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Abstract. In 1981, Takeuti introduced set theory based on quantum
logic by constructing a model analogous to Boolean-valued models for
Boolean logic. He defined the quantum logical truth value for every sen-
tence of set theory. He showed that equality axioms do not hold, while
axioms of ZFC set theory hold if appropriately modified with the notion
of commutators. Here, we consider the problem in Takeuti’s quantum
set theory that De Morgan’s laws do not hold for bounded quantifiers.
We construct a counter-example to De Morgan’s laws for bounded quan-
tifiers in Takeuti’s quantum set theory. We redefine the truth value for
the membership relation and bounded existential quantification to en-
sure that De Morgan’s laws hold. Then, we show that the truth value of
every theorem of ZFC set theory is lower bounded by the commutator
of constants therein as quantum transfer principle.

Keywords: quantum logic, commutators, quantum set theory, De Mor-
gan’s laws, transfer principle

1 Introduction

Since quantum logic is an intrinsic logic governing observational propositions of
quantum mechanics, it is an intriguing problem to develop mathematics based
on quantum logic. In 1981, Takeuti [15] introduced quantum set theory for this
purpose. As a start, he constructed a model of set theory based on quantum logic
represented by the complete orthomodular lattice of projections on a Hilbert
space, which is isomorphic to the lattice of closed subspaces in the Hilbert space.
He defined the truth values for all sentences of set theory on the model assuming
the Sasaki arrow for implication. In order to make quantum counter part of ZFC
axioms, he introduced the notion of commutator in quantum logic, and he showed
that the axioms of ZFC hold in quantum set theory if appropriately modified by
commutators of elements of the model, while equality axioms do not generally
hold in quantum set theory. He showed that the real numbers in the model
correspond to the observables of the system to be described.
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Following Takeuti’s work, we explored the question how theorems of ZFC
hold in quantum set theory [9]. We showed that every theorem of ZFC holds
in quantum set theory with truth value greater than or equal to the commu-
tator of elements of the model appearing therein. This result was extended to
general complete orthomodular lattices and to a general class of operations for
implication in Ref. [12]. Quantum set theory was effectively applied to quantum
mechanics to extend the probabilistic interpretation from observational propo-
sitions to relations between observables [10, 11].

In this paper, we consider the problem in Takeuti’s quantum set theory that
De Morgan’s laws do not hold for bounded quantifiers. Let H be a Hilbert space.
The quantum logic Q on H is represented by the lattice of projections on H,
which is a complete orthomodular lattice, called the quantum logic on H. The
classical definition of implication, P → Q = P⊥ ∨ Q, does not work since the
relation P → Q = 1 and the order relation P ≤ Q are not equivalent, so that the
implication in quantum logic is, according to the majority view [16], defined as
the Sasaki arrow →, a binary operation of Q defined by P → Q = P⊥∨ (P ∧Q).

Takeuti [15], applying the method of Boolean-valued models to quantum logic
Q, constructed the model V (Q) of quantum set theory. He defined the Q-valued
truth value [[φ]] of a sentence φ in the language of set theory.

In particular, the truth values of bounded quantifications are directly defined
as follows.

(1) [[(∀x ∈ u)φ(x)]] =
∧

u′∈dom(u)(u(u
′) → [[φ(u′)]]).

(2) [[(∃x ∈ u)φ(x)]] =
∨

u′∈dom(u)(u(u
′) ∧ [[φ(u′)]]).

Takeuti noted “In Boolean valued universes, [[(∀x ∈ u)φ(x)]] = [[∀x(x ∈ u →
φ(x)]] and [[(∃x ∈ u)φ(x)]] = [[∃x(x ∈ u∧φ(x)]]. But this is not the case for V (Q)”
[15, p. 315]. However, it is problematic that he avoids the classical definition of
implication P → Q = P⊥ ∨Q in the bounded universal quantification, whereas
he still uses the classical definition of conjunction in the bounded existential
quantification. Since the relation P ∧ Q = (P → Q⊥)⊥ does not hold for the
conjunction ∧ and the Sasaki arrow →, so that De Morgan’s laws,

(3) [[¬(∀x ∈ u)φ(x)]] = [[(∃x ∈ u)¬φ(x)]],
(4) [[¬(∃x ∈ u)φ(x)]] = [[(∀x ∈ u)¬φ(x)]],

do not hold. In fact, if Q is not a Boolean algebra, we can construct a predicate
φ(x) such that [[(∃x ∈ u)¬φ(x)]] = 0 but [[¬(∀x ∈ u)φ(x)]] > 0.

In this paper, we introduce a new binary operation ∗ by P ∗Q = (P → Q⊥)⊥

and redefine the truth values of membership relation and bounded existential
quantification as follows.

(5) [[u ∈ v]] =
∨

v′∈dom(v)(v(v
′) ∗ [[v′ = u]]).

(6) [[(∃x ∈ u)φ(x)]] =
∨

u′∈dom(u)(u(u
′) ∗ [[φ(u′)]]).

Then, De Morgan’s laws hold for bounded universal quantification and bounded
existential quantification. Thus, for the language of quantum set theory we can
assume only negation, conjunction, and bounded and unbounded universal quan-
tification as primitive, while disjunction, bounded and unbounded existential
quantification are considered to be introduced by definition.
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The operator ∗ was found by Sasaki [14], and has been studied as the Sasaki
projection in connection with residuation theory, whereas the operation ∗ has
not been used for defining bounded quantifiers in quantum logic. Its intuitive
meaning and significance will be discussed elsewhere.

We consider the commutator ∨(u1, . . . , un) ∈ Q of elements u1, . . . , un of
V (Q) in order to explore how theorems of ZFC hold in the new interpretation
for the model V (Q). Then the following quantum transfer principle holds: If a
∆0-formula φ(x1, . . . , xn) of the language L(∈) of set theory is provable in ZFC,
for every u1, . . . , un ∈ V (Q) we have

[[φ(u1, . . . , un)]] ≥ ∨(u1, . . . , un).

This paper is organized as follows. Section 2 provides preliminaries on quan-
tum logic, commutators, and conditionals. Section 3 introduces the model V (Q)

and its interpretation that satisfies De Morgan’s laws. We also discuss Takeuti’s
interpretation and construct the above mentioned counterexample. Section 4
derives the quantum transfer principle for the new interpretation.

2 Preliminaries

2.1 Quantum logic

Let H be a Hilbert space. For any subset S ⊆ H, we denote by S⊥ the orthogonal
complement of S. Then, S⊥⊥ is the closed linear span of S. Let C(H) be the set
of all closed linear subspaces in H. With the set inclusion ordering, the set C(H)
is a complete lattice. The operation M 7→ M⊥ is an orthocomplementation on
the lattice C(H), with which C(H) is a complete orthomodular lattices [7, p. 65],
i.e., the orthocomplementation satisfies

(C1) if P ≤ Q then Q⊥ ≤ P⊥,
(C2) P⊥⊥ = P ,
(C3) P ∨ P⊥ = 1 and P ∧ P⊥ = 0,

where 0 =
∧
Q and 1 =

∨
Q, and the orthomodular law

(OM) if P ≤ Q then P ∨ (P⊥ ∧Q) = Q.
We refer the reader to Kalmbach [7] for a standard textbook on orthomodular

lattices.
Denote by B(H) the algebra of bounded linear operators on H and Q(H) the

set of projections on H. We define the operator ordering on B(H) by A ≤ B iff
(ψ,Aψ) ≤ (ψ,Bψ) for all ψ ∈ H. For any A ∈ B(H), denote by R(A) ∈ C(H)
the closure of the range of A, i.e., R(A) = (AH)⊥⊥. For any M ∈ C(H), denote
by P(M) ∈ Q(H) the projection of H onto M . Then, RP(M) = M for all
M ∈ C(H) and PR(P ) = P for all P ∈ Q(H), and we have P ≤ Q if and only
if R(P ) ⊆ R(Q) for all P,Q ∈ Q(H), so that Q(H) with the operator ordering
is also a complete orthomodular lattice isomorphic to C(H). We consider Q(H)
as the standard quantum logic of H, or the logic of observational propositions in
quantum mechanics for the system described by H [2, 6]. The lattice operations
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are characterized by P ∧ Q = weak-limn→∞(PQ)n, P⊥ = 1 − P for all P,Q ∈
Q(H).

A non-empty subset of Q(H) is called a subalgebra iff it is closed under ∧, ∨,
and ⊥. A subalgebra A of Q(H) is said to be complete iff it has the supremum
and the infimum in Q(H) of an arbitrary subset of A.

Let A ⊆ B(H). We denote by A′ the commutant of A in B(H), i.e.,

A′ = {A ∈ B(H) | AB = BA for any B ∈ A}.

A self-adjoint subalgebra M of B(H) is called a von Neumann algebra on H
iff M′′ = M. For any self-adjoint subset A ⊆ B(H), A′′ is the von Neumann
algebra generated by A. We denote by P(M) the set of projections in a von
Neumann algebra M.

We say that P and Q in Q(H) commute, in symbols P

(

Q, iff P = (P ∧
Q) ∨ (P ∧ Q⊥). For any P,Q ∈ Q(H), we have P

(

Q iff [P,Q] = 0, where
[P,Q] = PQ−QP .

For any subset A ⊆ Q(H), the commutant A! of A in Q(H) [7, p. 23] is
defined by

A! = {P ∈ Q(H) | P

(

Q for all Q ∈ A}. (1)

Then, A! is a complete subalgebra of Q(H). A sublogic of Q(H) is a subset A
of Q(H) satisfying A = A!!. Any sublogic of Q(H) will be called a logic on H.
For any subset A of a logic Q, the smallest logic including A is A!! called the
logic generated by A. Then, a subset Q ⊆ Q(H) is a logic on H if and only if
Q = P(M) for some von Neumann algebra M on H [9, Proposition 2.1]. A logic
Q on H is a Boolean algebra if and only if P

(

Q for all P,Q ∈ Q [7, pp. 24–25]
The center of a logic Q, denoted by Z(Q), is the set of elements of Q commute

with every element of Q, i.e., Z(Q) = Q!∩Q. Then, it is easy to see that a subset
A is a Boolean sublogic, or equivalently a distributive sublogic, if and only if
A = A!! ⊆ A!. The center of A!! is given by Z(A!!) = A! ∩ A!!.

2.2 Commutators

Marsden [8] introduced the commutator |= (P,Q) of two elements P and Q of
an orthomodular lattice Q by

|= (P,Q) = (P ∧Q) ∨ (P ∧Q⊥) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥). (2)

Bruns and Kalmbach [3] generalized this notion to finite subsets of Q by

|= (F) =
∨

θ:F→{id,⊥}

∧
P∈F

P θ(P ) (3)

for any finite subsets F of Q, where {id,⊥} stands for the set consisting of the
identity operation id and the orthocomplementation ⊥. Generalizing this notion
to arbitrary subsets A of Q(H), Takeuti [15] defined |= (A) by

|= (A) =
∨

{E ∈ A! | P1 ∧ E

(

P2 ∧ E for all P1, P2 ∈ A}, (4)
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for any subset A of Q(H). By Takeuti’s definition it is not clear whether the
commutator |= (A) is determined inside the logic A!! generated by A or not,
unlike the definition of |= (F) for finite subsets F . To resolve this problem, it
was shown in Ref. [10, Theorem 2.5] that |= (A) ∈ A! ∩ A!!, and we obtain the
relation

|= (A) =
∨

{E ∈ A! ∩ A!! | P1 ∧E

(

P2 ∧ E for all P1, P2 ∈ A}, (5)

as an alternative definition for |= (A).
We have the following characterizations of commutators [9, Theorems 2.5,

2.6, Proposition 2.2]: For any A ⊆ Q(H), we have the following relations.

|= (A) = P{ψ ∈ H | [P1, P2]P3ψ = 0 for all P1, P2, P3 ∈ A!!}. (6)

|= (A) = P{ψ ∈ H | [A,B]ψ = 0 for all A,B ∈ A′′}. (7)

We refer the reader to Pulmannová [13] and Chevalier [4] for further results
about commutators in orthomodular lattices.

2.3 Conditionals

In classical logic, the conditional operation → is defined by negation ⊥ and
disjunction ∨ as P → Q = P⊥ ∨ Q. In quantum logic there is well-known
arbitrariness in choosing a binary operation for conditional. Following Hardegree
[5], we define a quantum material conditional on a logic Q as a binary operation
→ on Q definable by an ortholattice polynomial p(x, y) as P → Q = p(P,Q) for
all P,Q ∈ Q satisfying the following “minimum implicative conditions”:

(E) P → Q = 1 if and only if P ≤ Q.
(MP) (modus ponens) P ∧ (P → Q) ≤ Q.
(MT) (modus tollens) Q⊥ ∧ (P → Q) ≤ P⊥.

Hardegree [5] showed that there are exactly three polynomially definable
material conditionals:

(S) (Sasaki conditional) P → SQ := P⊥ ∨ (P ∧Q),
(C) (Contrapositive Sasaki conditional) P → CQ := (P ∨Q)⊥ ∨Q,
(R) (Relevance conditional) P → RQ := (P ∧Q) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥).

Following Takeuti [15] we adopt the Sasaki arrow, the most favorable ac-
cording to the majority view [16], as the conditional → for a logic Q, i.e.,
P → Q = P⊥ ∨ (P ∧Q). The logical equivalence ↔ is defined by

P ↔ Q = (P → Q) ∧ (Q→ P ). (8)

In Boolean logic, implication and conjunction are associated by the relation
P ∧ Q = (P → Q⊥)⊥, and this relation plays an essential role in the duality
between bounded universal quantification (∀x ∈ A)φ(x) and bounded existential
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quantification (∃x ∈ A)φ(x). In order to keep the above duality in quantum set
theory, we introduce the binary operation ∗ dual to → by

P ∗Q = (P → Q⊥)⊥. (9)

We have the following relations

P → Q = (P ∧Q) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥) ∨ (P⊥ ∧ |= (P,Q)⊥). (10)

P ∗Q = (P ∧Q) ∨ (P ∧ |= (P,Q)⊥). (11)

The following proposition is useful in later discussions [9, Proposition 2.4],
[12, Proposition 3.1].

Proposition 1 Let Q be a logic on H. The following hold.
(i) If Pα ∈ Q and Pα

(

Q for all α, then (
∨

α Pα)

(

Q, (
∧

α Pα)

(

Q, and
Q ∧ (

∨
α Pα) =

∨
α(Q ∧ Pα).

(ii) If P1, P2

(

Q, then (P1 → P2) ∧Q = [(P1 ∧Q) → (P2 ∧Q)] ∧Q.
(iii) If P1, P2

(

Q, then (P1 ∗ P2) ∧Q = [(P1 ∧Q) ∗ (P2 ∧Q)] ∧Q.

3 Quantum set theory

We denote by V the universe of the Zermelo-Fraenkel set theory with the axiom
of choice (ZFC). Let L(∈) be the language of first-order theory with equality
augmented by a connective →, a binary relation symbol ∈, bounded quantifier
symbols ∀x ∈ y, ∃x ∈ y, and no constant symbols. For any class U , the language
L(∈, U) is the one obtained by adding a name for each element of U . We take
the symbols ¬, ∧, →, ∀x ∈ y, and ∀x as primitive, and the symbols ∨, ∃x ∈ y,
and ∃x as derived symbols by defining:

(i) φ ∨ ψ = ¬(¬φ ∧ ¬ψ),
(ii) ∃x ∈ y φ(x) = ¬(∀x ∈ y ¬φ(x)),
(iii) ∃xφ(x) = ¬(∀x¬φ(x)).

To each statement φ of L(∈, U), the satisfaction relation 〈U,∈〉 |= φ is defined
by the following recursive rules:

1. 〈U,∈〉 |= u ∈ v iff u ∈ v.
2. 〈U,∈〉 |= u = v iff u = v.
3. 〈U,∈〉 |= ¬φ iff 〈U,∈〉 |= φ does not hold.
4. 〈U,∈〉 |= φ1 ∧ φ2 iff 〈U,∈〉 |= φ1 and 〈U,∈〉 |= φ2.
5. 〈U,∈〉 |= φ1 → φ2 iff if 〈U,∈〉 |= φ1 then 〈U,∈〉 |= φ2.
6. 〈U,∈〉 |= (∀x ∈ u)φ(x) iff 〈U,∈〉 |= φ(u′) for all u′ ∈ u.
7. 〈U,∈〉 |= (∀x)φ(x) iff 〈U,∈〉 |= φ(u) for all u ∈ U .

Our assumption that V satisfies ZFC means that if φ(x1, . . . , xn) is provable
in ZFC, i.e., ZFC ` φ(x1, . . . , xn), then 〈V,∈〉 |= φ(u1, . . . , un) for any formula
φ(x1, . . . , xn) of L(∈) and all u1, . . . , un ∈ V .
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In what follows let Q be a logic on H. For each ordinal α, let

V (Q)
α = {u| u : dom(u) → Q and (∃β < α) dom(u) ⊆ V

(Q)
β }. (12)

The Q-valued universe V (Q) is defined by

V (Q) =
∪

α∈On
V (Q)

α , (13)

where On is the class of all ordinals. For every u ∈ V (Q), the rank of u, denoted
by rank(u), is defined as the least α such that u ∈ V

(Q)
α+1. It is easy to see that if

u ∈ dom(v) then rank(u) < rank(v).
An induction on rank argument leads to the following [1].

Theorem 2 (Induction Principle for V (Q)). For any predicate φ(x),

∀u ∈ V (Q)[∀u′ ∈ dom(u)φ(u′) → φ(u)] → ∀u ∈ V (Q)φ(u)

For any u, v ∈ V (Q), the Q-valued truth values [[u = v]]Q and [[u ∈ v]]Q of
atomic formulas u = v and u ∈ v are assigned by the following rules recursive in
rank.

(iv) [[u = v]]Q =
∧

u′∈dom(u)(u(u
′) → [[u′ ∈ v]]Q) ∧

∧
v′∈dom(v)(v(v

′) → [[v′ ∈
u]]Q).

(v) [[u ∈ v]]Q =
∨

v′∈dom(v)(v(v
′) ∗ [[u = v′]]Q).

To each statement φ of L(∈, V (Q)) we assign the Q-valued truth value [[φ]]Q
by the following rules.

(vi) [[¬φ]]Q = [[φ]]⊥Q.
(vii) [[φ1 ∧ φ2]]Q = [[φ1]]Q ∧ [[φ2]]Q.
(viii) [[φ1 → φ2]]Q = [[φ1]]Q → [[φ2]]Q.
(ix) [[(∀x ∈ u)φ(x)]]Q =

∧
u′∈dom(u)(u(u

′) → [[φ(u′)]]Q).
(x) [[(∀x)φ(x)]]Q =

∧
u∈V (Q) [[φ(u)]]Q.

By the definitions of derived logical symbols, (i)–(iii), we have the following
relations.

(xi) [[φ1 ∨ φ2]]Q = [[φ1]]Q ∨ [[φ2]]Q.
(xii) [[(∃x ∈ u)φ(x)]]Q =

∨
u′∈dom(u)(u(u

′) ∗ [[φ(u′)]]Q).
(xiii) [[(∃x)φ(x)]]Q =

∨
u∈V (Q) [[φ(u)]]Q.
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To see (xii), we have

[[(∃x ∈ u)φ(x)]]Q = [[¬(∀x ∈ u¬φ(x))]]Q

= (
∧

u′∈dom(u)

u(u′) → [[¬φ(u′)]]Q)⊥

= (
∧

u′∈dom(u)

u(u′) → [[φ(u′)]]Q⊥)⊥

=
∨

u′∈dom(u)

(u(u′) → [[φ(u′)]]Q⊥)⊥

=
∨

u′∈dom(u)

(u(u′) ∗ [[φ(u′)]]Q).

Note that according to the above, we have the following relations

(xiv) [[u = v]]Q = [[∀x ∈ u(x ∈ v) ∧ ∀x ∈ v(x ∈ u)]]Q,
(xv) [[u ∈ v]]Q = [[∃x ∈ v(x = u)]]Q.

We also have the following relations satisfying De Morgan’s laws:

(xvi) [[¬(φ1 ∧ φ2)]]Q = [[¬φ1 ∨ ¬φ2]]Q,
(xvii) [[¬(φ1 ∨ φ2)]]Q = [[¬φ1 ∧ ¬φ2]]Q,
(xviii) [[¬(∀x ∈ uφ(x))]]Q = [[∃x ∈ u (¬φ(x))]]Q,
(xix) [[¬(∃x ∈ uφ(x))]]Q = [[∀x ∈ u (¬φ(x))]]Q,
(xx) [[¬(∀xφ(x))]]Q = [[∃x (¬φ(x))]]Q,
(xxi) [[¬(∃xφ(x))]]Q = [[∀x (¬φ(x))]]Q.

A formula in L(∈) is called a ∆0-formula iff it has no unbounded quantifiers
∀x nor ∃x. The following theorem holds.

Theorem 3 (∆0-Absoluteness Principle). For any ∆0-formula
φ(x1, . . ., xn) of L(∈) and u1, . . ., un ∈ V (Q), we have

[[φ(u1, . . . , un)]]Q = [[φ(u1, . . . , un)]]Q(H).

Proof. The assertion is proved by the induction on the complexity of formulas
and the rank of elements of V (Q). Let u, v ∈ V (Q). By induction hypothesis,
for any u′ ∈ dom(u) and v′ ∈ dom(v) we have [[u′ ∈ w]]Q = [[u′ ∈ w]]Q(H),
[[v′ ∈ w]]Q = [[v′ ∈ w]]Q(H), and [[w = v′]]Q = [[w = v′]]Q(H) for all w ∈ V (Q).
Thus,

[[u = v]]Q =
∧

u′∈dom(u)

(u(u′) → [[u′ ∈ v]]Q) ∧
∧

v′∈dom(v)

(v(v′) → [[v′ ∈ u]]Q)

=
∧

u′∈dom(u)

(u(u′) → [[u′ ∈ v]]Q(H)) ∧
∧

v′∈dom(v)

(v(v′) → [[v′ ∈ u]]Q(H))

= [[u = v]]Q(H),
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and we also have

[[u ∈ v]]Q =
∨

v′∈dom(v)

(v(v′) ∗ [[u = v′]]Q)

=
∨

v′∈dom(v)

(v(v′) ∗ [[u = v′]]Q(H))

= [[u ∈ v]]Q(H).

Thus, the assertion holds for atomic formulas. Any induction step adding a
logical symbol works easily, even when bounded quantifiers are concerned, since
the ranges of the supremum and the infimum are common for evaluating [[· · · ]]Q
and [[· · · ]]Q(H).

Henceforth, for any ∆0-formula φ(x1, . . ., xn) and u1, . . . , un ∈ V (Q), we ab-
breviate [[φ(u1, . . . , un)]] = [[φ(u1, . . . , un)]]Q, which is the common Q(H)-valued
truth value for u1, . . . , un ∈ V (Q).

The universe V can be embedded in V (Q) by the following operation ∨ : v 7→
v̌ defined by the ∈-recursion: for each v ∈ V , v̌ = {ǔ| u ∈ v} × {1}. Then we
have the following.

Theorem 4 (∆0-Elementary Equivalence Principle). Let φ(x1, . . ., xn) be
a ∆0-formula of L(∈). For any u1, . . ., un ∈ V , we have

〈V,∈〉 |= φ(u1, . . ., un) if and only if [[φ(ǔ1, . . . , ǔn)]] = 1.

Proof. Let 2 be the sublogic such that 2 = {0, 1}. Then, by induction it is
easy to see that 〈V,∈〉 |= φ(u1, . . ., un) if and only if [[φ(ǔ1, . . . , ǔn)]]2 = 1 for
any φ(x1, . . ., xn) in L(∈), and this is equivalent to [[φ(ǔ1, . . . , ǔn)]] = 1 for any
∆0-formula φ(x1, . . ., xn) by the ∆0-absoluteness principle.

Instead of (v) and (xii), Takeuti [15] defined the truth values of membership
relation and existential quantification as follows.

(v’) [[u ∈ v]] =
∨

v′∈dom(v)(v(v
′) ∧ [[u = v′]]).

(xii’) [[(∃x ∈ u)φ(x)]] =
∨

u′∈dom(u)(u(u
′) ∧ [[φ(u′)]]).

In this case, De Morgan’s laws do not hold in general as follows.
Suppose that Q is not a Boolean algebra. Then, there exists a pair P0, Q0 ∈ Q

such that P0 does not commute with Q0, so that |= (P0, Q0)⊥ > 0. Let E =

|= (P0, Q0)⊥, P = P0 ∧E, and Q = Q0 ∧E. If P = 0 then P0 = P0 ∧ |= (P0, Q0)
so that P0

(

Q0, a contradiction. Thus, P 6= 0. We also have that P ∧ Q =
P0∧Q0∧ |= (P0, Q0)⊥ = 0, so that P ∧Q = 0. Let u = {〈0̌, P 〉} and v = {〈0̌, Q〉}.
Consider the formula φ(x) = ¬(x ∈ v). Then, we can show

[[¬(∀x ∈ u)φ(x)]] > [[(∃x ∈ u)¬φ(x)]] = 0. (14)
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In fact, we have

[[(∃x ∈ u)¬φ(x)]] =
∨

u′∈dom(u)

(u(u′) ∧ [[¬φ(u′)]])

= u(0̌) ∧ [[¬¬(0̌ ∈ v)]]

= u(0̌) ∧ [[0̌ ∈ v]]

= u(0̌) ∧
∨

v′∈dom(v)

(v(v′) ∧ [[0̌ = v′]])

= u(0̌) ∧ (v(0̌) ∧ [[0̌ = 0̌]])

= u(0̌) ∧ v(0̌)
= P ∧Q
= 0.

Similarly we have

[[¬(∀x ∈ u)φ(x)]] = [[(∀x ∈ u)φ(x)]]⊥

= (
∧

u′∈dom(u)

(u(u′) → [[φ(u′)]]))⊥

= (u(0̌) → [[φ(0̌)]])⊥

= u(0̌) ∗ [[φ(0̌)]]⊥

= u(0̌) ∗ [[¬(0̌ ∈ v)]]⊥

= u(0̌) ∗ [[0̌ ∈ v]]

= u(0̌) ∗
∨

v′∈dom(v)

(v(v′) ∧ [[0̌ = v′]])

= u(0̌) ∗ (v(0̌) ∧ [[0̌ = 0̌]])

= u(0̌) ∗ v(0̌)
= P ∗Q
= (P ∧Q) ∨ (P ∧ |= (P,Q)⊥)
= P.

Since P 6= 0, Eq. (14) follows.
Thus, if Q is not a Boolean algebra, there exists a predicate φ(x) such that

[[(∃x ∈ u)¬φ(x)]] = 0 but [[¬(∀x ∈ u)φ(x)]] > 0.

4 Transfer principle

In this section, we investigate the transfer principle that gives any ∆0-formula
provable in ZFC a lower bound for its truth value, which is determined by the
degree of the commutativity of the elements of V (Q) appearing in the formula
as constants. The results in this section was obtained in Ref. [9] for Takeuti’s
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original formulation. Here, we extends the argument in a self-contained man-
ner to the present formulation, in which De Morgan’s laws hold for bounded
quantifiers.

For u ∈ V (Q), we define the support of u, denoted by L(u), by transfinite
recursion on the rank of u by the relation

L(u) =
∪

x∈dom(u)

L(x) ∪ {u(x) | x ∈ dom(u)} ∪ {0}. (15)

For A ⊆ V (Q) we write L(A) =
∪

u∈A L(u) and for u1, . . . , un ∈ V (Q) we write
L(u1, . . . , un) = L({u1, . . . , un}). Then, we obtain the following characterization
of subuniverses of V (Q(H)).

Proposition 5 Let Q be a logic on H and α an ordinal. For any u ∈ V (Q(H)),
we have u ∈ V

(Q)
α if and only if u ∈ V

(Q(H))
α and L(u) ⊆ Q. In particular,

u ∈ V (Q) if and only if u ∈ V (Q(H)) and L(u) ⊆ Q. Moreover, rank(u) is the
least α such that u ∈ V

(Q(H))
α+1 for any u ∈ V (Q).

Proof. Immediate from transfinite induction on α.

Let A ⊆ V (Q). The commutator of A, denoted by ∨(A), is defined by

∨(A) = |= (L(A)). (16)

For any u1, . . . , un ∈ V (Q), we write ∨(u1, . . . , un) = ∨({u1, . . . , un}).
Let u ∈ V (Q) and p ∈ Q. The restriction u|p of u to p is defined by the

following transfinite recursion:

u|p = {〈x|p, u(x) ∧ p〉 | x ∈ dom(u)} ∪ {〈u, 0〉}.

The last term {〈u, 0〉} has no essential role but ensures the well-definedness of
the function u|p : dom(u|p) → Q.

Proposition 6 For any A ⊆ V (Q) and p ∈ Q, we have

L({u|p | u ∈ A}) = L(A) ∧ p. (17)

Proof. By induction, it is easy to see the relation L(u|p) = L(u)∧ p, so that the
assertion follows easily.

Let A ⊆ V (Q). The logic generated by A, denoted by Q(A), is defined by

Q(A) = L(A)!!. (18)

For u1, . . . , un ∈ V (Q), we write Q(u1, . . . , un) = Q({u1, . . . , un}).

Proposition 7 For any ∆0-formula φ(x1, . . . , xn) in L(∈) and u1, · · · , un ∈
V (Q), we have [[φ(u1, . . . , un)]] ∈ Q(u1, . . . , un).
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Proof. Let A = {u1, . . . , un}. Since L(A) ⊆ Q(A), it follows from Proposi-
tion 5 that u1, . . . , un ∈ V (Q(A)). By the ∆0-absoluteness principle, we have
[[φ(u1, . . . , un)]] = [[φ(u1, . . . , un)]]Q(A) ∈ Q(A).

Proposition 8 For any ∆0-formula φ(x1, . . ., xn) in L(∈) and u1, . . ., un ∈
V (Q), if p ∈ L(u1, . . . , un)!, then p

(

[[φ(u1, . . . , un)]] and p
(

[[φ(u1|p, . . . , un|p)]].

Proof. Let u1, . . ., un ∈ V (Q). If p ∈ L(u1, . . . , un)!, then p ∈ Q(u1, . . . , un)!.
From Proposition 7, [[φ(u1, . . . , un)]] ∈ Q(u1, . . . , un), so that p

(

[[φ(u1, . . . , un)]].
From Proposition 6, L(u1|p, . . . , un|p) = L(u1, . . . , un) ∧ p, and hence p ∈
L(u1|p, . . . , un|p)!, so that p

(

[[φ(u1|p, . . . , un|p)]].

We define the binary relation x1 ⊆ x2 by ∀x ∈ x1(x ∈ x2). Then, by definition
for any u, v ∈ V (Q) we have

[[u ⊆ v]] =
∧

u′∈dom(u)

(u(u′) → [[u′ ∈ v]]), (19)

and we have [[u = v]] = [[u ⊆ v]] ∧ [[v ⊆ u]].

Proposition 9 For any u, v ∈ V (Q) and p ∈ L(u, v)!, we have the following
relations.

(i) [[u|p ∈ v|p]] = [[u ∈ v]] ∧ p.
(ii) [[u|p ⊆ v|p]] ∧ p = [[u ⊆ v]] ∧ p.
(iii) [[u|p = v|p]] ∧ p = [[u = v]] ∧ p

Proof. We prove the relations by induction on the ranks of u, v. If rank(u) =
rank(v) = 0, then dom(u) = dom(v) = ∅, so that the relations trivially hold.
Let u, v ∈ V (Q) and p ∈ L(u, v)!. To prove (i), let v′ ∈ dom(v). Then, we
have p

(

v(v′) by the assumption on p. By induction hypothesis, we have also
[[u|p = v′|p]] ∧ p = [[u = v′]] ∧ p. By Proposition 8, we have p

(

[[u = v′]], so that
v(v′), [[u = v′]] ∈ {p}!. From Eq. (11) we have (v(v′) ∧ p) ∗ [[u|p = v′|p]] ≤ p, and
hence we have

(v(v′) ∧ p) ∗ [[u|p = v′|p]] = (v(v′) ∧ p) ∗ ([[u|p = v′|p]] ∧ p)
= (v(v′) ∧ p) ∗ ([[u = v′]] ∧ p)
= (v(v′) ∗ [[u = v′]]) ∧ p.
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Thus, we have

[[u|p ∈ v|p]] =
∨

v′∈dom(v|p)

(v|p(v′) ∗ [[u|p = v′]])

=
∨

v′∈dom(v)

(v|p(v′|p) ∗ [[u|p = v′|p]])

=
∨

v′∈dom(v)

[(v(v′) ∧ p) ∗ [[u|p = v′|p]]]

=
∨

v′∈dom(v)

[(v(v′) ∗ [[u = v′]]) ∧ p]

=

 ∨
v′∈dom(v)

(v(v′) ∗ [[u = v′]])

 ∧ p,

where the last equality follows from Proposition 1 (i). Thus, by definition of
[[u ∈ v]] we obtain the relation [[u|p ∈ v|p]] = [[u ∈ v]]∧p, and relation (i) has been
proved. To prove (ii), let u′ ∈ dom(u). Then, we have [[u′|p ∈ v|p]] = [[u′ ∈ v]]∧ p
by induction hypothesis. Thus, we have

[[u|p ⊆ v|p]] =
∧

u′∈dom(u|p)

(u|p(u′) → [[u′ ∈ v|p]])

=
∧

u′∈dom(u)

(u|p(u′|p) → [[u′|p ∈ v|p]])

=
∧

u′∈dom(u)

[(u(u′) ∧ p) → ([[u′ ∈ v]] ∧ p)].

We have p

(

u(u′) by assumption on p, and p

(

[[u′ ∈ v]] by Proposition 8, so that
p

(

u(u′) → [[u′ ∈ v]] and p

(

(u(u′) ∧ p) → ([[u′ ∈ v]] ∧ p). Thus, by Proposition 1
we have

p ∧ [[u|p ⊆ v|p]] = p ∧
∧

u′∈dom(u)

[(u(u′) ∧ p) → ([[u′ ∈ v]] ∧ p)]

= p ∧
∧

u′∈dom(u)

(u(u′) → [[u′ ∈ v]])

= p ∧ [[u ⊆ v]].

Thus, we have proved relation (ii). Relation (iii) follows easily from relation (ii).

We have the following theorem.

Theorem 10 (∆0-Restriction Principle). For any ∆0-formula φ(x1, . . ., xn)
in L(∈) and u1, . . ., un ∈ V (Q), if p ∈ L(u1, . . . , un)!, then [[φ(u1, . . . , un)]] ∧ p =
[[φ(u1|p, . . . , un|p)]] ∧ p.
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Proof. We shall write u = (u1, . . . , un) and u|p = (u1|p, . . . , un|p). We prove the
assertion by induction on the complexity of φ(x1, . . ., xn). From Proposition 9,
the assertion holds for atomic formulas. Thus, it suffices to consider the following
induction steps: (i) φ ⇒ ¬φ, (ii) φ1, φ2 ⇒ φ1 ∧ φ2 (iii) φ1, φ2 ⇒ φ1 → φ2, (iv)
{φ(x) | x ∈ dom(u)} →

∧
x∈dom(u) φ(x).

(i) If a

(

p, the relation

a⊥ ∧ p = (a ∧ p)⊥ ∧ p (20)

follows easily. Let p ∈ L(u)!. Suppose [[φ(u)]] ∧ p = [[φ(u|p)]] ∧ p. From Eq. (20)
we have

[[φ(u)]]⊥ ∧ p = ([[φ(u)]] ∧ p)⊥ ∧ p
= ([[φ(u|p)]] ∧ p)⊥ ∧ p
= [[φ(u|p)]]⊥ ∧ p,

so that we have
[[¬φ(u)]] ∧ p = [[¬φ(u|p)]] ∧ p.

(ii) Let p ∈ L(u)!. Suppose [[φj(u)]] ∧ p = [[φj(u|p)]] ∧ p for j = 1, 2. Then, it
follows easily from associativity of ∧, we have

[[φ1(u) ∧ φ2(u)]] ∧ p = [[φ1(u|p) ∧ φ2(u|p)]] ∧ p.

(iii) Recall the relation

(a→ b) ∧ p = [(a ∧ p) → (b ∧ p)] ∧ p

for all a, b ∈ {p}! as shown in Proposition 1 (ii). Let p ∈ L(u)!. Suppose [[φj(u)]]∧
p = [[φj(u|p)]]∧p for j = 1, 2. It follows from the above relation and the induction
hypothesis that

[[φ1(u) → φ2(u)]] ∧ p = [([[φ1(u)]] ∧ p) → ([[φ2(u)]] ∧ p)] ∧ p
= [([[φ1(u|p)]] ∧ p) → ([[φ2(u|p)]] ∧ p)] ∧ p
= ([[φ1(u|p)]] → [[φ2(u|p)]]) ∧ p,

so that we have

[[φ1(u) → φ2(u)]] ∧ p = [[φ1(u|p) → φ2(u|p)]] ∧ p.

(iv) Note that the relation

(
∧
α

P1,α → P2,α) ∧Q = (
∧
α

(P1,α ∧Q) → (P2,α ∧Q)) ∧Q

holds if Pj,α

(

Q for j = 1, 2, which follows from Proposition 1 (i) and (ii).
Suppose [[φj(u)]]∧ p = [[φj(u|p)]]∧ p for j = 1, 2 for any u ∈ V (Q) and p ∈ L(u)!.
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Suppose u ∈ V (Q) and p ∈ L(u)!. Let u′ ∈ dom(u). Since L(u′) ⊆ L(u), we have
p ∈ L(u′)!. It follows that

[[φj(u′)]] ∧ p = [[φj(u′|p)]] ∧ p and p

(

[[φ(u′)]], [[φ(u′|p)]]

for all u′ ∈ dom(u). Thus, we have

[[(∀x ∈ u)φ(x)]] ∧ p =

 ∧
u′∈dom(u)

(u(u′) → [[φ(u′)]])

 ∧ p

=
∧

u′∈dom(u)

[(u(u′) → [[φ(u′)]]) ∧ p]

=
∧

u′∈dom(u)

{[(u(u′) ∧ p) → ([[φ(u′)]] ∧ p)] ∧ p}

=
∧

u′∈dom(u|p)

{[u|p(u′) ∧ p→ ([[φ(u′)]] ∧ p)] ∧ p}

=
∧

u′∈dom(u|p)

{[u|p(u′) → ([[φ(u′)]])] ∧ p}

=

 ∧
u′∈dom(u|p)

(u|p(u′) → [[φ(u′)]])

 ∧ p.

It follows that

[[(∀x ∈ u)φ(x)]] ∧ p = [[(∀x ∈ u|p)φ(x)]] ∧ p.

Now, we obtain the following transfer principle for bounded theorems of ZFC
in the new truth-value assignments for membership and existential quantifica-
tions to fully satisfy De Morgan’s laws.

Theorem 11 (∆0-ZFC Transfer Principle). For any ∆0-formula
φ(x1, . . ., xn) of L(∈) and u1, . . ., un ∈ V (Q), if φ(x1, . . ., xn) is provable
in ZFC, then we have

[[φ(u1, . . . , un)]] ≥ ∨(u1, . . . , un). (21)

Proof. Let p = ∨(u1, . . . , un). Then, we have a ∧ p

(

b ∧ p for any a, b ∈
L(u1, . . . , un), and hence there is a Boolean sublogic B such that L(u1, . . . , un)∧
p ⊆ B. From Proposition 6, we have L(u1|p, . . . , un|p) ⊆ B. From Proposition
5, we have u1|p, . . . , un|p ∈ V (B). By the ZFC transfer principle of the Boolean-
valued universe [1, Theorem 1.33], we have [[φ(u1|p, . . . , un|p)]]B = 1. By the
∆0-absoluteness principle, we have [[φ(u1|p, . . . , un|p)]] = 1. From Proposition
10, we have [[φ(u1, . . . , un)]] ∧ p = [[φ(u1|p, . . . , un|p)]] ∧ p = p, and the assertion
follows.
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