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In quantum logic there is well-known arbitrariness in choosing a binary operation for conditional.
Currently, we have at least three candidates, called the Sasaki conditional, the contrapositive Sasaki
conditional, and the relevance conditional. A fundamentalproblem is to show how the form of the
conditional follows from an analysis of operational concepts in quantum theory. Here, we attempt
such an analysis through quantum set theory (QST). In this paper, we develop quantum set theory
based on quantum logics with those three conditionals, eachof which defines different quantum
logical truth value assignment. We show that those three models satisfy the transfer principle of
the same form to determine the quantum logical truth values of theorems of the ZFC set theory.
We also show that the reals in the model and the truth values oftheir equality are the same for those
models. Interestingly, however, the order relation between quantum reals significantly depends on the
underlying conditionals. We characterize the operationalmeanings of those order relations in terms
of joint probability obtained by the successive projectivemeasurements of arbitrary two observables.
Those characterizations clearly show their individual features and will play a fundamental role in
future applications to quantum physics.

1 Introduction

Quantum set theory crosses over two different fields of mathematics, namely, foundations of mathematics
and foundations of quantum mechanics, and originated from the methods of forcing introduced by Cohen
[5, 6] for the independence proof of the continuum hypothesis and quantum logic introduced by Birkhoff
and von Neumann [2]. After Cohen’s work, the forcing subsequently became a central method in set
theory and also incorporated with various notions in mathematics, in particular, the notion of sheaves
[8] and notions of sets in nonstandard logics such as Boolean-valued set theory [1], by which Scott
and Solovay [22] reformulated the method of forcing, topos [12], and intuitionistic set theory [9]. As
a successor of those attempts, quantum set theory, a set theory based on the Birkhoff-von Neumann
quantum logic, was introduced by Takeuti [23], who established the one-to-one correspondence between
reals in the model (quantum reals) and quantum observables.Quantum set theory was recently developed
by the present author [18, 19] to obtain the transfer principle to determine quantum truth values of
theorems of the ZFC set theory, and clarify the operational meaning of the equality between quantum
reals, which extends the probabilistic interpretation of quantum theory,

In quantum logic there is well-known arbitrariness in choosing a binary operation for conditional.
Hardegree [11] defined a material conditional on an orthomodular lattice as a polynomially definable bi-
nary operation satisfying three fundamental requirements, and showed that there are exactly three binary
operations satisfying those conditions: the Sasaki conditional, the contrapositive Sasaki conditional, and
the relevance conditional. Naturally, a fundamental problem is to show how the form of the conditional
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follows from an analysis of the operational concept in quantum theory testable by experiments. Here, we
attempt such an analysis through quantum set theory. In quantum set theory (QST), the quantum logical
truth values of two atomic formulas, equality and membership relations, depend crucially on the choice
of conditional. In the previous investigations, we have adopted only the Sasaki conditional, proved the
transfer principle to determine quantum truth values of theorems of the ZFC set theory, established the
one-to-one correspondence between reals in the model, or “quantum reals”, and quantum observables,
and clarified the operational meaning of the equality between quantum reals. In this paper, we study QST
based on the above three material conditional together. We construct the universal QST model based on
the logic of the projection lattice of a von Neumann algebra with each conditional. Then, we show that
this new model satisfies the transfer principle of the same form as the old model based on the Sasaki
conditional. We also show that the reals in the model and the truth values of their equality are the same
for those three models. Up to this point, those models behaveindistinguishably. However, we reveal that
the order relation between quantum reals depend crucially on the underlying conditionals. We character-
ize the operational meanings of those order relations, which turn out closely related to the spectral order
introduced by Olson [16] playing a significant role in the topos approach to quantum theory [7], in terms
of joint probability of the outcomes of the successive projective measurements of two observables. Those
characterizations clarify their individual features and will play a fundamental role in future applications
to quantum physics.

2 Preliminaries

2.1 Complete orthomodular lattices

A complete orthomodular latticeis a complete latticeQ with anorthocomplementation, a unary opera-
tion ⊥ on Q satisfying (C1) ifP≤ Q thenQ⊥ ≤ P⊥, (C2) P⊥⊥ = P, (C3) P∨P⊥ = 1 andP∧P⊥ = 0,
where 0=

∧

Q and 1=
∨

Q, that satisfies theorthomodular law(OM) if P≤ Q thenP∨ (P⊥∧Q) = Q.
In this paper, any complete orthomodular lattice is called alogic. A non-empty subset of a logicQ is
called asubalgebraiff it is closed under∧, ∨, and⊥. A subalgebraA of Q is said to becompleteiff
it has the supremum and the infimum inQ of an arbitrary subset ofA . For any subsetA of Q, the
subalgebra generated byA is denoted byΓ0A . We refer the reader to Kalmbach [13] for a standard text
on orthomodular lattices.

We say thatP andQ in a logicQ commute, in symbolsP |
◦ Q, iff P= (P∧Q)∨ (P∧Q⊥). A logic

Q is a Boolean algebra if and only ifP |
◦ Q for all P,Q∈ Q [13, pp. 24–25]. For any subsetA ⊆ Q, we

denote byA ! thecommutantof A in Q [13, p. 23], i.e.,

A
! = {P∈ Q | P |

◦ Q for all Q∈ A }.

Then,A ! is a complete subalgebra ofQ. A sublogicof Q is a subsetA of Q satisfyingA = A !! . For
any subsetA ⊆ Q, the smallest logic includingA is A !! called thesublogic generated byA . Then, it
is easy to see that a subsetA is a Boolean sublogic, or equivalently a distributive sublogic, if and only if
A = A !! ⊆ A !.

The following proposition is useful in later discussions.
Proposition 2.1. LetQ be a logic onH . If Pα ∈ Q and Pα

|
◦ Q for all α , then(

∨

α Pα)
|
◦ Q,

∧

α Pα
|
◦ Q,

Q∧ (
∨

α Pα) =
∨

α(Q∧Pα)C Q∧ (
∧

α Pα) =
∧

α(Q∧Pα).

Proof. Suppose thatPα ∈ Q andPα
|
◦ Q hold for everyα . From

∨

α
Pα ∧Q≤ Q,

∨

α
Pα ∧Q⊥ ≤ Q⊥

,
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we have
∨

α
Pα ∧Q |

◦ Q,
∨

α
Pα ∧Q⊥ |

◦ Q. (1)

By the assumption, we havePα = (Pα ∧Q)∨ (Pα ∧Q⊥) for everyα . Since
∨

α
Pα =

∨

α
(Pα ∧Q)∨ (Pα ∧Q⊥)

= (
∨

α
Pα ∧Q)∨ (

∨

α
Pα ∧Q⊥),

by Eq. (1) we have
∨

α Pα
|
◦ Q. By Eq. (1) the distributive law holds and we have

Q∧
∨

α
Pα = Q∧ [(

∨

α
Pα ∧Q)∨ (

∨

α
Pα ∧Q⊥)]

=
∨

α
(Pα ∧Q).

Thus, we haveQ∧
∨

α Pα =
∨

α(Q∧Pα). The rest of the assertions follows from the De Morgan law.

2.2 Logics on Hilbert spaces

Let H be a Hilbert space. For any subsetS⊆ H , we denote byS⊥ the orthogonal complement of
S. Then,S⊥⊥ is the closed linear span ofS. Let C (H ) be the set of all closed linear subspaces in
H . With the set inclusion ordering, the setC (H ) is a complete lattice. The operationM 7→ M⊥ is an
orthocomplementation on the latticeC (H ), with whichC (H ) is a logic.

Denote byB(H ) the algebra of bounded linear operators onH andQ(H ) the set of projections
onH . We define theoperator orderingonB(H ) by A≤ B iff (ψ ,Aψ)≤ (ψ ,Bψ) for all ψ ∈ H . For
anyA∈B(H ), denote byR(A)∈ C (H ) the closure of the range ofA, i.e.,R(A) = (AH )⊥⊥. For any
M ∈ C (H ), denote byP(M) ∈ Q(H ) the projection operator ofH ontoM. Then,RP(M) = M for
all M ∈ C (H ) andPR(P) = P for all P∈ Q(H ), and we haveP≤ Q if and only if R(P) ⊆ R(Q)
for all P,Q ∈ Q(H ), so thatQ(H ) with the operator ordering is also a logic isomorphic toC (H ).
Any sublogic ofQ(H ) will be called alogic onH . The lattice operations are characterized byP∧Q=
weak-limn→∞(PQ)n, P⊥ = 1−P for all P,Q∈ Q(H ).

Let A ⊆B(H ). We denote byA ′ thecommutant ofA in B(H ). A self-adjoint subalgebraM of
B(H ) is called avon Neumann algebraonH iff M ′′ = M . For any self-adjoint subsetA ⊆ B(H ),
A ′′ is the von Neumann algebra generated byA . We denote byP(M ) the set of projections in a von
Neumann algebraM . For anyP,Q∈ Q(H ), we haveP |

◦ Q iff [P,Q] = 0, where[P,Q] = PQ−QP.
For any subsetA ⊆ Q(H ), we denote byA ! the commutantof A in Q(H ). For any subsetA ⊆
Q(H ), the smallest logic includingA is the logicA !! called thelogic generated byA . Then, a subset
Q ⊆ Q(H ) is a logic onH if and only if Q = P(M ) for some von Neumann algebraM onH [18,
Proposition 2.1].

2.3 Commutators

Marsden [14] has introduced the commutator⊥⊥(P,Q) of two elementsP andQ of a logicQ by

⊥⊥(P,Q) = (P∧Q)∨ (P∧Q⊥)∨ (P⊥∧Q)∨ (P⊥∧Q⊥).
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Bruns and Kalmbach [3] have generalized this notion to finitesubsets ofQ by

⊥⊥(F ) =
∨

α :F→{id,⊥}

∧

P∈F

Pα(P)

for all F ∈ Pω(Q), wherePω(Q) stands for the set of finite subsets ofQ, and{id,⊥} stands for the
set consisting of the identity operation id and the orthocomplementation⊥. Generalizing this notion to
arbitrary subsetsA of Q, Takeuti [23] defined⊥⊥(A ) by

⊥⊥(A ) =
∨

{E ∈ A
! | P1∧E |

◦ P2∧E for all P1,P2 ∈ A },

of anyA ∈ P(Q), whereP(Q) stands for the power set ofQ. Takeuti’s definition has been reformu-
lated in several more convenient forms [21, 4, 19].

We have the following characterizations of commutators in logics on Hilbert spaces [18, Theorems
2.5, 2.6, Proposition 2.2].

Theorem 2.2. LetQ be a logic onH and letA ⊆ Q. Then, we have the following relations.

(i) ⊥⊥(A ) = P{ψ ∈ H | [P1,P2]P3ψ = 0 for all P1,P2,P3 ∈ A }.

(ii) ⊥⊥(A ) = P{ψ ∈ H | [A,B]ψ = 0 for all A,B∈ A ′′}.

3 Conditionals

In classical logic, the conditional operation→ is defined by negation⊥ and disjunction∨ asP→ Q=
P⊥∨Q. In quantum logic there is a well-known arbitrariness in choosing a binary operation for condi-
tional. Hardegree [11] defined amaterial conditionalon an orthomodular latticeQ as a polynomially
definable binary operation→ onQ satisfying the following “minimum implicative conditions”:

(LB) If P |
◦ Q, thenP→ Q= P⊥∨Q for all P,Q∈ Q.

(E) P→ Q= 1 if and only ifP≤ Q.

(MP) (modus ponens) P∧ (P→ Q)≤ Q.

(MT) (modus tollens) Q⊥∧ (P→ Q)≤ P⊥.

Then, he proved that there are exactly three material conditionals:

(S) (Sasaki conditional)P→ SQ := P⊥∨ (P∧Q),

(C) (Contrapositive Sasaki conditional)P→ CQ := (P∨Q)⊥∨Q,

(R) (Relevance conditional)P→ RQ := (P∧Q)∨ (P⊥∧Q)∨ (P⊥∧Q⊥).

We shall denote by→ j with j = S,C,R any one of the above material conditionals. Once the condi-
tional→ j is specified, the logical equivalence↔ j is defined by

P↔ j Q := (P→ j Q)∧ (Q→ j P).

Then, it is easy to see that we have

P↔S Q= P↔C Q= P↔R Q= (P∧Q)∨ (P⊥∧Q⊥).

Thus, we write↔ for ↔ j for all j = S,C,R.
In the previous investigations [23, 18, 19] on quantum set theory only the Sasaki arrow was adopted

as the conditional. In this paper, we develop a quantum set theory based on the above three conditionals
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together and show that they equally ensure the transfer principle for quantum set theory. We shall also
show that the notions of equality defined through those threeare the same, but that the order relations
defined through them are different.

We have the following characterizations of conditionals inlogics on Hilbert spaces.

Theorem 3.1. LetQ be a logic onH and let P,Q∈ Q. Then, we have the following relations.

(i) P→SQ= P{ψ ∈ H | Q⊥Pψ = 0}.

(ii) P→CQ= P{ψ ∈ H | PQ⊥ψ = 0}.

(iii) P→RQ= P{ψ ∈ H | Q⊥Pψ = PQ⊥ψ = 0}.

(iv) P↔Q= P{ψ ∈ H | Pψ = Qψ}.

Proof. To show (i) supposeψ ∈ R(P→S Q). Then, we haveψ = P⊥ψ +(P∧Q)ψ , so that we have
Q⊥Pψ = 0. Conversely, supposeQ⊥Pψ = 0. Then, we havePψ =QPψ+Q⊥Pψ =QPψ ∈R(Q). Since
Pψ ∈ R(P), we havePψ ∈ R(P)∩R(Q) = R(P∧Q). It follows thatψ = P⊥ψ +Pψ = P⊥ψ +(P∧
Q)ψ ∈ R(P→SQ). Thus, relation (i) holds. Relation (ii) follows from the relation P→CQ= Q⊥ →S P⊥.
Relation (iii) follows from the relationP→RQ = (P→SQ)∧ (P→CQ). To show relation (iv), suppose
ψ ∈ R(P↔Q). Then,ψ ∈ R(P→RQ)∩R(Q→RP), and hencePQ⊥ψ = 0 andP⊥Qψ = 0, so that
Pψ =PQψ =Qψ . Conversely, ifPψ =Qψ , we haveQ⊥Pψ = 0 andP⊥Qψ = 0, so thatψ ∈R(P↔Q).
Thus, relation (iv) follows.

The following theorem shows important properties of material conditionals in establishing the trans-
fer principle for quantum set theory.

Proposition 3.2. The material conditionals→ j with j = S,C,R satisfy the following properties.

(i) P→ j Q∈ {P,Q}!! for all P,Q∈ Q.

(ii) (P→ j Q)∧E = [(P∧E)→ (Q∧E)]∧E if P,Q |
◦ E for all P,Q,E ∈ Q.

Proof. Assertions follow from the Lemma below.

Lemma 3.3. Let f be a two-variable ortholattice polynomial on a logicQ on H . Then, we have the
following statements.

(i) f (P,Q) ∈ {P,Q}!! for all P,Q∈ Q.

(ii) f (P,Q)∧E = f (P∧E,Q∧E)∧E if P,Q |
◦ E for all P,Q,E ∈ Q.

Proof. Since f (P,Q) is in the ortholatticeΓ0{P,G} generated byP andQ and we haveΓ0{P,G} ⊆
{P,Q}!! , so that statement (i) follows. The proof of (ii) is carried out by induction on the complexity of the
polynomial f (P,Q). First, note that fromP,Q |

◦ E we haveg(P,Q) |
◦ E for any two-variable polynomial

g. If f (P,Q) = P or f (P,Q) = Q, assertion (ii) holds obviously. Iff (P,Q) = g1(P,Q)∧ g2(P,Q) with
two-variable polynomialsg1,g2, the assertion holds from associativity. Suppose thatf (P,Q)= g1(P,Q)∨
g2(P,Q) with two-variable polynomialsg1,g2. Sinceg1(P,Q),g2(P,Q) |

◦ E, the assertion follows from
the distributive law focusing onE. Supposef (P,Q)= g(P,Q)⊥ with a two-variable polynomialg. For the
case whereg is atomic, the assertion follows; for instance, ifg(P,Q) = P, we havef (P∧E,Q∧E)∧E=
(P∧E)⊥∧E = (P⊥∨E⊥)∧E = P⊥∧E = f (P,Q)∧E. Then, we assumeg(P,Q) = g1(P,Q)∧g2(P,Q)
or g(P,Q) = g1(P,Q)∨g2(P,Q) with two-variable polynomialsg1,g2. If g(P,Q) = g1(P,Q)∧g2(P,Q),
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by the induction hypothesis and the distributivity we have

f (P,Q)∧E = g(P,Q)⊥∧E

= (g1(P,Q)⊥∨g2(P,Q)⊥)∧E

= (g1(P,Q)⊥∧E)∨ (g2(P,Q)⊥∧E)

= (g1(P∧E,Q∧E)⊥∧E)∨ (g2(P∧E,Q∧E)⊥∧E)

= (g1(P∧E,Q∧E)⊥∨g2(P∧E,Q∧E)⊥)∧E)

= (g1(P∧E,Q∧E)∧g2(P∧E,Q∧E))⊥∧E

= g(P∧E,Q∧E)⊥∧E

= f (P∧E,Q∧E)∧E.

Thus, the assertion follows ifg(P,Q)= g1(P,Q)∧g2(P,Q), and similarly the assertion follows ifg(P,Q)=
g1(P,Q)∨ g2(P,Q). Thus, the assertion generally follows from the induction on the complexity of the
polynomial f .

4 Quantum set theory

We denote byV the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC). Let
L (∈) be the language for first-order theory with equality augmented by a binary relation symbol∈,
bounded quantifier symbols∀x ∈ y, ∃x ∈ y, and no constant symbols. For any classU , the language
L (∈,U) is the one obtained by adding a name for each element ofU .

Let Q be a logic onH . For each ordinalα , let

V(Q)
α = {u| u : dom(u)→ Q and(∃β < α)dom(u)⊆V(Q)

β }.

TheQ-valued universe V(Q) is defined by

V(Q) =
⋃

α∈On
V(Q)

α ,

where On is the class of all ordinals. For everyu∈V(Q), the rank ofu, denoted by rank(u), is defined as

the leastα such thatu∈V(Q)
α+1. It is easy to see that ifu∈ dom(v) then rank(u)< rank(v).

In what follows→ j generally denotes one of the Sasaki conditional→S, the contrapositive Sasaki
conditional→C, and the relevance conditional→R. For anyu,v ∈ V(Q), theQ-valued truth values of
atomic formulasu= v andu∈ v are assigned by the following rules recursive in rank.

(i) [[u= v]] j,Q =
∧

u′∈dom(u)(u(u
′)→ j [[u′ ∈ v]] j,Q)∧

∧

v′∈dom(v)(v(v
′)→ j [[v′ ∈ u]] j,Q).

(ii) [[u∈ v]] j,Q =
∨

v′∈dom(v)(v(v
′)∧ [[u= v′]] j,Q).

To each statementφ of L (∈,V(Q)) we assign theQ-valued truth value[[φ ]] j,Q by the following
rules.

(iii) [[¬φ ]] j,Q = [[φ ]]⊥j,Q .

(iv) [[φ1∧φ2]] j,Q = [[φ1]] j,Q ∧ [[φ2]] j,Q.

(v) [[φ1∨φ2]] j,Q = [[φ1]] j,Q ∨ [[φ2]] j,Q.

(vi) [[φ1 → φ2]] j,Q = [[φ1]] j,Q → j [[φ2]] j,Q.
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(vii) [[φ1 ↔ φ2]] j,Q = [[φ1]] j,Q ↔ [[φ2]] j,Q.

(viii) [[(∀x∈ u)φ(x)]] j,Q =
∧

u′∈dom(u)(u(u
′)→ j [[φ(u′)]] j,Q).

(ix) [[(∃x∈ u)φ(x)]] j,Q =
∨

u′∈dom(u)(u(u
′)∧ [[φ(u′)]] j,Q).

(x) [[(∀x)φ(x)]] j,Q =
∧

u∈V(Q) [[φ(u)]] j,Q .

(xi) [[(∃x)φ(x)]] j,Q =
∨

u∈V(Q) [[φ(u)]] j,Q .

A formula inL (∈) is called a∆0-formula if it has no unbounded quantifiers∀x or ∃x. The following
theorem holds.

Theorem 4.1(∆0-Absoluteness Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V(Q), we have

[[φ(u1, . . . ,un)]] j,Q = [[φ(u1, . . . ,un)]] j,Q(H ).

Proof. The assertion is proved by the induction on the complexity offormulas and the rank of ele-
ments ofV(Q). Let u,v∈V(Q). We assume that the assertion holds for allu′ ∈ dom(u) andv′ ∈ dom(v).
Then, we have[[u′ ∈ v]] j,Q = [[u′ ∈ v]] j,Q(H ), [[v

′ ∈ u]] j,Q = [[v′ ∈ u]] j,Q(H ), and [[u = v′]] j,Q = [[u =
v′]] j,Q(H ). Thus,

[[u= v]] j,Q =
∧

u′∈dom(u)

(u(u′)→ j [[u
′ ∈ v]] j,Q)∧

∧

v′∈dom(v)

(v(v′)→ j [[v
′ ∈ u]] j,Q)

=
∧

u′∈dom(u)

(u(u′)→ j [[u
′ ∈ v]] j,Q(H ))∧

∧

v′∈dom(v)

(v(v′)→ j [[v
′ ∈ u]] j,Q(H ))

= [[u= v]] j,Q(H ),

and we also have

[[u∈ v]] j,Q =
∨

v′∈dom(v)

(v(v′)∧ [[u= v′]] j,Q)

=
∨

v′∈dom(v)

(v(v′)∧ [[u= v′]] j,Q(H ))

= [[u∈ v]] j,Q(H ).

Thus, the assertion holds for atomic formulas. Any induction step adding a logical symbol works easily,
even when bounded quantifiers are concerned, since the ranges of the supremum and the infimum are
common for evaluating[[· · · ]] j,Q and[[· · · ]] j,Q(H ).

Henceforth, for any∆0-formulaφ(x1, . . .,xn) andu1, . . . ,un ∈V(Q), we abbreviate[[φ(u1, . . . ,un)]] j =
[[φ(u1, . . . ,un)]] j,Q, which is the commonQ(H )-valued truth value foru1, . . . ,un ∈V(Q).

The universeV can be embedded inV(Q) by the following operation∨ : v 7→ v̌ defined by the∈-
recursion: for eachv∈V, v̌= {ǔ| u∈ v}×{1}. Then we have the following.

Theorem 4.2(∆0-Elementary Equivalence Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and
u1, . . .,un ∈V, we have〈V,∈〉 |= φ(u1, . . .,un) if and only if[[φ(ǔ1, . . . , ǔn)]] j = 1.

Proof. Let 2 be the sublogic such that2= {0,1}. Then, by induction it is easy to see that〈V,∈〉 |=
φ(u1, . . .,un) if and only if [[φ(ǔ1, . . . , ǔn)]] j,2 = 1 for anyφ(x1, . . .,xn) in L (∈), and this is equivalent to
[[φ(ǔ1, . . . , ǔn)]] j = 1 for any∆0-formulaφ(x1, . . .,xn) by the∆0-absoluteness principle.
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5 Transfer principle

In this section, we investigate the transfer principle thattransfers any∆0-formula provable in ZFC to a
true statement about elements ofV(Q).

The results in this section have been obtained forj = S in Ref. [18]. Here, we generalize them to the
casej =C,R. Foru∈V(Q), we define thesupportof u, denoted byL(u), by transfinite recursion on the
rank ofu by the relation

L(u) =
⋃

x∈dom(u)

L(x)∪{u(x) | x∈ dom(u)}.

For A ⊆ V(Q) we write L(A ) =
⋃

u∈A L(u) and for u1, . . . ,un ∈ V(Q) we write L(u1, . . . ,un) =
L({u1, . . . ,un}).

For u∈V(Q), we define thesupportof u, denoted byL(u), by transfinite recursion on the rank ofu
by the relation

L(u) =
⋃

x∈dom(u)

L(x)∪{u(x) | x∈ dom(u)}.

For A ⊆ V(Q) we write L(A ) =
⋃

u∈A L(u) and for u1, . . . ,un ∈ V(Q) we write L(u1, . . . ,un) =
L({u1, . . . ,un}). Then, we obtain the following characterization of subuniverses ofV(Q(H )).

Proposition 5.1. Let Q be a logic onH andα an ordinal. For any u∈V(Q(H )), we have u∈V(Q)
α if

and only if u∈V(Q(H ))
α and L(u)⊆Q. In particular, u∈V(Q) if and only if u∈V(Q(H )) and L(u)⊆Q.

Moreover,rank(u) is the leastα such that u∈V(Q(H ))
α for any u∈V(Q).

Proof. Immediate from transfinite induction onα .

Let A ⊆V(Q). Thecommutator ofA , denoted by∨(A ), is defined by

∨(A ) =⊥⊥(L(A )).

For anyu1, . . . ,un ∈V(Q), we write∨(u1, . . . ,un) = ∨({u1, . . . ,un}).
Let u∈V(Q) andp∈Q. Therestriction u|p of u to p is defined by the following transfinite recursion:

dom(u|p) = {x|p | x∈ dom(u)},

u|p(x|p) = u(x)∧ p

for anyx∈ dom(u). By induction, it is easy to see that ifq, p∈ Q, then(u|p)|q = u|p∧q for all u∈V(Q).

Proposition 5.2. For anyA ⊆V(Q) and p∈ Q, we have

L({u|p | u∈ A }) = L(A )∧ p.

Proof. By induction, it is easy to see the relationL(u|p) = L(u)∧ p, so that the assertion follows
easily.

Let A ⊆V(Q). Thelogic generated byA , denoted byQ(A ), is define by

Q(A ) = L(A )!!
.

For u1, . . . ,un ∈V(Q), we writeQ(u1, . . . ,un) = Q({u1, . . . ,un}).
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Proposition 5.3. For any ∆0-formula φ(x1, . . . ,xn) in L (∈) and u1, · · · ,un ∈ V(Q), we have
[[φ(u1, . . . ,un)]] j ∈ Q(u1, . . . ,un).

Proof. Let A = {u1, . . . ,un}. SinceL(A )⊆Q(A ), it follows from Proposition 5.1 thatu1, . . . ,un ∈
V(Q(A )). By the∆0-absoluteness principle, we have[[φ(u1, . . . ,un)]] j = [[φ(u1, . . . ,un)]] j Q(A ) ∈ Q(A ).

Proposition 5.4. For any∆0-formulaφ(x1, . . .,xn) in L (∈) and u1, . . .,un ∈V(Q), if p ∈ L(u1, . . . ,un)
! ,

then p|◦ [[φ(u1, . . . ,un)]] j and p|
◦ [[φ(u1|p, . . . ,un|p)]] j .

Proof. Let u1, . . .,un ∈ V(Q). If p ∈ L(u1, . . . ,un)
!, then p∈ Q(u1, . . . ,un)

! . From Proposition 5.3,
[[φ(u1, . . . ,un)]] j ∈ Q(u1, . . . ,un), so thatp |

◦ [[φ(u1, . . . ,un)]] j . From Proposition 5.2,L(u1|p, . . . ,un|p) =
L(u1, . . . ,un)∧ p, and hencep∈ L(u1|p, . . . ,un|p)

! , so thatp |
◦ [[φ(u1|p, . . . ,un|p)]] j .

We define the binary relationx1 ⊆ x2 by ∀x∈ x1(x∈ x2). Then, by definition for anyu,v∈V(Q) we
have

[[u⊆ v]] j =
∧

u′∈dom(u)

u(u′)→ j [[u
′ ∈ v]] j ,

and we have[[u= v]] j = [[u⊆ v]] j ∧ [[v⊆ u]] j .

Proposition 5.5. For any u,v∈V(Q) and p∈ L(u,v)! , we have the following relations.
(i) [[u|p ∈ v|p]] j = [[u∈ v]] j ∧ p.
(ii) [[u|p ⊆ v|p]] j ∧ p= [[u⊆ p]] j ∧ p.
(iii) [[u|p = v|p]] j ∧ p= [[u= p]] j ∧ p

Proof. We prove the relations by induction on the ranks ofu,v. If rank(u) = rank(v) = 0, then
dom(u) = dom(v) = /0, so that the relations trivially hold. Letu,v∈V(Q) andp∈ L(u,v)! . To prove (i),
let v′ ∈ dom(v). Then, we havep |

◦ v(v′) by the assumption onp. By induction hypothesis, we have also
[[u|p = v′|p]] j ∧ p= [[u= v′]] j ∧ p. By Proposition 5.4, we havep |

◦ [[u= v′]] j , so thatv(v′), [[u= v′]] j ∈{p}! ,
and hencev(v′)∧ [[u= v′]] j ∈ {p}! . Thus, we have

[[u|p ∈ v|p]] j =
∨

v′∈dom(v|p)

v|p(v
′)∧ [[u|p = v′]] j

=
∨

v′∈dom(v)

v|p(v
′|p)∧ [[u|p = v′|p]] j

=
∨

v′∈dom(v)

(v(v′)∧ p)∧ ([[u= v′]] j ∧ p)

=





∨

v′∈dom(v)

(v(v′)∧ [[u= v′]] j)∧ p





=





∨

v′∈dom(v)

v(v′)∧ [[u= v′]] j



∧ p,

where the last equality follows from Proposition 2.1. Thus,by definition of [[u = v]] j we obtain the
relation [[u|p ∈ v|p]] j = [[u = v]] j ∧ p, and relation (i) has been proved. To prove (ii), letu′ ∈ dom(u).



136 Quantum Set Theory

Then, we have[[u′|p ∈ v|p]] j = [[u′ ∈ v]] j ∧ p by induction hypothesis. Thus, we have

[[u|p ⊆ v|p]] j =
∧

u′∈dom(u|p)

(u|p(u
′)→ j [[u

′ ∈ v|p]] j)

=
∧

u′∈dom(u)

(u|p(u
′|p)→ j [[u

′|p ∈ v|p]] j)

=
∧

u′∈dom(u)

(u(u′)∧ p)→ j ([[u
′ ∈ v]] j ∧ p).

We havep |
◦ u(u′) by assumption onp, andp |

◦ [[u′ ∈ v]] j by Proposition 5.4, so thatp |
◦ u(u′)→ j [[u′ ∈ v]] j

andp |
◦ (u(u′)∧ p)→ j ([[u′ ∈ v]] j ∧ p). Thus, by Proposition 2.1 and Proposition 3.2 (ii) we have

p∧ [[u|p ⊆ v|p]] j = p∧
∧

u′∈dom(u)

(u(u′)∧ p)→ j ([[u
′ ∈ v]] j ∧ p)

= p∧
∧

u′∈dom(u)

(u(u′)→ j [[u
′ ∈ v]] j)

= p∧ [[u⊆ v]] j .

Thus, we have proved relation (ii). Relation (iii) follows easily from relation (ii).

We have the following theorem.

Theorem 5.6 (∆0-Restriction Principle). For any ∆0-formula φ(x1, . . .,xn) in L (∈) and u1, . . .,un ∈
V(Q), if p∈ L(u1, . . . ,un)

! , then[[φ(u1, . . . ,un)]] j ∧ p= [[φ(u1|p, . . . ,un|p)]] j ∧ p.

Proof. We prove the assertion by induction on the complexity ofφ(x1, . . .,xn). From Proposition 5.5,
the assertion holds for atomic formulas. Then, the verification of every induction step follows from the
fact that (i) the functiona 7→ a∧ p of all a ∈ {p}! preserves the supremum and the infimum as shown
in Proposition 2.1, (ii) it satisfies(a → j b)∧ p = [(a∧ p) → j (b∧ p)]∧ p for all a,b ∈ {p}! from the
defining property of generalized implications, (iii) it satisfies relation (ii) of Theorem??, and that (iv) it
satisfies the relationa⊥∧ p= (a∧ p)⊥∧ p for all a,b∈ {p}! .

Now, we obtain the following transfer principle for boundedtheorems of ZFC with respect to any
material conditionals→ j , which is of the same form as Theorem 4.6 of Ref. [18] obtainedfor the Sasaki
conditional→S.

Theorem 5.7(∆0-ZFC Transfer Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V(Q), if φ(x1, . . .,xn) is provable in ZFC, then we have

∨(u1, . . . ,un)≤ [[φ(u1, . . . ,un)]] j .

Proof. Let p = ∨(u1, . . . ,un). Then, we havea∧ p |
◦ b∧ p for any a,b ∈ L(u1, . . . ,un), and

hence there is a Boolean sublogicB such thatL(u1, . . . ,un) ∧ p ⊆ B. From Proposition 5.2, we
haveL(u1|p, . . . ,un|p) ⊆ B. From Proposition 5.1, we haveu1|p, . . . ,un|p ∈ V(B). By the ZFC trans-
fer principle of the Boolean-valued universe [1, Theorem 1.33], we have[[φ(u1|p, . . . ,un|p)]] j B = 1.
By the ∆0-absoluteness principle, we have[[φ(u1|p, . . . ,un|p)]] j = 1. From Proposition 5.6, we have
[[φ(u1, . . . ,un)]] j ∧ p= [[φ(u1|p, . . . ,un|p)]] j ∧ p= p, and the assertion follows.
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6 Real numbers in quantum set theory

Let Q be the set of rational numbers inV. We define the set of rational numbers in the modelV(Q) to be
Q̌. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely, we
identify a real number with the upper segment of a Dedekind cut assuming that the lower segment has
no end point. Therefore, the formal definition of the predicate R(x), “x is a real number,” is expressed by

R(x) := ∀y∈ x(y∈ Q̌)∧∃y∈ Q̌(y∈ x)∧∃y∈ Q̌(y 6∈ x)

∧∀y∈ Q̌(y∈ x↔∀z∈ Q̌(y< z→ z∈ x)). (2)

We defineR(Q)
j for j = S,C,R to be the interpretation of the setR of real numbers inV(Q) under the

j-conditional as follows.

R(Q)
j = {u∈V(Q)| dom(u) = dom(Q̌) and[[R(u)]] j = 1}.

The setR j,Q of real numbers inV(Q) under thej-conditional is defined by

R j,Q = R(Q)
j ×{1}. (3)

Proposition 6.1. (i) For any u∈V(Q) with dom(u) = dom(Q̌), we have

[[R(u)]] j =
∨

y∈Q

u(y̌)∧

(

∧

y∈Q

u(y̌)

)⊥

∧
∧

y∈Q

(

u(y̌)↔
∧

y<z

u(ž)

)

.

(ii) RS,Q = RC,Q = RR,Q.

Proof. Assertion (i) follows from the definition. Assertion (ii) holds, since[[R(u)]] j is independent
of the choice of conditional.

From the above, in what follows we will writeR(Q) = R(Q)
j andRQ = R j,Q.

Theorem 6.2. For any u∈ R(Q), we have the following.
(i) u(ř) = [[ř ∈ u]] j for all r ∈ Q and j= S,R,C.
(ii) ∨(u) = 1.

Proof. Let u∈ R(Q) andr ∈ Q. Then, we have

[[ř ∈ u]] j =
∨

s∈Q

([[ř = š]] j ∧u(š)) = u(ř),

since[[ř = š]] j = 1 if r = s and[[ř = š]] j = 0 otherwise by the∆0-Elementary Equivalence Principle, and
assertion (i) follows. We have

L(u) =
⋃

s∈Q

L(š)∪{u(š) | s∈ Q}= {0,1,u(š) | s∈ Q},

so that it suffices to show that eachu(š) with s∈ Q is mutually commuting. By definition, we have

[[∀y∈ Q̌(y∈ u↔∀z∈ Q̌(y< z→ z∈ u))]] j = 1.

Hence, we have
u(š) =

∧

s<t,t∈Q

u(ť).

Thus, ifs1 < s2, thenu(š1)≤ u(š2), so thatu(š1)
|
◦ u(š2).
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Let M be a von Neumann algebra on a Hilbert spaceH and letQ = P(M ). A closed operatorA
(densely defined) onH is said to beaffiliatedwith M , in symbolsAη M , iff U∗AU = A for any unitary
operatorU ∈ M ′. Let A be a self-adjoint operator (densely defined) onH and letA =

∫

R λ dEA(λ )
be its spectral decomposition, where{EA(λ )}λ∈R is the resolution of identity belonging toA [15, p.
119]. It is well-known thatAη M if and only if EA(λ ) ∈ Q for everyλ ∈ R. Denote byM SA the set
of self-adjoint operators affiliated withM . Two self-adjoint operatorsA andB are said tocommute, in
symbolsA |

◦ B, iff EA(λ ) |
◦ EB(λ ′) for every pairλ ,λ ′ of reals.

For anyu∈ R(Q) andλ ∈ R, we defineEu(λ ) by

Eu(λ ) =
∧

λ<r∈Q

u(ř). (4)

Then, it can be shown that{Eu(λ )}λ∈R is a resolution of identity inQ and hence by the spectral theorem
there is a self-ajoint operator ˆuη M uniquely satisfying ˆu=

∫

R λ dEu(λ ). On the other hand, letAη M

be a self-ajoint operator. We defineÃ∈V(Q) by

Ã= {(ř ,EA(r)) | r ∈ Q}. (5)

Then, dom(Ã) = dom(Q̌) andÃ(ř) = EA(r) for all r ∈ Q. It is easy to see that̃A ∈ R(Q) and we have
(û)̃ = u for all u∈ R(Q) and(Ã)̂ = A for all A∈ M SA. Therefore, the correspondence betweenR(Q) and
M SA is a one-to-one correspondence. We call the above correspondence theTakeuti correspondence.
Now, we have the following [18, Theorem 6.1].

Theorem 6.3. LetQ be a logic onH . The relations

(i) EA(λ ) =
∧

λ<r∈Q

u(ř) for all λ ∈ Q,

(ii) u(ř) = EA(r) for all r ∈ Q,

for all u = Ã∈ R(Q) and A= û∈ M SA sets up a one-to-one correspondence betweenR(Q) andM SA.

For any r ∈ R, we shall write ˜r = (r1) ,̃ wherer1 is the scalar operator onH . Then, we have
dom(r̃) = dom(Q̌) and ˜r(ť) = [[ř ≤ ť]] j , so that we haveL(r̃) = {0,1}. Denote byB(Rn) the σ -filed
of Borel subsets ofRn andB(Rn) the space of bounded Borel functions onRn. For any f ∈ B(R), the
bounded self-adjoint operatorf (X) ∈ M is defined byf (X) =

∫

R f (λ )dEX(λ ). For any Borel subset
∆ in R, we denote byEX(∆) the spectral projection corresponding to∆ ∈ B(R), i.e., EX(∆) = χ∆(X),
whereχ∆ is the characteristic function of∆. Then, we haveEX(λ ) = EX((−∞,λ ]). The following
proposition is a straightforward consequence of definitions.

Proposition 6.4. Let r∈ R, s, t ∈ R, and Xη MSA. For j = R,C,S, we have the following relations.

(i) [[ř ∈ s̃]] j = [[š≤ ř]] j = Es1(t).

(ii) [[s̃≤ t̃]] j = [[š≤ ť]] j = Es1(t).

(iii) [[X̃ ≤ t̃]] j = EX(t) = EX((−∞, t]).

(iv) [[t̃ < X̃]] j = 1−EX(t) = EX((t,∞)).

(v) [[s̃< X̃ ≤ t̃]] j = EX(t)−EX(s) = EX((s, t]).

(vi) [[X̃ = t̃]] j = EX(t)−
∨

r<t,r∈Q EX(r) = EX({t}).

In what follows, we writer ∧s= min{r,s} andr ∨s= max{r,s} for anyr,s∈ R.
TheQ-value of equality[[u= v]] j for u,v∈ R(Q) is independent of the choice of the conditional and

characterized as follows.
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Theorem 6.5. For any u,v∈ R(Q) we have

[[u= v]] j = P{ψ ∈ H | u(x̌)ψ = v(x̌)ψ for all x ∈ Q}.

Proof. From Theorem 6.2 (i) we have

[[u= v]] j =
∧

r∈Q

(u(ř)→ [[ř ∈ v]] j)∧
∧

r∈Q

(v(ř)→ [[ř ∈ u]] j)

=
∧

r∈Q

(u(ř)↔ v(ř)).

From Proposition 3.1 (iv), we have

u(ř)↔ v(ř) = P{ψ ∈ H | u(ř)ψ = v(ř)ψ}

Thus, the assertion follows easily.

Theorem 6.6. For any u,v∈ R(Q) andψ ∈ H , the following conditions are all equivalent.
(i) ψ ∈ R[[u= v]] j .
(ii) u(x̌)ψ = v(x̌)ψ for any x∈ Q.
(iii) u(x̌)v(y̌)ψ = v(x̌∧ y̌)ψ for any x,y∈ Q.
(iv) 〈u(x̌)ψ ,v(y̌)ψ〉= ‖v(x̌∧ y̌)ψ‖2 for any x,y∈ Q.

Proof. The equivalence (i)⇔ (ii) follows from Theorem 6.5. Suppose (ii) holds. Then, we have
u(x̌)v(y̌)ψ = u(x̌)u(y̌)ψ = u(x̌∧ y̌)ψ = v(x̌∧ y̌)ψ . Thus, the implication (ii)⇒ (iii) holds. Suppose
(iii) holds. We have〈u(x̌)ψ ,v(y̌)ψ〉 = 〈ψ ,u(x̌)v(y̌)ψ〉 = 〈ψ ,v(x̌∧ y̌)ψ〉 = ‖v(x̌∧ y̌)ψ‖2, and hence
the implication (iii)⇒(iv) holds. Suppose (iv) holds. Then, we have〈u(x̌)ψ ,v(x̌)ψ〉 = ‖v(x̌)ψ‖2 and
〈v(x̌)ψ ,u(x̌)ψ〉 = ‖u(x̌)ψ‖2. Consequently, we have‖u(x̌)ψ − v(x̌)ψ‖2 = ‖u(x̌)ψ‖2 + ‖v(x̌)ψ‖2 −
〈u(x̌)ψ ,v(x̌)ψ〉− 〈v(x̌)ψ ,u(x̌)ψ〉= 0, and henceu(x̌)ψ = v(x̌)ψ . Thus, the implication (iv)⇒(ii) holds,
and the proof is completed.

The setRQ of real numbers inV(Q) is defined by

RQ = R(Q)×{1}.

Let A be an observable. For any (complex-valued) bounded Borel function f on R, we define the
observablef (A) by

f (A) =
∫

R
f (λ )dEA(λ ).

We shall denote byB(R) the space of bounded Borel functions onR. For any Borel set∆ in R, we define
EA(∆) by EA(∆) = χ∆(A), whereχ∆ is a Borel function onR defined byχ∆(x) = 1 if x∈ ∆ andχ∆(x) = 0
if x 6∈ ∆. For any pair of observablesA andB, thejoint probability distributionof A andB in a stateψ is
a probability measureµA,B

ψ on R2 satisfying

µA,B
ψ (∆×Γ) = 〈ψ ,(EA(∆)∧EB(Γ))ψ〉

for any∆,Γ ∈B(R). Gudder [10] showed that the joint probability distribution µA,B
ψ exists if and only if

the relation[EA(∆),EB(Γ)]ψ = 0 holds for every∆,Γ ∈ B(R).
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Theorem 6.7. For any observables (self-adjoint operators) A,B onH and any state (unit vector)ψ ∈
H , the following conditions are all equivalent.

(i) ψ ∈ R[[Ã= B̃]] j .
(ii) E A(r)ψ = EB(r)ψ for any r∈ Q.
(iii) f (A)ψ = f (B)ψ for all f ∈ B(R).
(iv) 〈EA(∆)ψ ,EB(Γ)ψ〉= 0 for any∆,Γ ∈ B(R) with ∆∩Γ = /0.
(v) There is the joint probability distributionµA,B

ψ of A and B inψ satisfying

µA,B
ψ ({(a,b) ∈ R2 | a= b}) = 1.

Proof. The equivalence (i)⇔ (ii) follows from Theorem 6.6. Suppose that (ii) holds. Letλ ∈ R. If
r1, r2, . . . be a decreasing sequence of rational numbers convergent toλ , thenEA(rn)ψ andEB(rn)ψ are
convergent toEA(λ )ψ andEB(λ )ψ , respectively, so thatEA(λ )ψ = EB(λ )ψ for all λ ∈ R. Thus, we
have

〈ξ , f (A)ψ〉=

∫

R
f (λ )d〈ξ ,EA(λ )ψ〉=

∫

R
f (λ )d〈ξ ,EB(λ )ψ〉= 〈ξ , f (B)ψ〉

for all ξ ∈ H , and hence we havef (A)ψ = f (B)ψ for all f ∈ B(R). Thus, the implication (ii)⇒ (iii)
holds. Since condition (ii) is a special case of condition (iii) where f = χ(−∞,r ], the implication (iii)⇒
(ii) is trivial, so that the equivalence (ii)⇔ (iii) follows. The equivalence of assertions (iii), (iv), and (v)
have been already proved in Ref. [17], the proof is completed.

Condition (iii) above is adopted as the defining condition for A andB to be perfectly correlated inψ
[17] because of the simplicity of the formulation. Condition (v) justifies our nomenclature callingA and
B “perfectly correlated.” By condition (i), quantum logic justifies the assertion that “perfectly correlated”
observables actually have the same value in the given state.For further properties and applications of the
notion of perfect correlation, we refer the reader to Ref. [17].

The following converse statement of the∆0-ZFC Transfer Principle can be proved using the interpre-
tation of real numbers inV(Q).

Theorem 6.8(Converse of the∆0-ZFC Transfer Principle). Let j= S,C,R. If

[[φ(u1, . . . ,un)]] j = 1

holds for any∆0-formulaφ(x1, . . .,xn) of L (∈) provable in ZFC and u1, . . .,un ∈V(Q), then the logicQ
is Boolean.

Proof. Let P,Q∈Q. Then, by the Takeuti correspondence we haveP̃,Q̃ in R(Q). By Proposition 6.4,
we have[[0̌∈ ˜̃P]] j = P̃(0̌)= [[P̃≤ 0̃]] j =EP(0) = I −P, [[0̌ 6∈ ˜̃P]] j =P, [[0̌∈ ˜̃Q]] j = I −Q, and[[0̌ 6∈ ˜̃Q]] j =Q.
Since

z∈ x↔ [(z∈ x∧z∈ y)∨ (z∈ x∧z 6∈ y)]

is provable in ZFC, by assumption we have

[[0̌∈ P̃]] j = ([[0̌∈ P̃]] j ∧ [[0̌∈ Q̃]] j)∨ ([[0̌∈ P̃]] j ∧ [[0̌ 6∈ Q̃]] j),

so thatP= (P∧Q)∨(P∧Q⊥), andP |
◦ Q. SinceP,Q∈Q were arbitrary, we concludeQ is Boolean.
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7 Order relations on quantum reals

Since the real numbers are defined as the upper segment of Dedekind cuts of rational numbers whose
lower segment has no end point, the order relation between two quantum realsu,v∈ R(Q) is defined as

u≤ v := (∀r ∈ v)[r ∈ u].

Let M =Q′′. For any self-adjoint operatorsX,Yη M we writeX 4Y iff EY(λ )≤ EX(λ ) for all λ ∈R.
The relation is called thespectral order. This order is originally introduced by Olson [16] for bounded
operators; for recent results for unbounded operators see [20]. With the spectral order the setM SA is
a conditionally complete lattice, but it is not a vector lattice; in contrast to the fact that the usual linear
order≤ of self-adjoint operators is a lattice if and only ifM is abelian. The following facts about the
spectral order are known [16, 20]:

(i) The spectral order coincides with the usual linear orderon projections and mutually commuting
operators.

(ii) For any 0≤ X,Yη MSA, we haveX 4Y if and only if Xn ≤Yn for all n∈ N.

Proposition 7.1. For any X,Yη MSA and j= S,C,R, we have[[X̃ ≤ Ỹ]] j = 1 if and only if X4Y.

Proof. We have

[[X̃ ≤ Ỹ]] j = [[(∀r ∈ Ỹ)[r ∈ X̃]]] j =
∧

r∈dom(Ỹ)

Ỹ(r)→ j [[r ∈ X̃]] j =
∧

r∈Q

EY(r)→ j EX(r)

Thus, the assertion follows from the fact thatEY(r)≤ EX(r) if and only if EY(r)→ j EX(r) = 1.

To clarify the operational meaning of the truth value[[X̃ ≤ Ỹ]] j , in what follows we shall confine our
attention to the case whereH is finite dimensional.

Let X = ∑n
k=1 xnEX({xn}) andY = ∑m

k=1 ymEX({xn}) be the spectral decomposition ofX andY,
wherex1 < · · ·< xn andy1 < · · ·< yn. Then, we have

EX(x) = ∑
k:xk≤x

EX({xk}),

EY(y) = ∑
k:yk≤y

EY({yk}).

We define the joint probability distributionPX,Y
ψ (x,y) representing the joint probability of obtaining

the outcomesY = y andX = x from the successive projective measurements ofY andX, where theX
measurement follows immediately after theY measurement on the same system prepared in the stateψ
just before theY measurement (see Figure 1). Then, it is well-know thatPX,Y

ψ (x,y) is determined by

PX,Y
ψ (x,y) = ‖EX({x})EY({y})ψ‖2

.

Analogously, we define the joint probability distributionPY,X
ψ (y,x) obtained by the projectiveX measure-

ment and the immediately followingY measurement (see Figure 1). Then, we have

PY,X
ψ (y,x) = ‖EY({y})EX({x})ψ‖2

.

Then, we have the following.
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Figure 1: Successive projective measurements

Theorem 7.2. Let X and Y be observables on a finite dimensional Hilbert spaceH andψ be a state in
H . Then, we have the following.

(i) ψ ∈ R([[X̃ ≤ Ỹ]]S) if and only if PX,Y
ψ (x,y) = 0 for any x,y∈ R such that x> y.

(ii) ψ ∈ R([[X̃ ≤ Ỹ]]C) if and only if PY,X
ψ (y,x) = 0 for any x,y∈ R such that x> y.

(iii) ψ ∈ R([[X̃ ≤ Ỹ]]R) if and only if PY,X
ψ (y,x) = PX,Y

ψ (x,y) = 0 for any x,y∈ R such that x> y.

Proof. Let ψ ∈ R([[X̃ ≤ Ỹ]]S). From Theorem 3.1 we haveEX(λ )⊥EY(λ )ψ = 0 for anyλ ∈ R. Now
we shall show the relation

EX(λ )⊥EY({λ})ψ = 0 (6)

for any λ ∈ R. If λ is not an eigenvalue ofY, we haveEY({λ}) = 0 and relation (6) follows.
Supposeλ = yk. If k = 1, then EY(λ ) = EY({λ}) and hence relation (6) follows. By induc-
tion we assumeEX(y j)

⊥EY({y j})ψ = 0 for all j < k. SinceEX(yk)
⊥EX(y j)

⊥ = EX(yk)
⊥, we have

EX(yk)
⊥EY({y j})ψ = 0 for all j < k. Thus, we haveEX(yk)

⊥EY(yk−1)ψ = ∑k−1
j=1 EX(yk)

⊥EY({y j})ψ =

0. It follows thatEX(λ )⊥EY({λ})ψ = EX(λ )⊥EY(λ )ψ −EX(yk)
⊥EY({y j})ψ = 0. Thus, relation (6)

holds for anyλ ∈ R. Thus, ifx> y then we havePX,Y
ψ (x,y) = ‖EX({x})EY({y})ψ‖2 = 0. Conversely,

suppose that the last equation holds. Then, we haveEX({x})EY({y})ψ = 0 for all x> y, so that it easily
follows thatEX(λ )⊥EY(λ )ψ = 0 for everyλ ∈ R. Thus, assertion (i) follows from Theorem 3.1. The
rest of the assertions follow routinely.

Note thatPX,Y
ψ (x,y) = 0 for anyx,y∈ R such thatx> y if and only if ∑x≤yPX,Y

ψ (x,y) = 1 if and only
if the outcome of theX-measurement is less than or equal to the outcome of theY-measurement in a
successive(Y,X)-measurement with probability 1. Similarly,PY,X

ψ (y,x) = 0 for anyx,y ∈ R such that

x> y if and only if ∑x≤y PY,X
ψ (y,x) = 1 if and only if the outcome of theX-measurement is less than or

equal to the outcome of theY-measurement in a successive(X,Y)-measurement with probability 1.
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8 Conclusion

In quantum logic there are at least three candidates for conditional operation, called the Sasaki con-
ditional, the contrapositive Sasaki conditional, and the relevance conditional. In this paper, we have
attempted to develop quantum set theory based on quantum logics with those three conditionals, each of
which defines different quantum logical truth value assignment. We have shown that those three models
satisfy the transfer principle of the same form to determinethe quantum logical truth values of theorems
of the ZFC set theory. We also show that the reals in the model and the truth values of their equality
are the same for those models. Interestingly, however, we have revealed that the order relation between
quantum reals significantly depends on the underlying conditionals. In particular, we have completely
characterized the operational meanings of those order relations in terms of joint probability obtained
by the successive projective measurements of arbitrary twoobservables. Those characterizations clearly
show their individual features and will play a fundamental role in future applications to quantum physics.
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