Heisenberg1 in 1927 actually “proved” not

only Eq. (2) but also Eq. (1) from basic postulates for quan-

tum mechanics. In showing that, it is pointed out that as

one of the basic postulates Heisenberg supposed an assump-

tion called the “repeatability hypothesis”, which is now con-

sidered to be obsolete. In fact, in the 1930’s the repeatabil-

ity hypothesis was explicitly claimed by von Neumann3 and

Schrödinger8, whereas this hypothesis was abandoned in the

1980s, when quantum measurement theory was establish to be

general enough to treat all the physically realizable measure-

ments.

Through those examinations it will be concluded that

Heisenberg’s uncertainty principle expressed by Eq. (4) is log-

ically a straightforward consequence of Eq. (3) under a gener-

alized form of the repeatability hypothesis. In fact, under the

repeatability hypothesis a measurement is required to prepare

the state with a sharp value of the measured observable, and

hence the “measuremental” uncertainty relation (4) is a logical

consequence of the “preparational” uncertainty relation (3).

As stated above, the repeatability hypothesis was aban-

doned in the 1980s, and nowadays relation (4) is taken to be

http://arxiv.org/abs/1507.02010v3


2

a breakable limit9,10. Naturally, the problem remains: what

is the unbreakable constraint for simultaneous measurements

of non-commuting observables? To answer this question, we

will survey the author’s recent proposal11–13 for a universally

valid reformulation of Heisenberg’s uncertainty principle un-

der the most general assumption on quantum measurement.

II. REPEATABILITY HYPOTHESIS

The uncertainty principle was introduced by Heisenberg in

a paper entitled Über den anschaulichen Inhalt der quanten-

theoretischen Kinematik und Mechanik1 published in 1927. In

what follows we shall examine Heisenberg’s derivation of the

uncertainty principle following this paper.

Before examining the detail of Heisenberg’s derivation, we

shall examine the basic postulates for quantum mechanics in

Heisenberg’s time, following von Neumann’s formulation3.

In what follows, a positive operator on a Hilbert space with

unit trace is called a density operator. We denote by B(R)
the set of Borel subsets of R and by EA the spectral measure

of a self-adjoint operator A, i.e., A has the spectral decompo-

sition A =
∫

R
λ EA(dλ ).

Axiom 1 (States and observables). Every quantum system S

is described by a Hilbert space H called the state space of

S. States of S are represented by density operators on H and

observables of S are represented by self-adjoint operators on

H .

Axiom 2 (Born statistical formula). If an observable A is

measured in a state ρ , the outcome obeys the probability dis-

tribution of A in ρ defined by

Pr{A ∈ ∆‖ρ}= Tr[EA(∆)ρ ], (5)

where ∆ ∈ B(R).

Axiom 3 (Time evolution). Suppose that a system S is an

isolated system with the (time-independent) Hamiltonian H

from time t to t + τ . The system S is in a state ρ(t) at time t if

and only if S is in the state ρ(t + τ) at time t + τ satisfying

ρ(t + τ) = e−iτH/h̄ρ(t)eiτH/h̄. (6)

Under the above axioms, we can make a probabilistic pre-

diction of the result of a future measurement from the knowl-

edge about the past state. However, such a prediction applies

only to a single measurement in the future. If we make many

measurements successively, we need another axiom to deter-

mine the state after each measurement. For this purpose, the

following axiom was broadly accepted in the 1930s.

Axiom 4 (Measurement axiom). If an observable A is mea-

sured in a system S to obtain the outcome a, then the system S

is left in an eigenstate of A belonging to a.

Von Neuamann3 showed that this assumption is equiv-

alent to the following assumption called the repeatability

hypothesis3 (p. 335), posed with a clear operational condition

generalizing a feature of the Compton-Simons experiment3

(pp. 212–214).

(R) Repeatability hypothesis. If an observable A is mea-

sured twice in succession in a system S, then we get the same

value each time.

It can be seen from the following definition of measurement

due to Schrödinger given in his famous “cat paradox” paper8

that von Neumann’s repeatability hypothesis was broadly ac-

cepted in the 1930s.

The systematically arranged interaction of two

systems (measured object and measuring instru-

ment) is called a measurement on the first sys-

tem, if a directly-sensible variable feature of the

second (pointer position) is always reproduced

within certain error limits when the process is im-

mediately repeated (on the same object, which in

the meantime must not be exposed to any addi-

tional influences)8.

Based on the repeatability hypothesis von Neumann3

proved the impossibility of simultaneous measurement of two

non-commuting observables as follows. Suppose that two ob-

servables A,B are simultaneously measurable in every state

and suppose that the eigenvalues of A are non-degenerate.

Then, the state just after the simultaneous measurement of A

and B is a common eigenstate of A and B, so that there is an

orthonormal basis consisting of common eigenstates of A and

B, concluding that A and B commute.

Since Heisenberg’s uncertainty principle concerns mea-

surements with errors, it is naturally expected that it can be

mathematically derived by extending the above argument to

approximate measurements.

III. APPROXIMATE REPEATABILITY HYPOTHESIS

To extend the repeatability hypothesis to approximate mea-

surements, we generalize the notion of eigenstates as follows.

For any real number λ and a positive number ε , a (vector)

state ψ is called an ε-approximate eigenstate belonging to λ
iff the relation

‖Aψ −λ ψ‖ ≤ ε (7)

holds. If ε = 0, the notion of ε-approximate eigenstates is

reduced to the ordinary notion of eigenstates. A real number

λ is called an approximate eigenvalue of an observable A iff

for every ε > 0 there exists an ε-approximate eigenstate of

A. The set of approximate eigenvalues of an observable A

coincides with the spectrum of A14 (p. 52).

Now, we formulate the approximate repeatability hypothe-

sis as follows.

(AR) Approximate Repeatability Hypothesis. If an ob-

servable A is measured in a system S with mean error ε
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to obtain the outcome a, then the system S is left in an ε-

approximate eigenstate of A belonging to a.

Obviously, (AR) is reduced to (R) for ε = 0. Since we have

‖Aψ −λ ψ‖ ≥ ‖Aψ −〈A〉ψ‖= σ(A)

for any real number λ , where 〈A〉 = (ψ ,Aψ), (AR) implies

the following statement: If an observable A in a system S is

measured with mean error ε(A), then the post-measurement

standard deviation σ(A) of A satisfies

σ(A)≤ ε(A). (8)

IV. HEISENBERG’S DERIVATION OF THE

UNCERTAINTY PRINCIPLE

Heisenberg’s derivation of (1) starts with considering a state

ψ just after the measurement of the position observable q̂ to

obtain the outcome q′ with mean error ε(q̂) and consider what

relation holds between ε(q̂) and ε(p̂) if the momentum ob-

servable p̂ has been measured simultaneously to obtain the

outcome p′ with mean error ε(p̂). Then, by (AR) or Eq. (8)

the state ψ should have the position standard deviation σ(q̂)
satsifying

σ(q̂)≤ ε(q̂). (9)

Heisenberg actually supposed that the state ψ is a Gaussian

wave function1 (p. 69)

ψ(q) =
1

(πq2
1)

1/4
exp

[

− (q− q′)2

2q2
1

− i

h̄
p′(q− q′)

]

, (10)

which is later known as a minimum uncertainty wave packet,

with its Fourier transform

ψ̂(p) =
1

(π p2
1)

1/4
exp

[

− (p− p′)2

2p2
1

+
i

h̄
q′(p− p′)

]

, (11)

and he proved relation (2) for the state ψ given by Eq. (10).

Exactly this part of Heisenberg’s argument was generalized

by Kennard2 to prove relation (3) for any vector state ψ . Thus,

Kennard2 relaxed Heisenberg’s assumption on the state ψ to

the assumption that the state ψ after the position measurement

can be arbitrary wave function ψ satisfying Eq. (9). Then, if

the momentum observable p̂ has been measured simultane-

ously to obtain the outcome p′ with an error ε(p̂), by (AR) or

Eq. (8) again the state ψ should also satisfy the relation

σ(p̂)≤ ε(p̂). (12)

Therefore, Heisenberg’s uncertainty relation (4) immediately

follows from Kennard’s relation (3).

As above Heisenberg in 1927 not only derived relation (1)

by the γ-ray thought experiment but also gave its mathemati-

cal proof. However, he supposed the repeatability hypothesis

or its approximate version as an additional but obsolete as-

sumption in addition to the standard postulates for quantum

mechanics.

The approximate repeatability hypothesis (AR) has not

been explicitly formulated in the literature, but in the follow-

ing explanation on the derivation of the uncertainty principle

von Neumann3 (pp. 238–239) assumed (AR):

We are then to show that if Q,P are two canon-

ically conjugate quantities, and a system is in a

state in which the value of Q can be given with the

accuracy ε (i.e., by a Q measurement with an er-

ror range ε), then P can be known with no greater

accuracy than η = h̄/(2ε). Or: a measurement of

Q with the accuracy ε must bring about an inde-

terminacy η = h̄/(2ε) in the value of P.

In the above, it is obviously assumed that a state with the posi-

tion standard deviation ε is resulted by a Q measurement with

an error range ε . This assumption is what we have generally

formulated in Eq. (8) as an immediate logical consequence of

(AR).

Two inequalities (3) and (4) are often distinguished as the

preparational uncertainty relation and the measuremental un-

certainty relation, respectively. However, under the repeata-

bility hypothesis such a distinction is not apparent, since a

measurement is required to prepare the state with a sharp

value of the measured observable. In fact, the above argument

shows that there exists an immediate logical relationship be-

tween those two inequalities.

V. ABANDONING THE REPEATABILITY HYPOTHESIS

The repeatability hypothesis explains only a restricted class

of measurements and does not generally characterize the state

changes caused by quantum measurements. In fact, there

exist commonly used measurements of discrete observables,

such as photon counting, that do not satisfy the repeatability

hypothesis15. Moreover, it has been shown that the repeata-

bility hypothesis cannot be generalized to continuous observ-

ables in the standard formulation of quantum mechanics16–19.

In 1970, Davies and Lewis20 proposed abandoning the re-

peatability hypothesis and introduced a new mathematical

framework to treat all the physically realizable quantum mea-

surements:

One of the crucial notions is that of repeatabil-

ity which we show is implicitly assumed in most

of the axiomatic treatments of quantum mechan-

ics, but whose abandonment leads to a much

more flexible approach to measurement theory20

(p. 239).

Denote by τc(H ) the space of trace class operators on

H , by S (H ) the space of density operators on H , and

by P(τc(H )) the space of positive linear maps on τc(H ).
Davies and Lewis20 introduced a mathematical notion of in-

strument as follows. A Davies-Lewis (DL) instrument for

(a system S described by) a Hilbert space H is defined as
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a P(τc(H ))-valued Borel measure I on R countably addi-

tive in the strong operator topology such that I (R) is trace-

preserving (Tr[I (R)ρ ] = Tr[ρ ]).
Let A(x) be a measuring apparatus for S with the output

variable x. The statistical properties of the apparatus A(x) are

determined by (i) the probability distribution Pr{x ∈ ∆‖ρ} of

the outcome x in an arbitrary state ρ , and (ii) the state change

ρ → ρ{x∈∆} from the state ρ just before the measurement to

the state ρ{x∈∆} just after the measurement given the condition

x ∈ ∆. The proposal of Davies and Lewis20 can be stated as

follows.

(DL) The Davies-Lewis thesis. For every measuring ap-

paratus A(x) with output variable x there exists a unique DL

instrument I satisfying

Pr{x ∈ ∆‖ρ}= Tr[I (∆)ρ ], (13)

ρ → ρ{x∈∆} =
I (∆)ρ

Tr[I (∆)ρ ]
. (14)

For any ∆ ∈ B(R), define Π(∆) by

Π(∆) = I (∆)∗1, (15)

where I (∆)∗ is the dual map of I (∆) given by

Tr[(I (∆)∗X)ρ ] = Tr[X(I (∆)ρ)] for all X ∈ L (H ). Then,

the map ∆ → Π(∆) is a probability operator-valued measure

(POVM)21, called the POVM of I , satisfying

Pr{x ∈ ∆‖ρ}= Tr[Π(∆)ρ ] (16)

for all ρ ∈ S (H ) and ∆ ∈ B(R).
The problem of mathematically characterizing all the physi-

cally realizable quantum measurements is reduced to the prob-

lem as to which instruments are physically realizable13. To

settle this problem, standard models of measuring processes

were introduced in16 as follows. A measuring process for

(a system described by) a Hilbert space H is defined as a

quadruple (K ,ρ0,U,M) consisting of a Hilbert space K , a

density operator ρ0 on K , a unitary operator U on H ⊗K ,

and a self-adjoint operator M on K . A measuring process

(K ,ρ0,U,M) is said to be pure if ρ0 is a pure state, and it is

said to be separable if K is separable.

The measuring process (K ,ρ0,U,M) mathematically

models the following description of a measurement. The mea-

surement is carried out by the interaction, referred to as the

measuring interaction, between the object S and the probe P.

The probe P is described by the Hilbert space K and prepared

in the state ρ0 just before the measurement. The time evolu-

tion of the composite system P+S during the measuring in-

teraction is described by the unitary operator U . The outcome

of the measurement is obtained by measuring the observable

M called the meter observable of the probe P just after the

measuring interaction. We assume that the measuring interac-

tion turns on at time t = 0 and turns off at time t = ∆t. In the

Heisenberg picture, we write

A1(0) = A1 ⊗ 1, A2(0) = 1⊗A2, A12(∆t) =U†A12(0)U,

for an observable A1 of S, an observable A2 of P, and an ob-

servable A12(0) of S+P.

Suppose that the measurement carried out by an appara-

tus A(x) is described by a measuring process (K ,ρ0,U,M).
Then, it is shown16 that the statistical properties of the appa-

ratus A(x) is given by

Pr{x ∈ ∆‖ρ}= Tr[EM(∆t)(∆)(ρ ⊗ρ0)], (17)

ρ → ρ{x∈∆} =
TrK [(1⊗EM(∆))U(ρ ⊗ρ0)U

†]

Tr[EM(∆t)(∆)(ρ ⊗ρ0)]
, (18)

where TrK stands for the partial trace on the Hilbert space

K . The POVM Π of the apparatus A(x) is defined by

Π(∆) = TrK [EM(∆t)(∆)(1⊗ρ0)] (19)

for any ∆ ∈ B(R). Then, the map ∆ → Π(∆) is a probability

operator-valued measure (POVM)21 satisfying

Pr{x ∈ ∆‖ρ}= Tr[Π(∆)ρ ] (20)

for all ρ ∈ S (H ) and ∆ ∈ B(R).
Now it is easy to see that the above description of the mea-

surement statistics of the apparatus A(x) is consistent with the

Davies-Lewis thesis. In fact, the relation

I (∆)ρ = TrK
[(

1⊗EM(∆)
)

U(ρ ⊗ρ0)U
†
]

(21)

defines a DL instrument I . In this case, we say that

the instrument I is realized by the measuring process

(K ,ρ0,U,M).
A DL instrument for H is said to be completely positive

(CP) if I (∆) is completely positive for every ∆ ∈ B(R), i.e.,

I (∆)⊗ idn : τc(H )⊗Mn → τc(H )⊗Mn is a positive map

for every finite number n, where Mn is the matrix algebra of

order n and idn is the identity map on Mn. The following theo-

rem characterizes the physically realizable DL instruments by

completely positivity16,22.

Theorem 1 (Realization theorem for CP instruments). A

DL instrument can be realized by a measuring process if and

only if it is completely positive. In particular, every CP instru-

ment can be realized by a pure measuring process, and if H

is separable, every CP instrument for H can be realized by a

pure and separable measuring process.

Now, we have reached the following general measurement

axiom, abandoning Axiom 4 or the repeatability hypothesis.

Axiom 5 (General measurement axiom). To every mea-

suring apparatus A(x) with output variable x there exists a

unique CP instrument I satisfying Eqs. (13) and (14). Con-

versely, to every instrument I there exists at least one mea-

suring apparatus A(x) satisfying Eqs. (13) and (14).

VI. VON NEUMANN’S MODEL OF POSITION

MEASUREMENT

Let A and B be observables of a system S described by a

Hilbert space H . Let A(x) be a measuring apparatus for S
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with the output variable x described by a measuring process

M = (K ,ρ0,U,M) from time t = 0 to t = ∆t. An approxi-

mate simultaneous measurement of A(0) and B(0) is obtained

by direct simultaneous measurement of commuting observ-

ables M(∆t) and B(∆t), where M(∆t) is considered to ap-

proximately measure A(0) and B(∆t) is considered to approx-

imately measure B(0). In this case the error of the B(0) mea-

surement is called the disturbance of B caused by the mea-

suring process M, and the relation for the errors of the A(0)
measurement and the B(0) measurement is called the error-

disturbance relation (EDR). In what follows, we examine the

EDR for position measurement error and momentum distur-

bance.

Until 1980’s only solvable model of position measure-

ment had been given by von Neumann3. We show that this

long-standing model satisfies Heisenberg’s error-disturbance

relation11, a version of Heisenberg’s uncertainty relation (4).

Consider a one-dimensional mass S, called an object, with

position x̂ and momentum p̂x, described by a Hilbert space

H = L2(Rx), where Rx is a copy of the real line. The object

is coupled from time t = 0 to t = ∆t with the probe P, another

one-dimensional mass with position ŷ and momentum p̂y, de-

scribed by a Hilbert space K = L2(Ry), where Ry is another

copy of the real line. The outcome of the measurement is ob-

tained by measuring the probe position ŷ at time t = ∆t. The

total Hamiltonian for the object and the probe is taken to be

HS+P = HS +HP +KH, (22)

where HS and HP are the free Hamiltonians of S and P, respec-

tively, H represents the measuring interaction. The coupling

constant K satisfies K∆t = 1 and it is so strong (K ≫ 1) that

HS and HP can be neglected.

The measuring interaction H is given by

H = x̂⊗ p̂y, (23)

so that the unitary operator of the time evolution of S+P from

t = 0 to t = τ ≤ ∆t is given by

U(τ) = exp

(−iKτ

h̄
x̂⊗ p̂y

)

. (24)

Suppose that the object S and the probe P are in the vector

states ψ and ξ , respectively, just before the measurement. We

assume that the wave functions ψ(x) and ξ (y) are Schwartz

rapidly decreasing functions23. Then, the time evolution of

S+P in the time interval (0,∆t) is given by the unitary opera-

tor U(∆t) = e−ix̂⊗ p̂y/h̄. Thus, this measuring process is repre-

sented by (L2(Ry), |ξ 〉〈ξ |,e−ix̂⊗ p̂y/h̄, ŷ).
The state of the composite system S+P just after the mea-

surement is U(∆t)ψ ⊗ ξ . By solving the Schrödinger equa-

tion, we have

U(∆t)(ψ ⊗ ξ )(x,y) = ψ(x)ξ (y− x). (25)

From this, the probability distribution of output variable x is

given by

Pr{x ∈ ∆‖ψ}=
∫

∆
dy

∫

R

|ψ(x)|2 |ξ (y− x)|2 dx. (26)

By a property of convolution, if the probe probability distribu-

tion |ξ (y)|2 approaches to the Dirac delta function δ (y), the

output probability approaches to the Born probability distri-

bution |ψ(x)|2.

The corresponding instrument I is given by

I (∆)ρ =

∫

∆
ξ (y1− x̂)ρξ (y1− x̂)†dy, (27)

and the corresponding POVM is given by

Π(∆) =

∫

∆
|ξ (y1− x̂)|2dy, (28)

Solving the Heisenberg equations of motion, we have

x̂(∆t) = x̂(0), (29)

ŷ(∆t) = x̂(0)+ ŷ(0), (30)

p̂x(∆t) = p̂x(0)− p̂y(0), (31)

p̂y(∆t) = p̂y(0). (32)

VII. ROOT-MEAN-SQUARE ERROR AND DISTURBANCE

To define the “mean error” of the above position measure-

ment, let us recall classical definitions. Suppose that a quan-

tity X = x is measured by directly observing another quantity

Y = y. For each pair of values (X ,Y ) = (x,y), the error is de-

fined as y−x. To define the “mean error” given the joint prob-

ability distribution (JPD) µX ,Y (dx,dy) of X and Y , Gauss24

introduced the root-mean-square (rms) error εG(X ,Y ) of Y

for X as

εG(X ,Y ) =

(

∫∫

R2
(y− x)2µX ,Y (dx,dy)

)1/2

, (33)

which Gauss24 called the “mean error” or the “mean error to

be feared”, and has long been accepted as a standard definition

for the “mean error”.

In the von Neumann model, the observable x̂(0) is mea-

sured by directly observing the meter observable ŷ(∆t). Since

x̂(0) and ŷ(∆t) commute by Eq. (30), we have the JPD

µ x̂(0),ŷ(∆t)(dx,dy) of x̂(0) and ŷ(∆t) as

µ x̂(0),ŷ(∆t)(dx,dy) = 〈E x̂(0)(dx)E ŷ(∆t)(dy)〉, (34)

where 〈· · · 〉 stands for the mean value in the state ψ⊗ξ . Then,

by Eq. (33) the rms error ε(x̂,ψ) for measuring x̂ in state ψ is

defined as the rms error εG(x̂(0), ŷ(∆t)) of ŷ(∆t) for x̂(0), so

that we have

ε(x̂,ψ) =

(

∫∫

R2
(y− x)2µ x̂(0),ŷ(∆t)(dx,dy)

)1/2

= 〈(ŷ(∆t)− x̂(0))2〉1/2 = 〈ŷ(0)2〉1/2. (35)

Since p̂x(0) and p̂x(∆t) also commute from Eq. (31), we

also have the JPD µ p̂x(0), p̂x(∆t)(dx,dy) of the values of p̂x(0)
and p̂x(∆t). The rms disturbance η(p̂x,ψ) of p̂x in state ψ is
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similarly defined as the rms error εG(p̂x(0), p̂x(∆)), so that we

have

η(p̂x,ψ) =

(

∫∫

R2
(y− x)2µ p̂x(0), p̂x(∆t)(dx,dy)

)1/2

= 〈(p̂x(∆t)− p̂x(0))
2〉1/2 = 〈p̂y(0)

2〉1/2. (36)

Then, by Kennard’s inequality (3) we have

ε(x̂,ψ)η(p̂x,ψ) = 〈ŷ(0)2〉1/2〈p̂y(0)
2〉1/2

≥ σ(ŷ(0))σ(p̂y(0))≥
h̄

2
. (37)

Thus, the von Neumann model satisfies Heisenberg’s error-

disturbance relation (EDR)

ε(x̂)η(p̂x)≥
h̄

2
(38)

for ε(x̂) = ε(x̂,ψ) and η(p̂x) = η(p̂x,ψ).
By the limited availability for measurement models up to

the 1980’s, the above result appears to have enforced a pre-

vailing belief in Heisenberg’s EDR (38), for instance, in

claiming the standard quantum limit for gravitational wave

detection25–27.

VIII. MEASUREMENT VIOLATING HEISENBERG’S EDR

In 1980, Braginsky, Vorontsov, and Thorne25 claimed that

Heisenberg’s EDR (38) leads to a sensitivity limit, called the

standard quantum limit (SQL), for gravitational wave detec-

tors exploiting free-mass position monitoring. Subsequently,

Yuen28 questioned the validity of the SQL, and then Caves27

defended the SQL by giving a new formulation and a new

proof without directly appealing to Heisenberg’s ERD (38).

Eventually, the conflict was reconciled29,30 by pointing out

that Caves27 still supposed (AR), in spite of avoiding Heisen-

berg’s ERD (38). More decisively, a solvable model of a pre-

cise position measurement was also constructed that breaks

the SQL29,30; later this model was shown to break Heisen-

berg’s EDR (38)31.

In what follows, we examine this model, which modifies the

measuring interaction of the von Neumann model. In this new

model, the object, the probe, and the probe observables, the

coupling constant K, and the time duration ∆t are the same as

the von Neumann model. The measuring interaction is taken

to be29

H =
π

3
√

3
(2x̂⊗ p̂y − 2 p̂x⊗ ŷ+ x̂p̂x ⊗ 1− 1⊗ ŷp̂y). (39)

The corresponding instrument is give by13

I (∆)ρ =
∫

∆
e−ixp̂x |φ〉〈φ |e−ixp̂x Tr[E x̂(dx)ρ ], (40)

where φ(x) = ξ (−x), and the corresponding POVM is given

by

Π(∆) = EA(∆). (41)

Solving the Heisenberg equations of motion, we have

x̂(∆t) = x̂(0)− ŷ(0), (42)

ŷ(∆t) = x̂(0), (43)

p̂x(∆t) =− p̂y(0), (44)

p̂y(∆t) = p̂x(0)+ p̂y(0). (45)

Thus, x̂(0) and ŷ(∆t) commute and also p̂x(0) and p̂x(∆t)
commute, so that the rms error and the rms disturbance are

well defined by their JPDs, and given by

ε(x̂,ψ) = 0, (46)

η(p̂x,ψ) = 〈(p̂y(0)+ p̂x(0))
2〉1/2 < ∞. (47)

Consequently, we have

ε(x̂)η(p̂x) = 0. (48)

Therefore, this model obviously violates Heisenberg’s EDR

(38).

IX. UNIVERSALLY VALID ERROR-DISTURBANCE

RELATION

To derive a universally valid EDR, consider a measuring

process M = (K ,ρ0,U,M). If A(0) and M(∆t) commute, the

rms error of the measuring process M for measuring A in ρ
can be defined through the JPD of A(0) and M(∆t). Similarly,

if B(0) and B(∆t) commute, the rms disturbance can also be

defined through the JPD of B(0) and B(∆t). In order to extend

the definitions of the rms error and disturbance to the general

case, we introduce the noise operator and the disturbance op-

erator.

The noise operator N(A) is defined as the difference

M(∆t)− A(0) between the observable A(0) to be measured

and the meter observable M(∆t) to be read and the disturbance

operator D(A) is defined as the the change B(∆t)−B(0) of B

caused by the measuring interaction, i.e.,

N(A) = M(∆t)−A(0), (49)

D(B) = B(∆t)−B(0). (50)

The mean noise operator n(A) and the mean disturbance op-

erator d(B) are defined by

n(A) = TrK [N(A)1⊗ρ0], (51)

d(B) = TrK [D(B)1⊗ρ0]. (52)

The rms error ε(A,ρ) and the rms disturbance η(B,ρ) for

observables A,B, respectively, in state ρ are defined by

ε(A,ρ) = (Tr[N(A)2ρ ⊗ρ0])
1/2, (53)

η(B,ρ) = (Tr[D(B)2ρ ⊗ρ0])
1/2. (54)

An immediate meaning of ε(A,ρ) and η(B,ρ) are the rms’s

of the noise operator and the disturbance operator.

Suppose that M(∆t) and A(0) commute in ρ ⊗ρ0, i.e.,

[EA(0)(∆),EM(∆t)(Γ)]ρ ⊗ρ0 = 0 (55)
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for all ∆,Γ ∈ B(R)32–34. In this case, the relation

µA(0),M(∆t)(dx,dy) = Tr[EA(0)(dx)EM(∆t)(dy)ρ ⊗ρ0] (56)

defines the JPD of A(0) and M(∆t) satisfying

Tr[p(A(0),M(∆t))ρ ⊗ρ0] =

∫∫

R2
p(x,y)µA(0),M(∆t)(dx,dy)

(57)

for any real polynomial p(A(0),M(∆t)) in A(0) and M(∆t)32.

Thus, the classical rms error εG(A(0),M(∆t)) of M(∆t) for

A(0) is well defined, and we easily obtain the relation

ε(A,ρ) = εG(A(0),M(∆t)). (58)

Similarly, we have η(B,ρ) = εG(B(0),B(∆t)) if B(0) and

B(∆t) commute in ρ ⊗ρ0.

In 2003, the present author11,12,35 derived the relation

ε(A)η(B)+ |〈[n(A),B]〉+ 〈[A,d(B)]〉| ≥ 1

2
|〈[A,B]〉| , (59)

where ε(A) = ε(A,ρ), η(B) = η(B,ρ), which is universally

valid for any observables A,B, any system state ρ , and any

measuring process M. From Eq. (59), it is concluded that if

the error and the disturbance are statistically independent from

system state, then the Heisenberg type EDR

ε(A)η(B) ≥ 1

2
|〈[A,B]〉| (60)

holds, extending the previous results36–39. The additional cor-

relation term in Eq. (59) allows the error-disturbance product

ε(A)η(B) to violate the Heisenberg type EDR (60). In gen-

eral, the relation

ε(A)η(B)+ ε(A)σ(B)+σ(A)η(B)≥ 1

2
|〈[A,B]〉| , (61)

holds for any observables A,B, any system state ρ , and any

measuring process M11–13,35,40,41.

The new relation (61) leads to the following new constraints

for precise measurements and non-disturbing measurement:

then

σ(A)η(B)≥ 1

2
|〈[A,B]〉| , if ε(A) = 0, (62)

ε(A)σ(B)≥ 1

2
|〈[A,B]〉| , if η(B) = 0. (63)

Note that if 〈[A,B]〉 6= 0, the Heisenberg type EDR (60) leads

to the divergence of ε(A) or η(B) in those cases. The new

error bound Eq. (63) was used to derive a conservation-

law-induced limits for measurements12,42–44 quantitatively

generalizing the Wigner-Araki-Yanase theorem45–48 and was

used to derive a fundamental accuracy limit for quantum

computing12.

X. QUANTUM ROOT MEAN SQUARE ERRORS

We say that the measuring process M is probability repro-

ducible for the observable A in the state ρ iff

Tr[EM(∆t)(∆)ρ ⊗ρ0] = Tr[EA(∆)ρ ] (64)

holds for all ∆ ∈ B(R). The rms error ε(A,ρ) satisfies that

ρ(A,ρ) = 0 for all ρ if and only if M is probability repro-

ducible for A in all ρ13,31. Thus, the condition that ε(A,ρ) = 0

for all ρ characterizes the class of measurements with POVM

Π satisfying Π = EA.

Busch, Heinonen, and Lahti49 pointed out that there are

cases where ε(A,ρ) = 0 holds but M is not probability re-

producible and where M is not probability reproducible but

ε(A,ρ) = 0 holds, and questioned the reliability of the rms er-

ror ε(A.ρ) as a state-dependent error measure. However, their

argument lacks a reasonable definition of precise measure-

ments, necessary for discussing the reliability of error mea-

sures. In response to their criticism, the present author33,34

has successfully characterized the precise measurements of A

in a given state ρ and shown that the rms error ε(A,ρ) re-

liably characterizes such measurements. In what follows we

survey those results, which were mostly neglected in the re-

cent debates50–52.

Let us start with the classical case. Suppose that a quantity

X = x is measured by direct observation of another quantity

Y = y. Then, this measurement is precise iff X =Y holds with

probability 1, or equivalently the JPD µX ,Y (dx,dy) of X and

Y concentrates on the diagonal set, i.e.,

µX ,Y ({(x,y) ∈R
2 | x 6= y}) = 0. (65)

As easily seen from Eq. (33), this condition is equivalent to

the condition εG(X ,Y ) = 0.

Generalizing the classical case, we say that a measuring

process M makes a strongly precise measurement of A in ρ iff

A(0) = M(∆t) holds with probability 1 in the sense that A(0)

and M(∆t) commute in ρ ⊗ ρ0 and that the JPD µA(0),M(∆t)

concentrates on the diagonal set, i.e.,

µA(0),M(∆t)({(x,y) ∈ R
2 | x 6= y}) = 0. (66)

On the other hand, we have introduced another operational

requirement. The weak joint distribution µ
A(0),M(∆t)
W of A(0)

and M(∆t) in a state ρ is defined by

µ
A(0),M(∆t)
W (dx,dy) = Tr[EA(0)(dx)EM(∆t)(dy)ρ ⊗ρ0]. (67)

The weak joint distribution is not necessarily positive but

operationally accessible by weak measurement and post-

selection53. We say that the measuring process M makes a

weakly precise measurement of A in ρ iff the weak joint dis-

tribution µ
A(0),M(∆t)
W in state ρ concentrates on the diagonal

set, i.e.,

µ
A(0),M(∆t)
W ({(x,y) ∈ R

2 | x 6= y}) = 0. (68)

This condition does not require that A(0) and M(∆t) com-

mute, while it only requires that the weak joint distribution

concentrates on the event A(0) = M(∆t). A similar condi-

tion has been used to observe momentum transfer in a double-

slit ‘which-way’ experiment54,55. We naturally consider that

strongly preciseness is a sufficient condition for precise mea-

surements and weak preciseness is a necessary condition. In

the previous investigations33,34, it was mathematically proved
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that both conditions are equivalent. Thus, either condition is

concluded to be a necessary and sufficient condition charac-

terizing the unique class of precise measurements. As above,

we say that the measuring process M precisely measures A in

ρ iff it makes a strongly or weakly precise measurement of A

in ρ .

To characterize the class of precise measurements in terms

of the rms error-freeness condition, ε(A,ρ) = 0, and the prob-

ability reproducibility condition, we introduce the follow-

ing notions. The cyclic subspace C (A,ρ) generated by A

and ρ is defined as the closed subspace of H generated by

{EA(∆)φ | ∆ ∈ B(R),φ ∈ ran(ρ)}, where ran(ρ) denotes the

range of ρ . Then, the following theorem holds33,34.

Theorem 2. Let M = (K ,ρ0,U,M) be a measuring process

for the system S described by a Hilbert space H . Let A be

an observable of S and ρ a state of S. Then, the following

conditions are equivalent.

(i) M precisely measures A in ρ .

(ii) ε(A,φ) = 0 in all φ ∈ C (A,ρ).

(iii) M is probability reproducible for A in all φ ∈ C (A,ρ).

In the case where A(0) and M(∆t) commute, precise mea-

surements are characterized by the rms error-freeness condi-

tion, since in this case we have εG(A(0),M(∆t)) = ε(A,ρ).
However, the probability reproducible condition does not

characterize the precise measurements even in this case. To

see this suppose that A(0) and M(∆t) are identically dis-

tributed and independent34 (p. 763). Then, we have

εG(A(0),M(∆t)) =

∫∫

R2
(y− x)2µA(0)(dx)µM(∆t)(dy)

= σ(A(0))2 +σ(M(∆t))2 +(〈A(0)〉− 〈M(∆t)〉)2.

Since σ(A(0)) = σ(M(∆t)) and 〈A(0)〉= 〈M(∆t)〉, we have

εG(A(0),M(∆t)) =
√

2σ(A). (69)

Thus, M is not a precise measurement for the input state ρ
with σ(A) 6= 0. In the case where A(0) and M(∆t) do not

commute, the rms error-freeness condition well characterizes

precise measurements to a similar extent to the probability re-

producibility condition. In particular, the class of measuring

processes precisely measuring A in all ρ is characterized by

the following equivalent conditions33,34: (i) ε(A,ψ) = 0 for

all ψ ∈ H ; (ii) probability reproducible for A in all ψ ∈ H ;

(iii) Π = EA. The above result ensures our long-standing be-

lief that a measurement with POVM Π satisfying Π = EA is

considered to be precise in any state in the sense that the mea-

sured observable A(0) and the meter observable M(∆t) to be

directly observed are perfectly correlated in any input state,

not only reproducing the probability distribution in any state.

We say that the measuring process M does not disturb an

observable B in a state ρ iff observables B(0) and B(∆t) com-

mute in the state ρ ⊗ ρ0 and the JPD µB(0),B(∆t) of B(0) and

B(∆t) concentrates on the diagonal set. The non-disturbing

measuring processes defined above can be characterized anal-

ogously.

From the above results, a non-zero lower bound for ε(A) or

η(B) indicates impossibility of precise or non-disturbing mea-

surement. In particular, if σ(A),σ(B) < ∞ and 〈[A,B]〉 6= 0,

then any measuring process cannot precisely measure A with-

out disturbing B.

The above characterizations of precise and non-disturbing

measurements suggests the following definitions of the locally

uniform rms error ε(A,ρ) and the locally uniform rms distur-

bance η(B,ρ)56:

ε(A,ρ) = sup
φ∈C (A,ρ)

ε(A,φ), (70)

η(B,ρ) = sup
φ∈C (B,ρ)

η(B,φ). (71)

Then, we have ε(A,ρ) = 0 if and only if the measurement

precisely measures A in ρ , and that η(B,ρ) = 0 if and only if

the measurement does not disturb B in ρ . For those quantities,

the Heisenberg type EDR

ε(x̂)η(p̂x)≥
h̄

2
(72)

is still violated by a linear position measurement56, and the

relation

ε(A)η(B)+ ε(A)σ(B)+σ(A)η(B)≥ 1

2
|〈[A,B]〉| (73)

holds universally56, where ε(A) = ε(A,ρ) and η(B) =
η(B,ρ).

Thus, the locally uniform rms error ε(A,ρ) completely

characterizes precise measurements of A in ρ and the lo-

cally uniform rms disturbance η(B,ρ) completely character-

izes measurements non-disturbing B in ρ , while they satisfy

the EDR of the same form as the rms error and disturbance.

Further investigations on quantum generalizations of the clas-

sical notion of root-mean-square error and EDRs formulated

with those quantities will be reported elsewhere.
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5 Messiah, A. Mécanique Quantique, vol. I (Dunod, Paris, 1959).

[Quantum Mechanics, Vol. I (North-Holland, Amsterdam, 1959)].
6 Schiff, L. I. Quantum Mechanics (MacGraw-Hill, New York,

1968).
7 Ballentine, L. E. The statistical interpretation of quantum me-

chanics. Rev. Mod. Phys. 42, 358–381 (1970).
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