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Abstract. In the conventional formulation, it is broadly accepted that simultaneous measurability
and commutativity of observables are equivalent. However, several objections have been claimed
that there are cases in which even nowhere commuting observables can be measured simultaneously.
Here, we outline a new theory of simultaneous measurements based on a state-dependent formula-
tion, in which nowhere commuting observables are shown to have simultaneous measurements in
some states, so that the known objections to the conventional theory are theoretically justified. We
also discuss new results on the relation between weak values and output probability distributions of
simultaneous measurements.

1. INTRODUCTION

In the conventional formulation of quantum mechanics, it is broadly accepted that
simultaneous measurability and commutativity of observables are equivalent. However,
there have been known several objections on this statement. To eliminate an intermediate
case in which the two observables commute on a subspace, we say that two observables
are nowhere commuting, if they have no common eigenstate. Then, the objections
generally state that there are cases in which even nowhere commuting observables
are simultaneously measurable. In one case mentioned by Heisenberg [1], if at time
0 the object is prepared in an eigenstate of A and the observer actually measures the
value of another observable B nowhere commuting with A, then the observer can know
both the values of two observables A and B at time 0. In the other case mentioned by
Schrödinger [2] following Einstein-Podolsky-Rosen (EPR) [3], if at time 0 two particles,
I and II, are in the EPR state, then the observer can measure the position of particle I
and the momentum of particle II simultaneously at time 0, and the observer knows the
momentum of particle I at time 0 due to the EPR correlation as well as the position of
particle I at time 0 by the direct measurement. The above objections have been known
for long time. However, no rigorous and general theory of simultaneous measurements
has been known that puts those cases in the right place.

In this paper we shall outline a general theory of simultaneous measurements based on
rigorous theory of quantum measurements [4]–[37]. In this general theory, simultaneous
measurements of nowhere commuting observables are shown to be possible and the
above two cases are included as typical cases. We also discuss several topics such as the
relation between simultaneous measurability and commutativity in a state-dependent
formulation, the characterization of simultaneously measurable observables, and the



universal uncertainty principle for approximate simultaneous measurements, including
new results on the relation between weak values and output probability distributions of
simultaneous measurements. Proofs of new theorems will be published elsewhere.

2. STATE-DEPENDENT COMMUTATIVITY

In this paper, we consider a quantum system S described by a finite dimensional Hilbert
space H . A self-adjoint operator on H is called an observable and a unit vector in H
is called a state. For any observable A, we denote by EA(a) the projection of H onto
the subspace {|ψ〉 ∈ H | A |ψ〉 = a |ψ〉}, which is the eigensubspace of A belonging to
a, if a is an eigenvalue, or the 0-dimensional subspace {0}, otherwise. The infimum
of two projections E and F is the projection E ∧ F onto the intersection of ranges
of E and F . Thus, the projection EA(a)∧ EB(b) is the projection onto the subspace
{|ψ〉 ∈ H | A |ψ〉 = a |ψ〉 and B |ψ〉 = b |ψ〉}.

In the conventional formulation, it has been well accepted that two observables are
simultaneously measurable if and only if they commute. However, this statement is
based on the state-independent formulation. Several objections have been claimed that
there are cases in which non-commuting observables can be measured simultaneously
in particular states. Here, we consider the state-dependent formulation of simultaneous
measurability, in which we shall determine the condition for two observables to be
simultaneously measurable in a given state. In order to establish this, we start with
introducing the state-dependent notion of commutativity of observables.

An n-dimensional probability distribution in x1, . . . ,xn is a family {p(x1, . . . ,xn) |
(x1, . . . ,xn)∈ Rn} of non-negative numbers such that ∑x1,...,xn p(x1, . . . ,xn) = 1, where R
denotes the set of real numbers. A joint probability distribution (JPD) of two observables
A,B in a state |ψ〉 is a 2-dimensional probability distribution (PD) Pr{A = a,B = b‖ |ψ〉}
in a,b satisfying the relation

〈ψ | f (A,B)|ψ〉 = ∑
a,b

f (a,b) Pr{A = a,B = b‖ |ψ〉}

for any polynomial f (A,B) in A and B. The JPD is inherently a state-dependent notion
and plays a central role in our theory. Gudder [38] obtained the following characteriza-
tion of the existence of JPDs.

Theorem 1 (Gudder 1968) For any observables A and B and any state |ψ〉, the follow-
ing conditions are equivalent.

(i) There exists a JPD of A,B in |ψ〉.
(ii) For any a,b ∈ R we have [EA(a),EB(b)] |ψ〉 = 0.
(iii) The state |ψ〉 is a superposition of common eigenstates of A and B.
(iv) The family p(a,b) =

〈
ψ

∣∣EA(a)∧EB(b)
∣∣ψ

〉
is a 2-dimensional probability dis-

tribution in a,b, or equivalently ∑a,b
〈
ψ

∣∣EA(a)∧EB(b)
∣∣ψ

〉
= 1.

We say that two observables A and B commute in a state |ψ〉, in symbols A ↔|ψ〉
B, if one of the above conditions holds. We also say that two observables A and B
commute nowhere, if they commute in no states, or equivalently if they have no common
eigenstates. Spin components in different directions commute nowhere.



3. JOINT QUASIPROBABILITY

Since JPDs do not always exist, it is convenient to introduce mathematical notions that
exist for any pair of observables and reduce to the JPD for commuting pairs. Here, we
discuss two versions, weak and strong, of JPDs.

The strong joint quasiprobability distribution of observables A and B in a state |ψ〉 is
defined by

PrS{A = a,B = b‖ |ψ〉} =
〈

ψ
∣∣∣EA(a)∧EB(b)

∣∣∣ψ
〉

for any a,b ∈ R. The weak joint quasiprobability distribution of observables A and B in
a state |ψ〉 is defined by

PrW{A = a,B = b‖ |ψ〉} =
〈

ψ
∣∣∣EB(a)EA(b)

∣∣∣ψ
〉

for any a,b∈R; if the above relation defines a 2-dimensional probability distribution, we
call it the weak joint probability distribution. The notion of strong joint quasiprobability
distribution was originated by Birkhoff and von Neumann [39], who assigned the projec-
tion EA(a)∧EB(b) to the proposition "A = a and B = b.” The weak joint quasiprobability
distribution was introduced by Kirkwood [40]. The above notions reduce to the JPD in
the case where A and B commute in |ψ〉 as follows.

Theorem 2 For any observables A and B and any state |ψ〉, observables A and B
commute in |ψ〉 if and only if the strong and the weak joint quasiprobability distributions
coincide, i.e.,

PrS{A = a,B = b‖ |ψ〉} = PrW{A = a,B = b‖ |ψ〉}

for any a,b ∈ R.

From Theorem 1 (iv), the strong joint quasiprobability distribution of A,B in |ψ〉 is a
2-dimensional probability distribution if and only if A and B commute in |ψ〉. However,
the weak joint quasiprobability distribution of A,B in |ψ〉 can be a 2-dimensional
probability distribution even if A and B do not commute in |ψ〉 as discussed in Section
9.

4. CONDITIONAL QUASIPROBABILITY

In probability theory, the conditional probability is defined as the ratio of the joint
probability relative to the marginal probability and the conditional expectation is defined
as the expectation with respect to the conditional probability distribution. Analogously,
conditional probability distribution and conditional expectation of quantum observables
are given as follows. If observables A and B commute in a state |ψ〉 and satisfy Pr{B =
b‖ |ψ〉} > 0, we naturally introduce the conditional probability distribution of A given
B = b as

Pr{A = a|B = b‖ |ψ〉} =
Pr{A = a,B = b‖ |ψ〉}

Pr{B = b‖ |ψ〉}
.



Then, the conditional expectation of A given B = b is defined by

Ex{A|B = b‖ |ψ〉} = ∑
a

aPr{A = a|B = b‖ |ψ〉}.

Now, we assume Pr{B = b‖ |ψ〉} > 0. The strong and weak versions of conditional
quasiprobability is introduced without assuming A ↔|ψ〉 B as follows. The strong con-
ditional quasiprobability distribution of A given B = b is defined by

PrS{A = a|B = b‖ |ψ〉} =
PrS{A = a,B = b‖ |ψ〉}

Pr{B = b‖ |ψ〉}
.

Since the weak joint quasiprobability distribution is not symmetric in A and B, there are
two different notions of conditional quasiprobability corresponding to preselection and
postselection. Since they can be easily convert each other, in the following we introduce
only the postselection version. The weak postconditional quasiprobability distribution
of A given B = b is defined by

PrW{A = a|B = b‖ |ψ〉} =
PrW{A = a,B = b‖ |ψ〉}

Pr{B = b‖ |ψ〉}
.

Now, weak and strong versions of conditional quasiexpectations are in order. The strong
conditional quasiexpectation and the weak postconditional quasiexpectation of A given
B = b are defined, respectively, as

ExS{A|B = b‖ |ψ〉} = ∑
a

aPrS{A = a|B = b‖ |ψ〉}, (1)

ExW{A|B = b‖ |ψ〉} = ∑
a

aPrW{A = a|B = b‖ |ψ〉}. (2)

It is easy to see that

ExW{A|B = b‖ |ψ〉} =

〈
ψ |EB(b)A|ψ

〉
〈ψ |EB(b)|ψ〉 ,

and from Theorem 2, we have

Ex{A|B = b‖ |ψ〉} = ExS{A|B = b‖ |ψ〉} = ExW{A|B = b‖ |ψ〉}

if A ↔|ψ〉 B.

5. WEAK VALUES

The notion of weak values introduced by Aharonov-Albert-Vaidman [41] can be math-
ematically formulated as follows. For an observable A and two states |ψi〉 and

∣∣ψ f
〉
, the

weak value of A with preselected state |ψi〉 and postselected state
∣∣ψ f

〉
is defined by

Aw =

〈
ψ f |A|ψi

〉〈
ψ f |ψi

〉 .



As pointed out by Steinberg [42, 43], the formal definition of the weak value coincides
with the probability theoretical notion of weak postconditional quasiexpectation, which
as shown above is naturally defined based on the Kirkwood joint quasiprobability [40].

Theorem 3 (Steinberg 1995) For observable B = ∑b b |B = b〉〈B = b|, the weak value
Aw of an observable A with preselected state |ψi〉 = |ψ〉 and postselected state

∣∣ψ f
〉

=
|B = b〉 coincides with the weak postconditional quasiprobability distribution of A given
B = b, i.e.,

Aw = ExW{A|B = b‖ |ψ〉}.

6. STATE-DEPENDENT IDENTITY

In quantum mechanics, one of the fundamental questions is to answer when two ob-
servables are considered to have the same value. However, this question has eluded a
satisfactory solution for long time. In the recent work [33, 35], the present author found
a plausible solution to this problem based on the weak joint quasiprobability distribution.

We say that two observables A and B are identically correlated (or perfectly corre-
lated) in a state |ψ〉, in symbols A =|ψ〉 B, if

PrW{A = a,B = b‖ |ψ〉} = 0,

provided a 6= b. For observables A,B and a state |ψ〉 the cyclic subspace C (A,B, |ψ〉)
generated by A,B, |ψ〉 is defined by

C (A,B, |ψ〉) = { f (A,B) |ψ〉 | f is a polynomial}.

We shall define C (A, |ψ〉) by C (A, |ψ〉) = C (A, I, |ψ〉). The following theorem charac-
terizes the identical correlation between two observables.

Theorem 4 For any observables A,B and state |ψ〉, the following conditions are equiv-
alent.

(i) A =|ψ〉 B.
(ii) A ↔|ψ〉 B and ∑a Pr{A = a,B = a‖|ψ〉} = 1.
(iii) |ψ〉 is a superposition of common eigenstates of A and B with common eigenval-

ues.
(iv) A = B on C (A, |ψ〉).
(v) EA(x) = EB(x) on C (A, |ψ〉) for all x.
(vi) Pr{A = x‖ |φ〉} = Pr{B = x‖ |φ〉} for all x and |φ〉 ∈ C (A, |ψ〉).
(vii) ‖A |φ〉−B |φ〉‖ = 0 for all |φ〉 ∈ C (A, |ψ〉).
(viii) ∑a PrS{A = a,B = a‖|ψ〉} = 1.
(ix) EA(a)w = δa,b if Pr{B = b‖ |ψ〉} > 0, where |ψi〉 = |ψ〉 and

∣∣ψ f
〉

= |B = b〉.
(x) PrS{A = a,B = b‖ |ψ〉} = PrW{A = a,B = b‖ |ψ〉} = δa,b Pr{A = a‖ |ψ〉}.

An important property of quantum identical correlation is transitivity [33, 35],
whereas commutativity does not have this property.

Theorem 5 The relation =|ψ〉 is an equivalence relation among observables. In partic-
ular, if A =|ψ〉 B and B =|ψ〉 C, then A =|ψ〉 C.



7. MEASURING PROCESSES

A measuring process for H is defined to be a quadruple (K , |ξ 〉 ,U,M) consisting of a
Hilbert space K , a state |ξ 〉 in K , a unitary operator U on H ⊗K , and an observable
M on K [4]. The measuring process M = (K , |ξ 〉 ,U,M) describes a measurement
carried out by an interaction, called the measuring interaction, between the system S
described by H and the probe system P described by K that is prepared in the state
|ξ 〉 just before the measuring interaction. The unitary operator U describes the time
evolution during the measuring interaction, say, from time 0 to ∆t. For any observables
A,B on H and M on K , we write A(0) = A⊗ I, B(0) = B⊗ I, M(0) = I ⊗M, A(∆t) =
U†(A⊗ I)U , B(∆t) = U†(B⊗ I)U , and M(∆t) = U†(I⊗M)U . An n-dimensional POVM
is a family of positive operators Π(x1, . . . ,xn) on H with (x1, . . . ,xn) ∈ Rn such that
∑x1,...,xn Π(x1, . . . ,xn) = I. For measuring process M, the relation

Π(x) = TrK [EM(∆t)(x)(I ⊗|ξ 〉〈ξ |)]. (3)

defines a 1-dimensional POVM called the POVM of M. The outcome of measuring
process M is obtained by measuring the observable M, called the meter observable, in
the probe at the time just after the measuring interaction. Thus, the output probability
distribution Pr{x = x‖ |ψ〉}, the probability distribution of the output variable x of this
measurement on an arbitrary input state |ψ〉, is given by the POVM of measuring process
M as

Pr{x = x‖ |ψ〉} = Pr{M(∆t) = x‖ |ψ〉 |ξ 〉} = 〈ψ|Π(x)|ψ〉 . (4)

8. UNIVERSALLY VALID UNCERTAINTY PRINCIPLE

A simultaneous measuring process is a 6-tuple M = (K , |ξ 〉 ,U,M, f ,g) consisting of
a measuring process (K , |ξ 〉 ,U,M) and a pair of real functions f ,g. For observables
A,B and a state |ψ〉, the root-mean-square (rms) errors ε(A) and ε(B) of M for the
A-measurement and the B-measurement, respectively, in |ψ〉 is defined by

ε(A) = ‖N(A) |ψ〉 |ξ 〉‖, (5)
ε(B) = ‖N(B) |ψ〉 |ξ 〉‖, (6)

where the noise operators N(A),N(B) are given by N(A) = f (M(∆t)) − A(0) and
N(B) = g(M(∆t))−B(0). Then, those errors always satisfy the following universally
valid relation [26, 27]

ε(A)ε(B)+ ε(A)σ(B)+σ(A)ε(B) ≥ 1
2
|〈ψ|[A,B]ψ〉| , (7)

where σ(A),σ(B) are the standard deviations of A,B in |ψ〉. If the mean errors
〈ξ | 〈ψ |N(A)|ψ〉 |ξ 〉 and 〈ξ | 〈ψ|N(B)|ψ〉 |ξ 〉 are independent of the initial state |ξ 〉 of
the probe, we have [26, 27]

ε(A)ε(B) ≥ 1
2
|〈ψ|[A,B]|ψ〉| , (8)



a form suggested originally by Heisenberg’s gamma-ray microscope thought experiment
[44]. The last relation is obviously not universally valid, since ε(A) = 0 implies ε(B)∼∞
in a state with 〈ψ |[A,B]|ψ〉 6= 0, whereas the new relation, (7), concludes the new
constraint σ(A)ε(B) ≥ 1

2 |〈ψ|[A,B]|ψ〉| [26, 27]. Hall [45] pointed out the role of prior
information in the violation of (8).

9. SIMULTANEOUS MEASURABILITY

For observables A,B and a state |ψ〉, a simultaneous measurement of A,B in |ψ〉 is a
simultaneous measuring process (K , |ξ 〉 ,U,M, f ,g) satisfying

f (M(∆t)) =|ψ〉|ξ 〉 A(0),
g(M(∆t)) =|ψ〉|ξ 〉 B(0).

The above condition is equivalent to the condition that the measuring process
(K , |ξ 〉 ,U, f (M)) measures A and that the measuring process (K , |ξ 〉 ,U,g(M))
measures B. Two observables A,B are said to be simultaneously measurable in a state
|ψ〉 if there exists a simultaneous measurement of A,B in |ψ〉.

From Theorem 4 (vii), any simultaneous measurement of A,B satisfies ε(A) =
ε(B) = 0, so that 〈ψ|[A,B]|ψ〉 = 0. Moreover, any simultaneous measurement of
A,B can be easily modified to be a simultaneous measurement of EA(a),EB(b),
so that we also have

〈
ψ|[EA(a),EB(b)]|ψ

〉
= 0 for all a,b; however, this does

not imply that A and B commute in |ψ〉, since the latter condition is equivalent to〈
ψ|[EA(a),EB(b)]2|ψ

〉
= 0. Thus, a simultaneous measurement of nowhere commuting

observables A and B is possible only in the case where
〈
ψ|[EA(a),EB(b)]|ψ

〉
= 0 for

all a,b but
〈
ψ |[EA(a),EB(b)]2|ψ

〉
6= 0 for some a,b.

The joint output probability distribution of a simultaneous measuring process
(K , |ξ 〉 ,U,M, f ,g) is the joint probability distribution of the output variables x,y de-
fined by

Pr{x = x,y = y‖ |ψ〉} = Pr{ f (M(∆t)) = x,g(M(∆t)) = y‖ |ψ〉 |ξ 〉}. (9)

Then, we have

Pr{x = x,y = y‖ |ψ〉} = ∑
u:x= f (u),y=g(u)

〈ψ|Π(u)|ψ〉 .

Simultaneous measurability and commutativity are not equivalent notion under the
state-dependent formulation, as the following theorem clarifies [46].

Theorem 6 (i) Two observables A,B commute in a state |ψ〉 if and only if there is a
2-dimensional POVM Π such that

∑
y

Π(x,y) = EA(x) on C (A,B, |ψ〉), (10)

∑
x

Π(x,y) = EB(y) on C (A,B, |ψ〉). (11)



(ii) Two observables A,B are simultaneously measurable in a state |ψ〉 if and only if
there is a 2-dimensional POVM Π such that

∑
y

Π(x,y) = EA(x) on C (A, |ψ〉), (12)

∑
x

Π(x,y) = EB(y) on C (B, |ψ〉). (13)

(iii) Two observables are simultaneously measurable in a state |ψ〉 if they commute in
|ψ〉.

In the conventional theory, the joint output probability distribution of the simultane-
ous measurement of two commuting observables A and B in a state ψ is shown to be
given by their joint probability distribution. However, if A and B are not commuting,
this relation is no longer meaningful. Instead, we can show that the joint output prob-
ability distribution of the simultaneous measurement is always given by the weak joint
probability distribution.

Theorem 7 For any simultaneous measurement (K , |ξ 〉 ,U,M, f ,g) of observables A,B
in a state |ψ〉, the joint output probability distribution does not depend on the measuring
process but always coincides with the weak joint quasiprobability distribution, i.e.,

Pr{x = x,y = y‖ |ψ〉} = PrW{A = x,B = y‖ |ψ〉}.

10. CHARACTERIZATIONS

In this section, we collect results on characterizations of simultaneous measurements of
nowhere commuting observables.

The conventional relation between simultaneous measurability and commutativity is
recovered as follows.

Theorem 8 Observables A and B are simultaneously measurable in every state |ψ〉 if
and only if A and B commute on H .

The following theorems show that we can simultaneously measure two nowhere
commuting observables [46].

Theorem 9 In any Hilbert space, every pair of observables are simultaneously measur-
able in any eigenstate of either observable.

Theorem 10 In any Hilbert space with dimension more than 3, there are nowhere
commuting observables that are simultaneously measurable in a state that is not an
eigenstate of either observable.

In the case where dim(H ) = 2, the following characterization holds.

Theorem 11 Assume dim(H ) = 2. The following conditions are equivalent.
(i) A and B are simultaneously measurable in |ψ〉.
(ii) PrW{A = a,B = b‖|ψ〉} ≥ 0 for all a,b.
(iii) Either A and B commute in |ψ〉, or |ψ〉 is an eigenstate of A or B.



It is an open problem whether the equivalence between conditions (i) and (ii) above
holds in arbitrary dimensions.
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