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Abstract

In recent investigations, it has been found that conservation laws generally lead to precision limits

on quantum computing. Lower bounds of the error probability have been obtained for various logic

operations from the commutation relation between the noise operator and the conserved quantity

or from the recently developed universal uncertainty principle for the noise-disturbance trade-

off in general measurements. However, the problem of obtaining the precision limit to realizing

the quantum NOT gate has eluded a solution from these approaches. Here, we develop a new

method for this problem based on analyzing the trace distance between the output state from

the realization under consideration and the one from the ideal gate. Using the mathematical

apparatus of orthogonal polynomials, we obtain a general lower bound on the error probability

for the realization of the quantum NOT gate in terms of the number of qubits in the control

system under the conservation of the total angular momentum of the computational qubit plus the

the control system along the direction used to encode the computational basis. The lower bound

turns out to be more stringent than one might expect from previous results. The new method is

expected to lead to more accurate estimates for physical realizations of various types of quantum

computations under conservation laws, and to contribute to related problems such as the accuracy

of programmable quantum processors.
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I. INTRODUCTION

Recently, there have been extensive research efforts to explore whether fundamental phys-

ical laws put any constraints on realizing scalable quantum computing. Soon after the dis-

covery of Shor’s algorithm [1], it was pointed out by several physicists [2, 3, 4] that the

decoherence, the exponential decay of coherence in time, caused by the coupling between

a quantum computer and the environment would cancel out the computational advantage

of quantum computers. To overcome this difficulty, quantum error-correction was proposed

[5, 6], and the subsequent development has established the so-called threshold theorem: if

the error caused by the decoherence in individual quantum gates is below a certain constant

threshold, it is possible in principle to efficiently perform an arbitrary scale of fault-tolerant

quantum computation with error-correction [7]. Thus, the error-correction reduces, in prin-

ciple, the scalability problem to the accuracy problem requiring individual quantum logic

gates to clear the error threshold, though being still quite demanding.

In general, decoherence in quantum computer components can be classified into two

classes: (i) static decoherence, arising from the interaction between computational qubits,

typically in the memory, and the environment, and (ii) dynamical decoherence, arising from

the interaction between computational qubits, typically in the register, and the control

system of gate operations [8]. The static decoherence may be overcome by developing

materials with long decoherence time. On the other hand, the dynamical decoherence poses

a dilemma between controllability and decoherence; the control needs coupling, whereas

the coupling causes decoherence. Thus, even if the interaction with the environment is

completely suppressed, the error caused by the dynamical decoherence still remains. Clearly,

if the control system is described classically, there is no decoherence. However, this never

happens in reality with finite resources.

Barnes, Warren [9], Gea-Banacloche [10], van Enk, and Kimble [11] have been focused

on the atom-field interaction between atom qubits and control electromagnetic fields, and

shown that, when the control field is in a coherent state, the gate error scales as the inverse

of the average photon number. In contrast to those model-dependent approaches, one of

the authors [12] explored the physical constraint on the error caused by dynamical decoher-

ence generally imposed by conservation laws and obtained accuracy limits by quantitatively

generalizing the so-called Winger-Araki-Yanase theorem [13, 14]: observables which do not
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commute with bounded additive conserved quantities have no precise and non-disturbing

measurements. It is natural to assume that conservation laws are satisfied by the interaction

between the qubit and the external control system. If the control system were to be com-

pletely described as a classical system, the conservation law would not cause any conflict

in realizing a unitary operation on the computational qubit, since the classical interaction

causes no decoherence and yet conserves the (infinite) total quantum number. However,

in reality, the interaction may cause decoherence and the time evolution operator on the

composite system is limited to one commuting with the conserved quantity. Under these

conditions, the accuracy of the realized gate operation generally depends on the kind of

gate being considered. It has been shown that the SWAP gate can be realized in principle

without error [12]. However, the controlled NOT gate and the Hadamard gate have lower

bounds of the error probability that scales as the inverse of the size of the control system,

as follows.

The impossibility of precise and non-disturbing measurements under conservation laws

was generalized to an inequality for the lower bound of the sum of the noise and the dis-

turbance of measuring process under a conservation law [8]. This inequality leads to a

general lower bound for the error probability of any realization of the controlled-NOT gate

under conservation laws [8, 12, 15]. For single-spin qubits controlled by the N -qubit control

system, the angular momentum conservation law leads to the minimum error probability

(4N2)−1 [12]. Thus, assuming the threshold error probability 10−4 − 10−5 [7], a two-qubit

unitary operator needs to be realized by an interaction with more than 100 qubit systems,

suggesting the usefulness of schemes based on multiple-spin encoded qubits such as the uni-

versal encoding based on decoherence-free subspaces [15, 16, 17]. In bosonic controls, such as

electromagnetic fields in coherent states, the minimum error probability amounts to (16n̄)−1

[12], where n̄ is the average number of photons. The above result also leads to a conclusion

that in any universal set of elementally logic operations there is at least one logic operation

that obeys the error limit with the same scaling as above [12].

On the other hand, without assuming the non-disturbing condition the lower bound for

the noise in arbitrary measurements under arbitrary conservation laws was derived from

the commutation relation for noise operator and the conserved quantity [18] or simply from

the universal uncertainty principle [19]; see Refs. [20, 21, 22] for the universal uncertainty

principle. This inequality also leads to a general lower bound for the error probability of the
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realization of the Hadamard gate that amounts to the minimum error probability (4N2)−1 for

any N -qubit control system and (16n̄)−1 for any electromagnetic control field in a coherent

state with average number of photons n̄ [19]. Gea-Banacloche and one of the authors [23]

compared the above result for electromagnetic control fields with the previous result obtained

by Gea-Banacloche [10] for the Jaynes-Cummings interaction, and it was concluded that the

constraint based on the angular momentum conservation law represents an ultimate limit

closely related to the fluctuations in the quantum field phase. The use of the Jaynes-

Cummings model in the above model-dependent approach [10, 11] was questioned by Itano

[24] and subsequently Silberfarb and Deutsch [25] justified the Jaynes-Cummings model in

the limit of small entanglement; see also replies to Itano by van Enk and H. J. Kimble [26]

and by Gea-Banacloche [27]. The above consistency result between the model-dependent

and model-independent approaches enforces the validity of the use of the Jaynes-Cummings

model and substantially clarifies the whole situation.

The above methods for deriving conservation-law-induced quantum limits for quantum

logic operations are also applicable to the Toffoli gate and the Fredkin gate to obtain similar

lower bounds. However, the problem of obtaining the precision limit to realizing the quantum

NOT gate has eluded a solution from these approaches, and hence the problem has been

open as to how the minimum error for that gate scales with the size of the control system. In

this paper, in order to solve this problem we devise a new method of deriving the precision

limit, and show that there exists a non-zero lower bound, which indeed scales as the inverse

size of the control system, of the error probability for the quantum NOT gate.

Our formulation has various common features with the formulation of programmable

quantum processors [28, 29, 30], in which a set of unitary operators is to be realized by

selecting a unitary operator on the composite system, the system plus the ancilla, and

by selecting a set of ancilla states, whereas in our problem a single unitary operator is

to be realized under a conservation law by selecting a unitary operator on the composite

system satisfying the conservation laws and by selecting a single ancilla state. In previous

investigations the accuracy of programmable quantum computing has been measured by the

so-called process fidelity, a fidelity based distance measure between two operations, whereas

here we investigate in the completely bounded (CB) distance or gate trace distance, a trace-

distance based measure. Thus, our method is expected to contribute to the problem of

programmable quantum processors and related subjects [31, 32, 33] in future investigations.
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The paper is organized as follows. Sec. II gives basic formulations and main results. We

define the error probability in realizing the quantum NOT gate based on the CB distance.

We subsequently show that a pure input state gives the worst error probability. This enables

us to assume, without loss of generality, that the input state is a pure state. In preparation

for deriving the lower bound of the error probability, in Sec. III we generally describe the

maximum trace distance between the two output states from the realization and from the

ideal quantum NOT gate. In Sec. IV, we introduce the conservation law into the discussion.

By minimizing the error probability over arbitrary choices of the evolution operator obeying

the conservation law, we give a lower bound which depends only on the ancilla input state.

In Sec. V, we optimize the ancilla input state and derive a general lower bound expressed

as a function of the size (the number of qubits) of the ancilla. Chebyshev polynomials of

the second kind, a family of orthogonal polynomials, are used to solve this problem. To

show the tightness of the bound, in Sec. VI, we consider classically complete realizations,

realizations which correctly carry out the quantum NOT operation when the input state is

a computational basis state. We obtain the attainable lower bound for classically complete

realizations. This result also shows that the general lower bound can be attained up to

constant factor of the ancilla size. In the final section, we summarize our study and comment

on the direction of future studies.

II. FORMULATION AND MAIN RESULTS

A. Qubits and conservation laws

The problem to be considered is formulated as follows. The main system S is a single

qubit described by a two dimensional Hilbert space HS with a fixed computational basis

{|0〉, |1〉}. The Pauli operators XS, YS, and ZS on HS are defined by XS = |0〉〈1| + |1〉〈0|,
YS = −i|0〉〈1|+ i|1〉〈0|, and ZS = |0〉〈0| − |1〉〈1|. We refer to XS as the quantum NOT gate.

We suppose that the computational basis is represented by the z-component of spin, and

consider the constraint on realizing the quantum NOT gateXS under the angular momentum

conservation law. More specifically, we assume that the control system is described as an N -

qubit system A also called the ancilla, and that the interaction between S and A preserves

the z-component of the angular momentum of the composite system S + A, and study the
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unavoidable error probability in realizing the quantum NOT operation.

Each qubit Ai for i = 1, 2, · · · , N in the ancilla A is described by a two dimensional

Hilbert space HAi
. Accordingly, the Hilbert space HA of the ancilla A is the tensor product

HA = ⊗N
i=1HAi

, and the Hilbert space H of the composite system S+A is H = HS⊗HA. The

observable ZS on HS is identified with ZS⊗IA1
⊗IA2

⊗· · ·⊗IAN
,where IAi

for i = 1, 2, · · · , N
is the identity operator on HAi

, respectively. Let ZAi
be the Pauli Z operator on HAi

, which

is also identified with the corresponding operator on H. The sum of Pauli Z operators on

A is denoted by

ZA =

N
∑

i=1

ZAi
,

and the corresponding sum of S + A is denoted by

Z = ZS + ZA.

Let U be the evolution operator of S + A during the interaction between S and A to

realize the quantum NOT gate on S. We assume that U satisfies the conservation law

[U,Z] = 0, (1)

where [U,Z] = UZ − ZU . We shall show that the conservation law (1) causes unavoidable

decoherence in realizing XS by U .

To obtain the error probability, we describe the output state of S resulting from the

evolution of S+A. Let ρS and ρA be states of S and A, respectively, so that the input state

of S + A is the product state ρS ⊗ ρA. Then the output state EU,ρA(ρS) of S is given by

EU,ρA(ρS) = TrA
[

U (ρS ⊗ ρA)U †] , (2)

where TrA [·] is the partial trace over HA. On the other hand, for the perfect quantum NOT

gate, the output state EXS
(ρS) of S would be

EXS
(ρS) = XSρSXS

†. (3)

In the following sections we shall show that there exists an unavoidable error probability

of the output state (2) in realizing the output state (3) under the conservation law (1). The

unavoidable error probability for any unitary operator U satisfying the conservation law (1)

will be evaluated to be at least
1

2

(

1 − cos
π

N + 2

)

6



for the worst input state ρS of S and for the best input state ρA of A, and the achievability

to this lower bound will be shown asymptotically. This lower bound is much tighter than

the lower bound 1
16N2+4

anticipated from the previous investigations for other gates as to be

shown numerically.

B. Error probability and CB distance

To state our results more precisely, we introduce the following definitions. Any pair

(U, ρA) consisting of a unitary operator U on HS ⊗ HA and a state ρA on HA is called a

gate implementation or simply an implementation with ancilla A. Every implementation

(U, ρA) determines the trace-preserving completely positive (CP) map EU,ρA of the states

of S by Eq. (2) called the gate operation determined by (U, ρA); see Ref. [7] for trace-

preserving CP maps in quantum information theory. An implementation (U, ρA) is said to

be conservative if it satisfies Eq. (1). We consider the problem as to how accurately we

can make the gate operation EU,ρA to realize the quantum NOT gate EXS
. The worst error

probability of this realization is defined by the completely bounded distance [34, 35] (the

CB distance, or the half-CB-norm-distance) between EU,ρA and EXS
, given by

DCB(EU,ρA, EXS
)

= sup
n,ρ

D (EU,ρA ⊗ idn (ρ) , EXS
⊗ idn (ρ)) , (4)

where D(·, ·) denotes the trace distance (or the half-trace-norm-distance) [7] defined by

D(ρ1, ρ2) =
1

2
Tr[|ρ1 − ρ2|]

for any states ρ1 and ρ2 of S, idn is the identity operation on an n-level system E, and ρ

runs over the density operators on S + E. Since the trace distance of the output states

can be interpreted as the achievable upper bound on the classical trace distances, or the

total-variation distances, between the probability distributions arising from any measure-

ments on those states [7], the CB distance can be interpreted as the ultimate achievable

upper bound on those classical trace distances with further allowing measurements over the

environment with entangled input states; see, for example, [36] for a discussion on the en-

hancement of channel discriminations with an entanglement assistance. Thus, we interpret

DCB(EU,ρA, EXS
) as the worst error probability of EU,ρA in realizing EXS

. The phrase “error
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probability” in the following discussion means the CB distance (4). Clearly,

DCB(EU,ρA, EXS
) ≥ max

ρS
D(EU,ρA(ρS), EXS

(ρS)),

and minimizing maxρS D(EU,ρA(ρS), EXS
(ρS)) over all the conservative implementations

(U, ρA), we find

DCB(EU,ρA, EXS
)

≥ min
(U,ρA)

max
ρS

D (EU,ρA(ρS), EXS
(ρS)) . (5)

The right-hand side of this inequality can be interpreted as a precision limit of the quantum

NOT gate under the conservation law (1). If the limit could take zero, it might be considered

that there exists a perfect realization in EU,ρA. However, we show that such a realization

does not exist because of the conservation law (1).

C. Sufficiency of pure input states

Now, we shall simplify the maximization over the input state ρS by showing that it suffices

to consider only pure state ρS. To show this, we use the fact that the output trace distance

is jointly convex in its inputs:

D
(

EU,ρA
(

∑

i

piρi

)

, EXS

(

∑

i

piρi

))

≤
∑

i

piD
(

EU,ρA
(

ρi
)

, EXS

(

ρi
))

, (6)

where
∑

i pi = 1 and pi ≥ 0. This follows easily from the joint convexity of the trace distance

[7] and the linearity of operations EXS
and EU,ρA.

From the above inequality, a pure input state certainly gives the maximum of the trace

distance. To see this briefly, let ρS =
∑

i qi |ψi〉 〈ψi|, where
∑

i qi = 1 and qi ≥ 0. Then,

there exists a pure state |ψj〉 such that

D
(

EU,ρA
(

∑

i

qi|ψi〉〈ψi|
)

, EXS

(

∑

i

qi |ψi〉 〈ψi|
))

≤
∑

i

qiD(EU,ρA(|ψi〉〈ψi|), EXS
(|ψi〉〈ψi|))

≤ D(EU,ρA(|ψj〉〈ψj|), EXS
(|ψj〉〈ψj|)). (7)

Thus in considering maxρS D(EU,ρA(ρS), EXS
(ρS)), we shall assume in later discussions with-

out loss of generality that the input state ρS is a pure state.

8



D. Pure conservative implementations

An implementation (U, ρA) is said to be pure if ρA is a pure state. In this case, we shall

write (U, ρA) = (U, |A〉) if ρA = |A〉〈A|. In the following sections, we shall mainly consider

the case where the ancilla state is a pure state. Here, we shall show a purification method

that makes any general conservative implementation a pure conservative implementation,

so that every conservative implementation with N qubit ancilla has a pure conservative

implementation with N + ⌈log2 rank(ρA)⌉ qubit ancilla, where rank(ρA) denotes the rank of

ρA.

Let (U, ρA) be a conservative implementation with N qubit ancilla A. Then, we have the

spectral decomposition

ρA =
R

∑

j=1

pj|φj〉〈φj|, (8)

where R = rank(ρA), 〈φj|φk〉 = δjk, pj > 0 for all j, k = 1, . . . , R, and
∑

j pj = 1. Let A′ be

the N ′ qubit ancilla system extending A satisfying N ′ = N + ⌈log2R⌉. Let |A′〉 ∈ HA′ be

such that

|A′〉 =

R
∑

j=1

√
pj |φj〉 ⊗ |ξj〉, (9)

where |ξj〉 ∈ HA′−A, 〈ξj|ξk〉 = δjk for all j, k = 1, . . . , R. We define a unitary operator U ′ on

HS ⊗HA ⊗HA′−A by U ′ = U ⊗ I, where I is the identity operator on HA′−A.

Now, we consider the implementation (U ′, |A′〉). It is easy to see that U ′ satisfies the

conservation law [U ′, Z] = 0, where Z is the sum of Pauli Z operators in S + A′. We shall

show the relation

EU,ρA = EU ′,|A′〉. (10)

Let ρS be any input state. Then, by Eq. (9) we have

TrA′−A[ρS ⊗ |A′〉〈A′|] = ρS ⊗ ρA. (11)

We also have

EU ′,|A′〉(ρS)

= TrA′ [U ′(ρS ⊗ |A′〉〈A′|)U ′†]

= TrATrA′−A[(U ⊗ I)(ρS ⊗ |A′〉〈A′|)(U † ⊗ I)]

= TrA[UTrA′−A[ρS ⊗ |A′〉〈A′|]U †].
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From Eq. (11), we have

EU ′,|A′〉(ρS) = TrA[U(ρS ⊗ ρA)U †].

Since ρS is arbitrary, Eq. (10) follows from Eq. (2).

The implementation (U ′, |A′〉) is a pure conservative implementation and has N ′ = N +

⌈log2 rank(ρA)⌉ qubit ancilla.

E. Gate fidelity and gate trace distance

For any two trace-preserving CP maps E1 and E2 their distance measures are defined as

follows. The gate fidelity [7] F (E1, E2) between E1 and E2 is defined by

F (E1, E2) = inf
ρS
F (E1(ρS), E2(ρS)), (12)

where ρS varies over all the states of S and F (·, ·) in the right-hand-side denotes the fidelity

defined by

F (ρ1, ρ2) = Tr[(ρ
1/2
1 ρ2ρ

1/2
1 )1/2] (13)

for all states ρ1 and ρ2 of S. By the joint concavity of the fidelity [7, p. 415] the infimum in

Eq. (12) can be replaced by the one over only all the pure states ρS of S.

We define the gate trace-distance D(E1, E2) between E1 and E2 by

D(E1, E2) = sup
ρS

D(E1(ρS), E2(ρS)), (14)

where ρS varies over all the states of S. By the result obtained in subsection IIC, the

supremum in Eq. (14) can be replaced by the one over only all the pure states ρS of S.

For any state ρ1 and any pure state ρ2, the fidelity and the trace distance are related by

D(ρ1, ρ2) ≥ 1 − F (ρ1, ρ2)
2

(see Eq. (9,111) of Ref. [7]). Since EXS
(ρS) is a pure state provided that ρS is pure, we have

D(EU,ρA(ρS), EXS
(ρS)) ≥ 1 − F (EU,ρA(ρS), EXS

(ρS))2

(15)
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for any pure state ρS of S. Taking supremum over all the pure states ρS of the both sides

of Eq. (15), for any implementation (U, ρA) we obtain

DCB(EU,ρA, EXS
) ≥ D(EU,ρA, EXS

)

≥ 1 − F (EU,ρA, EXS
)2. (16)

In Ref. [19], the realization of the Hadamard gate HS = (1/
√

2)(|0〉〈0|+ |1〉〈0|+ |0〉〈1| −
|1〉〈1|) has been considered and it has been proved that for any pure conservative implemen-

tation (U, |A〉) with N qubit ancilla A, we have

1 − F (EU,|A〉, EHS
)2 ≥ 1

4N2 + 4
, (17)

where EHS
(ρS) = HSρSH

†
S

[39]. Since any conservative implementation (U, ρA) with N

qubit ancilla A can be purified to be a pure conservative implementation (U ′, |A′〉) with

N + ⌈log2 rank(ρA)⌉ qubit ancilla A′, we have

1 − F (EU,ρA, EHS
)2 ≥ 1

4(N + log2 rank(ρA))2 + 4
. (18)

SinceN+⌈log2 rank(ρA)⌉ ≤ 2N , we conclude that every conservative implementation (U, ρA)

with N qubit ancilla A satisfies

1 − F (EU,ρA, EHS
)2 ≥ 1

16N2 + 4
. (19)

In other words, we have

min
(U,|A〉)

max
ρS

[1 − F (EU,|A〉, EHS
)2] ≥ 1

4N2 + 4
, (20)

where (U, |A〉) varies over all the pure conservative implementations with N qubit ancilla

A, and we have

min
(U,ρA)

max
ρS

[1 − F (EU,ρA, EHS
)2] ≥ 1

16N2 + 4
, (21)

where (U, ρA) varies over all the conservative implementations with N qubit ancilla A.

F. Main results

Unfortunately, the method for deriving Eq. (17) cannot be applied to the quantum

NOT gate. In this paper we develop a new method for analyzing the gate trace-distance

11



D(EU,ρA, EXS
) instead of considering the gate fidelity F (EU,ρA, EXS

) and we shall prove the

following relations. In section V, we shall show that any pure conservative implementation

(U, |A〉) with N qubit ancilla satisfies

D(EU,|A〉, EXS
) ≥ 1

2

(

1 − cos
2π

N + 4

)

. (22)

It follows from the above, any conservative implementation (U, ρA) with N qubit ancilla

satisfies

D(EU,ρA, EXS
) ≥ 1

2

(

1 − cos
2π

N + log2 rank(ρA) + 4

)

. (23)

An implementation (U, ρA) is called a classically complete implementation of the quantum

NOT gate, or classically complete implementation for short, if it satisfies

EU,ρA(|0〉〈0|) = |1〉〈1|, (24)

EU,ρA(|1〉〈1|) = |0〉〈0|. (25)

In section VI, we shall consider classically complete pure conservative implementations. We

shall find the attainable lower bound for this case, so that we obtain

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

=
1

2

(

1 − cos
2π

N + 2

)

, (26)

where (U, |A〉) varies over all the classically complete pure conservative implementations

with N qubit ancilla A provided N is even, and we obtain

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

=
1

2

(

1 − cos
2π

N + 1

)

, (27)

provided N is odd. From the above, any classically complete conservative implementation

(U, ρA) with N qubit ancilla satisfies

D(EU,ρA, EXS
) ≥ 1

2

(

1 − cos
2π

N + log2 rank(ρA) + 2

)

. (28)

Since N + log2 rank(ρA) ≤ 2N , from the above we have

1

2

(

1 − cos
2π

N + 1

)

≥ min
(U,ρA)

max
ρS

D(EU,ρA(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
π

N + 1

)

, (29)

12



where (U, ρA) varies over all the classically complete implementations with N qubit ancilla.

From Eqs. (22) and (27), we have

1

2

(

1 − cos
2π

N + 1

)

≥ min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 4

)

, (30)

where (U, |A〉) varies over all the pure conservative implementations. Finally, from Eqs. (23)

and (27), we have

1

2

(

1 − cos
2π

N + 1

)

≥ min
(U,ρA)

max
ρS

D(EU,ρA(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
π

N + 2

)

, (31)

where (U, ρA) varies over all the conservative implementations with N qubit ancilla A.

III. LOWER BOUND OF GATE TRACE DISTANCE

In this section, we investigate the maximum trace distance over all possible input states

of S for given U and ρA in a general way without considering the conservation law.

A. System input state and trace distance

We start with a description of the output states controlled by any unitary operator U on

HS ⊗HA. Any pure input state |ψ〉 of S can be described as

|ψ〉 = α|0〉 + β|1〉, (32)

where |α|2 + |β|2 = 1. We assume that the input state of A is a pure state |A〉, so that the

input state of the composite system S+A is the product state |ψ〉⊗ |A〉. When |0〉 or |1〉 is

an input state of S the corresponding output state of S + A can be generally expressed as

U (|0〉 ⊗ |A〉) = |0〉 ⊗ |A0
0〉 + |1〉 ⊗ |A0

1〉,

U (|1〉 ⊗ |A〉) = |0〉 ⊗ |A1
0〉 + |1〉 ⊗ |A1

1〉, (33)
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where |Aij〉 ∈ HA for i, j = 0, 1. Normalizing these states gives

‖|A0
0〉‖2 + ‖|A0

1〉‖2 = 1,

‖|A1
0〉‖2 + ‖|A1

1〉‖2 = 1. (34)

The output state of S + A corresponding to |ψ〉 can then be expressed as

U(|ψ〉 ⊗ |A〉) = α
(

|0〉 ⊗ |A0
0〉 + |1〉 ⊗ |A0

1〉
)

+β
(

|0〉 ⊗ |A1
0〉 + |1〉 ⊗ |A1

1〉
)

. (35)

Normalizing Eq. (35) gives

Re
[

α∗β
(

〈A0
0|A1

0〉 + 〈A0
1|A1

1〉
)]

= 0. (36)

The output state EU,|A〉(|ψ〉) := EU,|A〉(|ψ〉〈ψ|) of S is given by the partial trace of Eq. (35)

with respect to A as follows.

EU,|A〉(|ψ〉) = TrA[U(|ψ〉〈ψ| ⊗ |A〉〈A|)U †]

= (|α|2‖|A0
0〉‖2 + αβ∗〈A1

0|A0
0〉 + α∗β〈A0

0|A1
0〉 + |β|2‖|A1

0〉‖2)|0〉 〈0|

+
(

|α|2〈A0
1|A0

0〉 + αβ∗〈A1
1|A0

0〉 + α∗β〈A0
1|A1

0〉 + |β|2〈A1
1|A1

0〉
)

|0〉 〈1|

+
(

|α|2〈A0
0|A0

1〉 + αβ∗〈A1
0|A0

1〉 + α∗β〈A0
0|A1

1〉 + |β|2〈A1
0|A1

1〉
)

|1〉 〈0|

+
(

|α|2‖|A0
1〉‖2 + αβ∗〈A1

1|A0
1〉 + α∗β〈A0

1|A1
1〉 + |β|2‖|A1

1〉‖2
)

|1〉 〈1| . (37)

On the other hand, if the quantum NOT gate were to be perfectly realized, the output state

EXS
(|ψ〉) := EXS

(|ψ〉〈ψ|) would be given by

EXS
(|ψ〉) = XS |ψ〉 〈ψ|X†

S
= |β|2|0〉 〈0| + α∗β|0〉 〈1| + αβ∗|1〉 〈0| + |α|2|1〉 〈1| . (38)

We now consider the trace distance between EU,|A〉(|ψ〉) and EX(|ψ〉). Note that the trace

distance between two-dimensional states, σξ and ση, can be described as

D(σξ, ση) =

√

|σξ01 − ση01|2 − (σξ00 − ση00)(σ
ξ
11 − ση11), (39)
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where σkij = 〈i|σk|j〉 for k = ξ, η. Using this relation, the trace distance

D(EXS
(|ψ〉), EU,|A〉(|ψ〉)) is

D(EU,|A〉(|ψ〉), EXS
(|ψ〉))

=
{

∣

∣α∗β −
(

|α|2〈A0
1|A0

0〉 + αβ∗〈A1
1|A0

0〉 + α∗β〈A0
1|A1

0〉 + |β|2〈A1
1|A1

0〉
)
∣

∣

2

−
[

|β|2 −
(

|α|2‖|A0
0〉‖2 + αβ∗〈A1

0|A0
0〉 + α∗β〈A0

0|A1
0〉 + |β|2‖|A1

0〉‖2
)]

×
[

|α|2 −
(

|α|2‖|A0
1〉‖2 + αβ∗〈A1

1|A0
1〉 + α∗β〈A0

1|A1
1〉 + |β|2‖|A1

1〉‖2
)]

}
1

2

. (40)

Let ǫ0 = ‖|A0
0〉‖2 and ǫ1 = ‖|A1

1〉‖2. Then ‖|A0
1〉‖2 = 1− ǫ0 and ‖|A1

0〉‖2 = 1− ǫ1 by Eq. (34).

Thus Eqs. (36) and (40) give

D(EU,|A〉(|ψ〉), EXS
(|ψ〉)) =

{

∣

∣α∗β(1 − 〈A0
1|A1

0〉) − αβ∗〈A1
1|A0

0〉 − |α|2〈A0
1|A0

0〉 − |β|2〈A1
1|A1

0〉
∣

∣

2

+
[

− |α|2ǫ0 + |β|2ǫ1 − 2Re
(

α∗β〈A0
0|A1

0〉
) ]2

}
1

2

. (41)

Clearly [(−|α|2ǫ0 + |β|2ǫ1) − 2Re (α∗β〈A0
0|A1

0〉)]
2 ≥ 0, and hence we obtain

D(EU,|A〉(|ψ〉), EXS
(|ψ〉))

≥
∣

∣α∗β
(

1 − 〈A0
1|A1

0〉
)

− αβ∗〈A1
1|A0

0〉 − |α|2〈A0
1|A0

0〉

−|β|2〈A1
1|A1

0〉
∣

∣. (42)

B. Lower bound for maximum trace distance

In the following, we shall prove that for any U and |A〉, we have

max
ρS

D
(

EU,|A〉(ρS), EXS
(ρS)

)

≥ 1

2

∣

∣1 − 〈A0
1|A1

0〉
∣

∣ , (43)

by considering the maximization of Eq. (42) over the input state |ψ〉 of S. This means that

the output trace distance must satisfy Eq. (43) for any interaction and any input state of

A.

The proof is as follows. We consider the input state |ψ′〉 = α|0〉 + β|1〉 such that |α| =

|β| = 1√
2
. Let θ be such that α∗β = 1

2
eiθ and 0 ≤ θ < 2π. Then Eq. (42) gives

D(EU,|A〉(|ψ′〉), EXS
(|ψ′〉))

≥ 1

2

∣

∣eiθ
(

1 − 〈A0
1|A1

0〉
)

− e−iθ〈A1
1|A0

0〉 − 〈A0
1|A0

0〉

−〈A1
1|A1

0〉
∣

∣. (44)
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Here three complex numbers, 1 − 〈A0
1|A1

0〉, −〈A1
1|A0

0〉, and −〈A0
1|A0

0〉 − 〈A1
1|A1

0〉, which are

determined by U and |A〉, can be expressed as

1 − 〈A0
1|A1

0〉 = r1e
iφ1 ,

−〈A1
1|A0

0〉 = r2e
iφ2 ,

−〈A0
1|A0

0〉 − 〈A1
1|A1

0〉 = r3e
iφ3 , (45)

where ri ≥ 0 and 0 ≤ φi < 2π for i = 1, 2, 3. Then r1 = |1 − 〈A0
1|A1

0〉| and

D(EU,|A〉(|ψ′〉), EXS
(|ψ′〉))

≥ 1

2

∣

∣r1 + r2e
i(−2θ−φ1+φ2) + r3e

i(−θ+φ3−φ1)
∣

∣. (46)

Note that Eq. (46) is maintained for any θ which is independent of U and |A〉. Hence, we

consider the following two cases. In the first case, suppose that U and |A〉 satisfy r2 ≥ r3.

In this case, for the input state |ψ′
a〉 of S with θ = 1

2
(φ2 − φ1), we have

D(EU,|A〉(|ψ′
a〉), EXS

(|ψ′
a〉))

=
1

2

∣

∣r1 + r2 + r3e
i{− 1

2
(φ2−φ1)+φ3−φ1}

∣

∣

≥ 1

2
|r1 + r2 − r3|

≥ 1

2
r1.

Thus, there exists a state |ψ〉 of S that satisfies D(EXS
(|ψ〉), EU,|A〉(|ψ〉)) ≥ 1

2
r1 in the case

where r2 ≥ r3. In the second case, suppose that U and |A〉 satisfy r2 < r3. In this case, for

the input state |ψ′
b〉 with θ = φ3 − φ1, we have

D(EU,|A〉(|ψ′
b〉), EXS

(|ψ′
b〉))

=
1

2

∣

∣r1 + r2e
i{−2(φ3−φ1)−φ1+φ2} + r3

∣

∣

≥ 1

2

∣

∣r1 + r3 − r2
∣

∣

≥ 1

2
r1.

Thus, there exists a state |ψ〉 of S that satisfies D(EU,|A〉(|ψ〉), EXS
(|ψ〉)) ≥ 1

2
r1 in the case

where r2 < r3. We therefore conclude that for any U and |A〉, there exists a state |ψ〉 of S

such that the input state ρS = |ψ〉〈ψ| satisfies

D(EU,|A〉(ρS), EXS
(ρS)) ≥ 1

2
|1 − 〈A0

1|A1
0〉|. (47)
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This completes the proof.

In Eq. (43), if the inner product 〈A0
1|A1

0〉 could take one by a certain choice of U and

|A〉, the lower bound could take zero. This may mean a perfect realization of EU,|A〉 exists.

However, we will show in the following sections that the inner product cannot take one by

assuming the conservation law (1). This result will give us a precision limit of the quantum

NOT gate.

IV. PRECISION LIMIT GIVEN THE ANCILLA STATE

In this section, we derive the lower bound which depends on the input state of the ancilla

system by minimizing the right-hand-side of Eq. (47) over the evolution operator U under

the conservation law.

A. Constraints on ancilla input states

We start with the description of the input state of A. The sum of the Pauli Z operators

on A is the operator ZA on HA given by

ZA =

N
∑

i=1

ZAi
.

We denote the eigenspace in ZA of an eigenvalue ξ by EZA

ξ . The eigenvalues are N − 2n,

where n = 0, 1, 2, · · · , N . The dimension of the eigenspace of the eigenvalue N − 2n is

dn = N !
(N−n)!n!

. Note that the Hilbert space of A is the direct sum of the spaces EZA

N−2n for

n = 0, 1, · · · , N :

HA = ⊕N
n=0E

ZA

N−2n. (48)

Therefore, for any input state |A〉 of A there exist an ∈ C and |φAn 〉 ∈ EZA

N−2n with ‖|φAn 〉‖ = 1

satisfying

|A〉 =
N

∑

n=0

an|φAn 〉. (49)

Normalizing Eq. (49) gives

N
∑

n=0

|an|2 = 1. (50)
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Next we describe the output state of S + A under the conservation law. Let EZS

m be the

eigenspace of an eigenvalue m = 1,−1 of ZS, and EZ
λ be the eigenspace of an eigenvalue λ

of Z, where Z = ZS + ZA, which has

λ = N + 1 − 2n, (51)

where n = 0, 1, · · · , N,N + 1. The eigenspace EZ
λ can be expressed by the tensor product

of the space EZS

1 ⊗ EZA

N−2n and the space EZS

−1 ⊗ EZA

N−2n as follows:

EZ
N+1 = EZS

1 ⊗ EZA

N ,

EZ
N+1−2 =

(

EZS

1 ⊗EZA

N−2

)

⊕
(

EZS

−1 ⊗EZA

N

)

,

EZ
N+1−4 =

(

EZS

1 ⊗EZA

N−4

)

⊕
(

EZS

−1 ⊗EZA

N−2

)

,

...

EZ
N+1−2n =

(

EZS

1 ⊗EZA

N−2n

)

⊕
(

EZS

−1 ⊗EZA

N−2(n−1)

)

,

...

EZ
−N+1 =

(

EZS

1 ⊗EZA

−N
)

⊕
(

EZS

−1 ⊗ EZA

−N+2

)

,

EZ
−N−1 = EZS

−1 ⊗ EZA

−N . (52)

Note that the conservation law (1) can be equivalently expressed by the relation [40]

UEZ
λ ⊂ EZ

λ (53)

for all λ. Eqs. (52) and (53) then show that the output state U(|0〉 ⊗ |φAn 〉) is an element of

the subspace (EZS

1 ⊗ EZA

N−2n) ⊕ (EZS

−1 ⊗ EZA

N−2(n−1)) for n = 1, 2, · · · , N , since

U(|0〉 ⊗ |φAn 〉) ∈ U
(

EZS

1 ⊗EZA

N−2n

)

⊂ UEZ
N+1−2n

⊂ EZ
N+1−2n

=
(

EZS

1 ⊗ EZA

N−2n

)

⊕
(

EZS

−1 ⊗EZA

N−2(n−1)

)

. (54)

Similarly, the output state U(|0〉 ⊗ |φA0 〉) is an element of the subspace EZS

1 ⊗EZA

N , since

U(|0〉 ⊗ |φA0 〉) ∈ U
(

EZS

1 ⊗EZA

N

)

⊂ UEZ
N+1

⊂ EZ
N+1

= EZS

1 ⊗ EZA

N . (55)
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Therefore, by Eqs. (54) and (55), there exist |(φAn )0
0〉 ∈ EZA

N−2n and |(φAn−1)
0
1〉 ∈ EZA

N−2(n−1)

such that

U(|0〉 ⊗ |φAn 〉) = |0〉 ⊗ |(φAn )0
0〉 + |1〉 ⊗ |(φAn−1)

0
1〉, (56)

where |(φA−1)
0
1〉 = 0. Normalizing Eq. (56) gives

‖ |(φAn )0
0〉‖2 + ‖ |(φAn−1)

0
1〉‖2 = 1. (57)

Similarly, for the output state U(|1〉⊗|φAn 〉), there exist |(φAn+1)
1
0〉 ∈ EZA

N−2(n+1) and |(φAn )1
1〉 ∈

EZA

N−2n such that

U(|1〉 ⊗ |φAn 〉) = |0〉 ⊗ |(φAn+1)
1
0〉 + |1〉 ⊗ |(φAn )1

1〉, (58)

where |(φAN+1)
1
0〉 = 0. Normalizing Eq. (58) gives

‖ |(φAn+1)
1
0〉‖2 + ‖ |(φAn )1

1〉‖2 = 1. (59)

We can now obtain useful relations for the output state of S + A under the conservation

law. For the output state U(|0〉 ⊗ |A〉), Eqs. (49) and (56) give

U(|0〉 ⊗ |A〉) = |0〉 ⊗
(

N
∑

n=0

an|(φAn )0
0〉

)

+|1〉 ⊗
(

N
∑

n=0

an|(φAn−1)
0
1〉

)

. (60)

Similarly, for the output state U(|1〉 ⊗ |A〉), Eqs. (49) and (58) give

U(|1〉 ⊗ |A〉) = |0〉 ⊗
(

N
∑

n=0

an|(φAn+1)
1
0〉

)

+|1〉 ⊗
(

N
∑

n=0

an|(φAn )1
1〉

)

. (61)

Comparing Eq. (33) with Eqs. (60) and (61), we obtain the following relations:

|A0
0〉 =

N
∑

n=0

an|(φAn )0
0〉,

|A0
1〉 =

N
∑

n=0

an|(φAn−1)
0
1〉,

|A1
0〉 =

N
∑

n=0

an|(φAn+1)
1
0〉,

|A1
1〉 =

N
∑

n=0

an|(φAn )1
1〉. (62)
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B. Optimization of gate trace distance by ancilla input

We can now estimate the inner product 〈A0
1|A1

0〉. By Eq. (62),

〈A0
1|A1

0〉 =
N

∑

n,n′=0

an′

∗an〈(φAn′−1)
0
1|(φAn+1)

1
0〉, (63)

where the inner product 〈(φAn′−1)
0
1|(φAn+1)

1
0〉 is given as

〈(φAn′−1)
0
1|(φAn+1)

1
0〉

=







0 for n′ − 1 6= n + 1,

〈(φAn+1)
0
1|(φAn+1)

1
0〉 for n′ − 1 = n+ 1.

(64)

Therefore,

〈A0
1|A1

0〉 =
N−2
∑

n=0

an+2
∗an〈(φAn+1)

0
1|(φAn+1)

1
0〉. (65)

By the triangle inequality, we have

|〈A0
1|A1

0〉| ≤
N−2
∑

n=0

|an+2| |an| |〈(φAn+1)
0
1|(φAn+1)

1
0〉|. (66)

From Eqs. (50), (57), and (59), the Schwarz inequality gives the relations

N−2
∑

n=0

|an+2||an| ≤ 1, (67)

|〈(φAn+1)
0
1|(φAn+1)

1
0〉| ≤ ‖ |(φAn+1)

0
1〉‖‖|(φAn+1)

1
0〉‖ ≤ 1.

(68)

Thus,

∣

∣〈A0
1|A1

0〉
∣

∣ ≤
N−2
∑

n=0

|an+2||an| ≤ 1, (69)

so that the maximum of |〈A0
1|A1

0〉| is at most
∑N−2

n=0 |an+2||an|. Therefore, the minimum of

1
2
|1 − 〈A0

1|A1
0〉| in the right-hand side of Eq. (43) is at least 1

2
(1 −

∑N−2
n=0 |an+2||an|). Since

in the above argument the unitary operator U was arbitrary but satisfied the conservation

law, we have

min
U

max
ρS

D
(

EU,|A〉(ρS), EXS
(ρS)

)

≥ 1

2

(

1 −
N−2
∑

n=0

|an+2| |an|
)

, (70)
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where U varies over all the unitary operators on HS⊗HA satisfying Eq. (1). This is a useful

inequality that allows us to evaluate a lower bound of the quantum NOT gate given the

input state of the ancilla system. For example, if an is a constant, such as

an =
1√
N + 1

(71)

for all n = 0, 1, · · · , N , then whatever evolution operator is used, an error probability 1
N+1

determined by Eq. (70) is unavoidable.

The following questions regarding Eq. (70) still remain: What is the lower bound over

the input states of the ancilla system? Can we reduce the lower bound to zero by choosing

appropriate input states of A? In the next section, we will quantitatively show that there

exists a non-zero lower bound of the error probability for any input state of the ancilla system

and any evolution operator. In order to obtain the bound, it is necessary to minimize Eq. (70)

over the input states of A under condition (50).

V. PRECISION LIMIT GIVEN THE ANCILLA SIZE

We consider the maximization of
∑N−2

n=0 |an+2||an| over input states of the ancilla system

to minimize the right-hand side of Eq. (70) under condition (50). In the first place, we

show that this problem can be reduced to the derivation of the maximum eigenvalue of a

symmetric matrix. Secondly, we explain how to derive the maximum eigenvalue, making use

of the recurrence formula of Chebyshev polynomials of the second kind. We finally describe

the lower bound of the quantum NOT gate which depends only on the size of the ancilla

system.

A. Lower bound and eigenvalue problem

The summation
∑N−2

n=0 |an+2||an| can be divided into two parts, the summation of odd

subscripts, such as |a0||a2|, |a2||a4|, · · · , and that of even subscripts, such as |a1||a3|, |a3||a5|,
· · · . For even N ,

N−2
∑

n=0

|an+2||an|

=

N−4

2
∑

r=0

|a2r+1||a2r+3| +
N−2

2
∑

r=0

|a2r||a2r+2|, (72)
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where N ≥ 2. For odd N ,

N−2
∑

n=0

|an+2||an|

=

N−3

2
∑

r=0

|a2r+1||a2r+3| +
N−3

2
∑

r=0

|a2r||a2r+2|, (73)

where N ≥ 3. We now assume that N is even for simplicity; we will comment on the case

of odd N later. To rewrite the summation, we define an (N + 1)-dimensional vector A† by

A† =
[

|a1|, |a3|, . . . , |aN−1|, |a0|, |a2|, . . . , |aN |
]

, (74)

where the odd indexed (resp. even indexed) elements are in the first (resp. second) half

elements of the vector, and the number of those elements is N
2

(resp. N
2

+1). The summation

can then be expressed by a matrix and the vector A as

N−2
∑

n=0

|an+2||an|

= A†



















































0 1 0 · · · 0 · · · 0

0 0 1
...

...
. . .

. . .

0 1

0 0 · · · 0

0 · · · 0 0 1 0 · · ·
...

... 0 0 1
. . .

. . .

0 1

0 · · · 0 0



















































A, (75)

where the matrix has four submatrices. The upper left (resp. lower right) submatrix is the

N
2
× N

2
(resp. (N

2
+ 1) × (N

2
+ 1) ) matrix with all the first subdiagonal entries one and all

the other entries zero. The upper right (resp. lower left) submatrix is the N
2
× (N

2
+1) (resp.

(N
2

+ 1) × N
2

) matrix with all the entries zero. Taking the complex conjugate of both sides
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of Eq. (75) gives

N−2
∑

n=0

|an+2||an|

= A†



















































0 0 · · · 0 · · · 0

1 0
...

...

0 1
. . .

...
. . . 0 0

1 0 0 · · · 0

0 · · · 0 0 0 · · ·
...

... 1 0

0 1
. . .

. . . 0

0 · · · 0 1 0



















































A. (76)

Therefore, adding Eq. (75) to Eq. (76) gives

N−2
∑

n=0

|an+2||an|

= A†








































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



















0 1
2

0 · · · 0 · · · 0

1
2

0 1
2

...
...

0 1
2

0
. . .

. . .
. . . 1

2
0

1
2

0 1
2

0 1
2

0 0 · · · 0

0 · · · 0 0 1
2

0 · · ·
...

... 1
2

0 1
2

0 1
2

0
. . .

. . .
. . . 1

2
0

1
2

0 1
2

0 · · · 0 0 1
2

0































































A,

(77)

where the upper left and the lower right submatrices are symmetric with all the first sub-

diagonal and superdiagonal entries 1/2 and all the other entries 0. Let A
†
odd and A†

even be
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two vectors defined by

A
†
odd =

[

|a1|, |a3|, |a5|, . . . , |aN−1|
]

,

A†
even =

[

|a0|, |a2|, |a4|, . . . , |aN |
]

, (78)

and Sl be an l × l symmetric matrix defined by

Sl =























0 1
2

0 0

1
2

0 1
2

0

0 1
2

0
. . .

0 0
. . .

. . . 1
2

1
2

0























. (79)

Then, Eq. (77) can be written as

N−2
∑

n=0

|an+2||an| = A
†
oddSN

2

Aodd + A†
evenSN

2
+1Aeven

≤ ‖Aodd‖2 sN

2

+ ‖Aeven‖2sN

2
+1, (80)

where sl is the maximum eigenvalue of the symmetric matrix Sl. Recall that ‖Aodd‖2 +

‖Aeven‖2 = A† ·A = 1, and thus

max
P

|an|2=1

[

N−2
∑

n=0

|an+2||an|
]

= max
[

sN

2

, sN

2
+1

]

, (81)

where the maximization in the right-hand side means selecting the larger of sN

2

and sN

2
+1.

Taking the difference between Eqs. (72) and (73) into account, we apply the same analysis

for odd N . Then, we have

max
P

|an|2=1

[

N−2
∑

n=0

|an+2| |an|
]

= sN+1

2

. (82)

In this way, the maximization of the summation
∑N−2

n=0 |an+2| |an| under condition (50) re-

duces to the derivation of the maximum eigenvalue of the symmetric matrices SN

2

and SN

2
+1.

B. Eigenvalue problem and orthogonal polynomials

Next we shall determine the maximum eigenvalue, as mentioned above, and give the lower

bound of the quantum NOT gate. It is well-known that the eigenvalues and the eigenvectors
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of the matrix Sl are obtained from a recurrence formula of orthogonal polynomials as follows

[37, 38]. Chebyshev polynomials Wl(x) for l = 1, 2, . . . of the second kind are defined by the

relation

Wl(cos θ) =
sin(l + 1)θ

sin θ
, (83)

where 0 < θ < π, and are polynomials of the precise degree l, and satisfy the recurrence

formula

xW0(x) =
1

2
W1(x), (84)

xWl(x) =
1

2
Wl+1(x) +

1

2
Wl−1(x), (85)

where l ≥ 1. The roots x = xl,k of the equation Wl(x) = 0 is given by

xl,k = cos
kπ

l + 1
(86)

for k = 1, 2, . . . , l. Let W†(xl,k) be an l-dimensional vector defined as

W†(xl,k) =
[

W0(xl,k),W1(xl,k), · · · ,Wl−1(xl,k)
]

. (87)

Since Wl(xl,k) = 0, Eqs. (85) and (84) give

SlW(xl,k) =






















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






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...

Wl−1(xl,k)


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















=



























1
2
W1(xl,k)

1
2
W0(xl,k) + 1

2
W2(xl,k)

...

1
2
Wj−1(xl,k) + 1

2
Wj+1(xl,k)

...

1
2
Wl−2(xl,k) + 1

2
Wl(xl,k)



























= xl,kW(xl,k). (88)

Thus, the vector W(xl,k) is an eigenvector of Sl with eigenvalue xl,k. Therefore, the maxi-

mum eigenvalue of Sl is

sl = xl,1 = cos
π

l + 1
. (89)
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and the corresponding eigenvector is given by

W†(xl,1) =









sin
(j + 1)π

l + 1

sin
π

l + 1









l−1

j=0

. (90)

C. Derivation of lower bound given the size of ancilla

We have found the maximum eigenvalue, and thus we can now describe a lower bound of

the error probability in realizing the quantum NOT gate. For even N , Eqs. (81) and (89)

give

max
P

|an|2=1

N−2
∑

n=0

|an+2| |an| = cos
2π

N + 4
, (91)

Recall that the minimization of Eq. (70) over the input states of A is derived from the

maximization of
∑N−2

n=0 |an+2| |an|. Thus,

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 4

)

. (92)

Similarly, for odd N

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 3

)

. (93)

Here cos 2π
N+4

is greater than cos 2π
N+3

, and hence we have finally obtained the lower bound

for the error probability of any realization of the quantum NOT gate with N -qubit control

system under the angular momentum conservation law as

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 4

)

(94)

for any N(≥ 2). The bound depends only on the size of the ancilla system: the larger N ,

the closer to zero is the lower bound.

According to previous works [12, 19] based on the uncertainty principle, it may be ex-

pected that the lower bound of the quantum NOT gate scales with the inverse of N as
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FIG. 1: Plot of the lower bounds as a function of N . The solid line shows the lower bound

1
2(1 − cos 2π

N+4) of the quantum NOT gate in Eq. (94). The dashed line shows the lower bound

1
4(N2+1)

previously obtained for the Hadamard gate in Ref. [19].

1
4(N2+1)

≈ 1
4N2 . However, the new bound has the leading order 1

2
(1− cos 2π

N+4
) ≈ π2

N2 , so that

the lower bound obtained here is really tighter than that as depicted by Figure 1.

D. Lower bound: general case

We have considered the case where the ancilla state is a pure state. In the following

we shall consider the general case. Let (U, ρA) be a conservative implementation with N

qubit ancilla A. Then, its purification (U ′, |A′〉) is a conservative pure implementation with

N + ⌈log2 rankρA⌉ qubit ancilla A′ such that EU,ρA = EU ′,|A′〉. Applying Eq. (94) to EU ′,|A′〉,

we have

max
ρS

D(EU,ρA(ρS), EXS
(ρS)))

≥ 1

2

(

1 − cos
2π

N + log2 rankρA + 4

)

, (95)

and from N + log2 rankρA ≤ 2N , and we conclude

min
(U,ρA)

max
ρS

D(EU,ρA(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
π

N + 2

)

, (96)

where (U, ρA) varies over all the conservative implementations with N qubit ancilla.
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VI. LOWER BOUNDS FOR CLASSICALLY COMPLETE IMPLEMENTATIONS

AND THEIR ATTAINABILITY

In the preceding section, we have shown that a general lower bound for the error

probability in realizing the quantum NOT gate is given by the 1 − cos(1/N) scale for

the ancilla size N , instead of 1/N2 scaling already known for some other gates. Since

2[1− cos(1/N)] = 1/N2 −1/(12N4)+ · · · , the new scale has the same leading order as 1/N2

up to constant, but it is natural to ask if the higher order terms are really meaningful. Here,

we shall answer this question, so that the 1 − cos(1/N) scale is the best result. To show

this, we shall show the attainability of a lower bound with the 1− cos(1/N) scale for classi-

cally complete conservative pure implementations. Thus, a classically complete conservative

implementation exists even with only 2 qubit ancilla, whereas the substantial error occurs

when the input state is a superposition of computational basis states. This result also shows

that the general lower bound for conservative implementations with N qubit ancilla can be

reached by a classically complete conservative pure implementations with 2N qubit ancilla.

A. Classically complete pure implementations

Let (U ′, |A′〉) be a classically complete conservative pure implementation. Then, we have

the following relations

U ′ (|0〉 ⊗ |A′〉) = |1〉 ⊗ |A′0
1〉,

U ′(|1〉 ⊗ |A′〉) = |0〉 ⊗ |A′1
0〉, (97)

where |A′0
1〉 and |A′1

0〉 ∈ HA.

First, we discuss the constraint on the input state |A′〉 of A imposed by the above

relations. To illustrate this, we describe |A′〉 as

|A′〉 =

N
∑

n=0

a′n|φA
′

n 〉, (98)

where |φA′

n 〉 are normalized vectors in the eigenspaces EZA

N−2n for all n = 0, 1, · · · , N , and we

have
∑N

n=0 |a′n|2 = 1. Suppose that the input state of S is |0〉. Recalling that relation (55)

holds by the conservation law, the output state corresponding to the input state |0〉 ⊗ |φA′

0 〉
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can be written as

U ′(|0〉 ⊗ |φA′

0 〉) = eiφ
′ |0〉 ⊗ |φA′

0 〉, (99)

where eiφ
′

is a phase factor. Thus the output state corresponding to the input state |0〉⊗|A′〉
can be expressed as

U ′(|0〉 ⊗ |A′〉)

= a′0e
iφ′ |0〉 ⊗ |φA′

0 〉 +

N
∑

n=1

a′nU
′(|0〉 ⊗ |φA′

n 〉). (100)

Comparing with Eq. (97), a′0 must be zero. Similarly, a′N must be zero, considering the input

state |1〉.
We now describe the output state in S from (U ′, |A′〉) for any pure input state |ψ〉. This

is given by the partial trace of the output state in S + A with respect to A:

EU ′,|A′〉(|ψ〉)

= TrA

[

U ′(|ψ〉 ⊗ |A′〉) (〈ψ| ⊗ 〈A′|)U ′†
]

= |β|2|0〉〈0| + α∗β〈A′0
1

∣

∣A′1
0〉|0〉〈1|+ αβ∗〈A′1

0

∣

∣A′0
1〉|1〉〈0|

+|α|2|1〉〈1|. (101)

Here, we use abbreviation such as E(|ψ〉) := E(|ψ〉〈ψ|) for any operation E . The trace

distance between the ideal quantum NOT operation (38) and EU ′,|A′〉(|ψ〉) is then

D(EXS
(|ψ〉), EU ′,|A′〉(|ψ〉)) = |α∗β| |1 − 〈A′0

1

∣

∣A′1
0〉|. (102)

Thus, the derivation of the lower bound for the gate implementation (U ′, |A′〉) can be reduced

to estimating the maximum value of 〈A′0
1|A′1

0〉, which is very similar to the general analysis

of Sec. IV. However, this case differs from the general analysis in that a0 = aN = 0. Taking

this condition into account, |A′0
1〉 and |A′1

0〉 can be written as

|A′0
1〉 =

N−1
∑

n=1

a′n|(φA
′

n−1)
0
1〉,

|A′1
0〉 =

N−1
∑

n=1

a′n|(φA
′

n+1)
1
0〉, (103)

where |(φA′

n−1)
0
1〉 and |(φA′

n+1)
1
0〉 are normalized vectors in the eigenspaces EZA

N−2(n−1) and

EZA

N−2(n+1), respectively. Thus,

|〈A′0
1|A′1

0〉| ≤
N−3
∑

n=1

|a′n+2||a′n|, (104)

29



and therefore,

min
U ′

max
ρS

D(EU ′,|A′〉(ρS), EXS
(ρS))

≥ 1

2

(

1 −
N−3
∑

n=1

|a′n+2||a′n|
)

. (105)

Since the discussion in Sec. V can be applied to minimizing Eq. (105) over the input states

of A, we see that for even N

min
(U ′,|A′〉)

max
ρS

D(EU ′,|A′〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 2

)

. (106)

This lower bound is slightly larger than the one for the general case; the difference comes

close to zero for large N of the ancilla system. We shall comment on the odd N case later.

B. Attainability of the lower bound for classically complete pure implementations

Next we show that there exists a classically complete implementation (U ′, |A′〉) which

attains the lower bound 1
2
(1 − cos 2π

N+2
). We begin by describing the input state |Ã〉 as

follows. Let |(en)i〉 be fixed orthonormal bases in eigenspace EZA

N−2n as

|(en)1〉, |(en)2〉, · · · , |(en)k〉, · · · , |(en)dn〉, (107)

for n = 0, 1, · · · , N , where dn = N !
n!(N−n)!

. In addition, Ã
†
odd and Ã†

even are two vectors:

Ã
†
odd =

[

ã1, ã3, ã5, · · · , ãN−1

]

,

Ã†
even =

[

ã2, ã4, ã6, · · · , ãN−2

]

. (108)

where Ã
†
odd (resp. Ã†

even) is a N
2

(resp. N
2
− 1) dimensional vector whose entries are indexed

by odd (resp. even) numbers. We assume that these vectors satisfy

Ãodd =
1

CN

2

W(xN

2
,1),

Ãeven = 0, (109)

where CN

2

= [W(xN

2
,1)

†W(xN

2
,1)]

1

2 . It follows that ‖Ãodd‖2 = 1 by normalization. We

assume that the input state |Ã〉 is given by

|Ã〉 =

N−1
∑

n=1

ãn|(en)1〉. (110)
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Recall that W(xN

2
,1) is an eigenvector with the maximum eigenvalue of SN

2

. Then the

coefficients ãn satisfy the following equation:

N−3
∑

n=1

ãn+2 ãn = Ã
†
oddSN

2

Ãodd

=
1

C2
N

2

W(xN

2
,1)

†SN

2

W(xN

2
,1)

= sN

2

= cos
2π

N + 2
. (111)

Constructing the evolution operator Ũ can be accomplished by determining the transfor-

mation for all orthonormal bases. We require that Ũ satisfy the following conditions. For

n = 1, 2, · · · , N ,

Ũ
(

|0〉 ⊗ |(en)1〉
)

= |1〉 ⊗ |(en−1)
1〉,

Ũ
(

|1〉 ⊗ |(en−1)
1〉

)

= |0〉 ⊗ |(en)1〉, (112)

and for all bases except those that appear in Eq. (112),

Ũ
(

|0〉 ⊗ |(en)i〉
)

= |0〉 ⊗ |(en)i〉,

Ũ
(

|1〉 ⊗ |(en)i〉
)

= |1〉 ⊗ |(en)i〉. (113)

These requirements determine one-to-one mapping on the orthonormal basis, {|0〉 ⊗
|(en)i〉, |1〉⊗|(en)i〉}, and hence there uniquely exists a unitary operator Ũ fulfilling the above

requirements. Note also that Ũ satisfies the conservation law (1), since from Eqs. (112) and

(113) we have the relations UEZ
λ ⊂ EZ

λ for all λ, which are equivalent to the conservation

law, as seen in Eq. (53).

We now describe the output state of (Ũ , |Ã〉) and the trace distance between the ideal

output state and that of (Ũ , |Ã〉). The output states for |0〉 and |1〉 can be generally written

as

Ũ(|0〉 ⊗ |Ã〉) = |0〉 ⊗ |Ã0
0〉 + |1〉 ⊗ |Ã0

1〉,

Ũ(|1〉 ⊗ |Ã〉) = |0〉 ⊗ |Ã1
0〉 + |1〉 ⊗ |Ã1

1〉, (114)

respectively, where |Ãij〉 ∈ HA with i, j = 0, 1. On the other hand, by the definitions of Ũ
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and |Ã〉, we have

Ũ(|0〉 ⊗ |Ã〉) = Ũ
(

|0〉 ⊗
N−1
∑

n=1

ãn|(en)1〉
)

= |1〉 ⊗
(

N−1
∑

n=1

ãn|(en−1)
1〉

)

,

Ũ(|1〉 ⊗ |Ã〉) = Ũ
(

|1〉 ⊗
N−1
∑

n=1

ãn|(en)1〉
)

= |0〉 ⊗
(

N−1
∑

n=1

ãn|(en+1)
1〉

)

. (115)

Thus we have the following relations:

|Ã0
0〉 = 0,

|Ã0
1〉 =

N−1
∑

n=1

ãn|(en−1)
1〉,

|Ã1
0〉 =

N−1
∑

n=1

ãn|(en+1)
1〉,

|Ã1
1〉 = 0. (116)

Let EŨ ,|Ã〉(|ψ〉) be the output state of S from (Ũ , |Ã〉). The trace distance between EXS
(|ψ〉)

and EŨ,|Ã〉(|ψ〉) can be expressed in the same way as for Eq. (41) so that we have

D(EŨ,|Ã〉(|ψ〉), EXS
(|ψ〉))

=
{

∣

∣α∗β
(

1 − 〈Ã0
1|Ã1

0〉
)

+ αβ∗〈Ã1
1|Ã0

0〉

−|α|2〈Ã0
1|Ã0

0〉 − |β|2〈Ã1
1|Ã1

0〉
∣

∣

2

+
[ (

−|α|2ǫ̃0 + |β|2ǫ̃1
)

−2Re
(

α∗β〈Ã0
0|Ã1

0〉
)]2

}
1

2

, (117)

where ‖|Ã0
0〉‖2 = ǫ̃0, ‖|Ã1

1〉‖2 = ǫ̃1. However, in this case, ǫ̃0 = ǫ̃1 = 0 from Eq. (116), and

therefore

D(EŨ,|Ã〉(|ψ〉), EXS
(|ψ〉)) =

∣

∣α∗β(1 − 〈Ã0
1|Ã1

0〉)
∣

∣.
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FIG. 2: Distribution of |an| with odd subscripts for N = 100 which gives the lower bound in

Eq. (106). This figure shows 1
CN

2

Wn−1

2

(xN

2
,1) as a function of odd n.

Recall that |(en)1〉 are orthonormal bases. Then, Eq. (111) gives

〈Ã0
1|Ã1

0〉 =

N−1
∑

n,n′=1

ãnãn′〈(en−1)
1|(en′+1)

1〉

=

N−3
∑

n′=1

ãn′+2ãn′

= cos
2π

N + 2
. (118)

Thus,

D(EŨ,|Ã〉(|ψ〉), EXS
(|ψ〉)) =

∣

∣

∣
α∗β

(

1 − cos
2π

N + 2

)
∣

∣

∣
.

Since the right-hand side is maximized where |α∗β| = 1
2
, we have

max
|ψ〉

D(EŨ,|Ã〉(|ψ〉), EXS
(|ψ〉))

=
1

2

(

1 − cos
2π

N + 2

)

. (119)

That is, the model (Ũ , |Ã〉) attains the lower bound in Eq. (106). Notice that our model

(Ũ , |Ã〉) has a distribution of |an|, as given by Eq. (109). Figure 2 describes the distribution

for N = 100. From a qualitative point of view, in order to reduce the lower bound of the

quantum NOT gate, an input state of the ancilla system should be prepared which has a

sufficiently thick distribution in the neighborhood of eigenvalue 0, rather than a constant

distribution, such as that given by Eq. (71).

For odd N , the lower bound can be given by setting the input state and the evolution

operator as those analogous to the case of even N . The bound is 1
2
(1 − cos 2π

N+1
). The

attainability of this bound is also proved by the analogous argument.
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Thus, we have shown that

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

=
1

2

(

1 − cos
2π

N + 2

)

, (120)

if N is even and

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

=
1

2

(

1 − cos
2π

N + 1

)

(121)

if N is odd, where (U, |A〉) varies over all the classical complete pure implementation with

N qubit ancilla.

For arbitrary N , we conclude as a common lower bound

min
(U,|A〉)

max
ρS

D(EU,|A〉(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + 2

)

, (122)

where (U, |A〉) varies over all the classical complete pure implementation with N qubit

ancilla.

We have considered the case where the ancilla state is a pure state. The lower bound

for the general case is obtained by the previously developed purification argument, and we

conclude the following relations. We have

max
ρS

D(EU,ρA(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
2π

N + log2 rankρA + 2

)

, (123)

for any classically complete implementation (U, ρA) with N qubit ancilla, and

min
(U,ρA)

max
ρS

D(EU,ρA(ρS), EXS
(ρS))

≥ 1

2

(

1 − cos
π

N + 1

)

, (124)

where (U, ρA) varies over all the classically complete implementation with N qubit ancilla.
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VII. CONCLUDING REMARKS

In this paper, we have studied the precision limit of the quantum NOT gate or the bit flip

gate, one of the most basic gates in quantum computation, represented on the single-spin

computational qubit by considering the angular momentum conservation law obeyed by the

interaction between the computational qubit and the control system supposed to comprise

many qubits. Actually, we have considered the effect of the angular momentum conservation

law only in the direction same as the computational basis, usually set as the z direction.

Then, the conserved quantity and the computational basis are represented by the Pauli Z

operator, whereas the quantum NOT gate is represented by the Pauli X operator. Thus, it

is expected that this non-commutativity leads to a precision limit of the gate operation.

In the previous method which was used for other gates [12, 19], one finds a way in which

the gate under consideration is used as a component of a measuring apparatus, applies the

quantitative generalization of the Wigner-Araki-Yanase (WAY) theorem to this measuring

apparatus, and obtains the lower bound of error probability. For the Hadamard gate, one

finds that it is used to convert the Z measurement to the X measurement, and that Z

measurement can be done without error under the conservation law of the z component.

Then, one can conclude that the inevitable error of the X measurement, calculated from the

quantitative version of the WAY theorem, is yielded from the converter using the Hadamard

gate. This and similar arguments cannot be applied to the quantum NOT gate, since the

quantum NOT gate does not convert the direction of measurement, but simply flips the

measured bit.

In this paper, we have developed a new method for obtaining the inevitable error probabil-

ity by evaluating the maximum trace distance between the output from the gate realization

and the output from the ideal gate. The previous method naturally leads to a lower bound

for the infidelity (one minus the squared fidelity). Since the infidelity is dominated by the

trace distance, the new method gives a tighter lower bound for the error probability.

The new method is based on a straightforward evaluation of the trace distance of two

output states, and enables us to find the precision limit Eq. (70), explicitly described by

the input state of the ancilla system. It is thus possible to obtain information on how much

an ancilla input has an inherent error probability in itself. The correspondence between the

two methods is not easy to elicit, but it is an interesting problem for future studies that
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would lead to a deeper understanding of precision limits to quantum control systems.

We have also obtained the lower bound (94) expressed by the size of the ancilla system, by

minimizing Eq. (70) over the input states of A, using Chebyshev polynomials of the second

kind. The lower bound is much tighter than the scaling expected from the previous result

based on the WAY theorem. Since the quantitative generalization of the WAY theorem has a

close relation to the universal uncertainty principle for measurement and disturbance [19, 20],

the previous lower bound for pure conservative implementations is based on the variance of

the ancilla state, and scales as 1
4N2+4

≈ 1
4N2 , whereas the new method revealed the lower

bound 1
2
(1 − cos 2π

N+4
) ≈ π2

N2 as a tighter bound. The higer order terms in 1
2
(1 − cos 2π

N+4
)

is considered to be meaningful, since the lower bound 1
2
(1 − cos 2π

N+2
) is attained among

classically complete pure conservative implementations. Interestingly, the attainability result

shows that the best ancilla states to attain the lower bound are not maximum variance states,

nor uniformly distributed states, but those states with the distribution determined by the

recurrence relation characterized by Chebyshev polynomials.

Although our study has assumed that the ancilla system consists of N qubits for com-

parison with the previous research, the present method is not restricted to this particular

control system, and it can be readily applied to other control systems, such as atom-field

systems, where the present method would lead to a lower bound that scales as the inverse

of the photon number [23]. Our method will be also expected to contribute to the problem

of programmable quantum processors [28, 29, 30] and related subjects [31, 32, 33] in future

investigations.
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