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Although “Heisenberg’s uncertainty principle” is represented by a rigorously proven relation about intrinsic

uncertainties in quantum states, Heisenberg’s error–disturbance relation (EDR) has been commonly believed

as another aspect of the principle. Based on the recent development of universally valid reformulations of

Heisenberg’s EDR, we study the error and disturbance of Stern–Gerlach measurements of a spin-1/2 particle. We

determine the range of the possible values of the error and disturbance for arbitrary Stern–Gerlach apparatuses

with the orbital degree prepared in an arbitrary Gaussian state. We show that their error–disturbance region

is close to the theoretical optimal and actually violates Heisenberg’s EDR in a broad range of experimental

parameters. We also show the existence of orbital states in which the error is minimized by the screen at a finite

distance from the magnet, in contrast to the standard assumption.

I. INTRODUCTION

A fundamental feature of quantum measurement is non-

trivial error–disturbance relations (EDRs), first found in 1927

by Heisenberg [1], who, using the famous γ-ray microscope

thought experiment, derived the relation

ε(Q)η(P ) ≥ ~

2
(1)

between the position measurement error, ε(Q), and the mo-

mentum disturbance, η(P ), thereby caused. His formal

derivation of this relation from the well-established relation

σ(Q)σ(P ) ≥ ~

2
(2)

for standard deviations σ(Q) and σ(P ), due to Heisenberg [1]

for the minimum uncertainty wave packets and Kennard [2]

for arbitrary wave functions, needs an additional assumption

on the state change caused by the measurement [3].

Nowdays, the state change caused by a measurement is gen-

erally described by a completely positive (CP) instrument, a

family of CP maps summing to a trace-preserving CP map

[4]. In such a general description of quantum measurements,

Heisenberg’s EDR (1) loses its universal validity, as revealed

in the debate in the 1980s on the sensitivity limit for grav-

itational wave detection derived by Heisenberg’s EDR (1),

but settled questioning the validity of Heisenberg’s EDR [5–

10]. A universally valid error–disturbance relation for arbi-

trary pairs of observables was derived only recently by one

of the authors [11–13], and has recently received considerable

attention. The validity of this relation, as well as a stronger

version of this relation [14–17], were experimentally tested

with neutrons [18–21] and with photons [22–26]. Other ap-

proaches generalizing Heisenberg’s original relation (1) can

be found, for example, in [27–29], apart from the information

theoretical approach [30, 31].

∗ inoue.y.at@gmail.com
† ozawa@is.nagoya-u.ac.jp

Stern–Gerlach measurements [32–34] are among the most

important quantum measurements, and a number of theoreti-

cal analyses have been and are being published by many au-

thors. In his famous textbook, Bohm [35, p. 596] derived the

wave function of a spin-1/2 particle that has passed through

the Stern–Gerlach apparatus. In his argument, he assumed

that the magnetic field points in the same direction everywhere

and varies in strength linearly with the z-coordinate of the po-

sition as

B =





0
0

B0 +B1z



 . (3)

However, as Bohm [35, p. 594] pointed out, such a magnetic

field does not satisfy Maxwell’s equations. Theoretical studies

[36–38] of Stern–Gerlach measurements with the magnetic

field

B =





−B1x
0

B0 +B1z



 (4)

satisfying Maxwell’s equations were performed only recently.

According to these studies, if the magnetic field in the center

of the beam is sufficiently strong, the precession of the spin

component to be measured becomes small, and hence Bohm’s

approximation (3) holds.

Home et al. [39] investigated the error of Stern–Gerlach

measurements with respect to the distinguishability of appa-

ratus states. As an indicator of the operational distinguisha-

bility of apparatus states, they used the error integral, which

is equal to the probability of finding the particle in the spin-

up state on the lower half of the screen. They analyzed the

error integral in the case where the spin state of the particle

just before the measurement is the eigenstate, |↑〉z , of σz cor-

responding to the eigenvalue +1. Nevertheless, the trade-off

between the error and disturbance in Stern–Gerlach measure-

ments has not been studied in the literature, even though the

subject would elucidate the fundamental limitations of mea-

surements in quantum theory, as Heisenberg did with the γ-

ray microscope thought experiment.

In this paper, we determine the range of the possible val-

ues of the error and disturbance for arbitrary Stern–Gerlach
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apparatuses, based on the general theory of the error and dis-

turbance, which has recently been developed to establish uni-

versally valid reformulations of Heisenberg’s uncertainty re-

lation. Throughout this paper, we consider an electrically neu-

tral particle with spin-1/2. Following Bohm [35], we assume

that the magnetic field of a Stern–Gerlach apparatus is repre-

sented by Eq. (3), which is assumed to be sufficiently strong.

The particle is assumed to stay in the magnet from time 0 to

time ∆t. Only the one-dimensional orbital degree of freedom

along the z-axis is considered. The kinetic energy is not ne-

glected. The particle having passed through the magnetic field

is assumed to evolve freely from time ∆t to ∆t+ τ . The ini-

tial state of the spin of the particle is assumed to be arbitrary.

The initial state of the orbital degree of freedom is such that

mean values of the position and momentum are both 0. We

study the error, ε(σz), in measuring σz with a Stern–Gerlach

apparatus and the disturbance, η(σx), caused thereby on σx
for the orbital degree of freedom to be prepared in a Gaussian

pure state [42] in detail. We obtain the EDR

∣

∣

∣

∣

η(σx)
2 − 2

2

∣

∣

∣

∣

≤ exp

[

−erf−1

(

ε(σz)
2 − 2

2

)2
]

, (5)

for Stern–Gerlach measurements, where erf−1 represents the

inverse of the error function erf(x) = 2√
π

∫ x

0
exp(−s2)ds.

We compare the above EDR with Heisenberg’s EDR for spin

measurements

ε(σz)
2η(σz)

2 ≥ 1, (6)

which holds for measurements with statistically independent

error and disturbance [11, 13]. We show that Stern–Gerlach

measurements violate Heisenberg’s EDR in a broad range of

experimental parameters. We also compare it with the EDR

∣

∣

∣

∣

η(σx)
2 − 2

2

∣

∣

∣

∣

≤ 1−
(

ε(σz)
2 − 2

2

)2

, (7)

that holds for improperly directed projective measurements

experimentally tested with neutron spin measurements con-

ducted by Hasegawa and co-workers [18, 19], and the tight

EDR for the range of (ε(σz), η(σx)) values of arbitrary qubit

measurements obtained by Branciard and one of the authors

[14–16] (see Eq. (20) below).

In section II, the general theory of the error and disturbance

is reviewed and Stern–Gerlach measurements are investigated

in the Heisenberg picture in detail. In sections III and IV, the

error and disturbance of Stern–Gerlach measurements are de-

rived. In section V, the EDR for Stern–Gerlach measurements

is derived. In section VI, our research is compared with the

previous research conducted by Home et al. [39]. Section VII

presents the conclusion for this paper.

II. MEASURING PROCESS

For general theory of quantum measurements and their

EDRs, we refer the reader to Appendix A.

A. Spin measurements

We consider measurements for a spin-1/2 particle, S,

and investigate the EDR for the measurements of the z-

component,A = σz , and the disturbance of the x-component,

B = σx, of the spin. We suppose that the measurement is car-

ried out by the interaction between the the system S prepared

in an arbitrary state ρ and the probe P prepared in a fixed vec-

tor state |ξ〉 from time 0 to time t0 and ends up with the sub-

sequent reading of the meter observable M of the probe P.

We assume the meter M has the same spectral with the mea-

sured observable σz . The measuring process, M, determines

the time evolution operator, U , of the composite system of S

plus P. In the Heisenberg picture we have the time evolution

of the observables,

σz(0) = σz ⊗ 1l, σz(t0) = U †σz(0)U,
σx(0) = σx ⊗ 1l, σx(t0) = U †σx(0)U,
M(0) = 1l⊗M, M(t0) = U †M(0)U.

(8)

The POVM Π of the measuring process M is given by

Π(m) = 〈ξ|PM(t0)(m)|ξ〉. (9)

The non-selective operation, T , of the measuring process M

is given by

T (ρ) = TrK[U(ρ⊗ |ξ〉〈ξ|)U †] (10)

for any state ρ of S, where TrK is the partial trace over the

Hilbert space K of the probe P.

The quantum root-mean-square (q-rms) error, ε(σz) =
ε(σz,M, ρ), is defined by

ε(σz) = Tr[(M(t0)− σz(0))
2ρ⊗ |ξ〉〈ξ|]1/2. (11)

The q-rms error ε(σz) has the following properties [17].

(i) Operational definability. The q-rms error ε(σz) is de-

finable by the POVM Π of M with the observable σz
to be measured and the initial state ρ of the measured

system S.

(ii) Correspondence principle. In the case where σz(0) and

M(t0) commute in ρ⊗ |ξ〉〈ξ|, the relation

ε(σz) = εG(µ) (12)

holds for the joint probability distribution µ of σz(0)
and M(t0) in ρ ⊗ |ξ〉〈ξ|, where εG(µ) is the classical

rms error defined by µ.

(iii) Soundness. If M accurately measures σz in ρ then

ε(σz) vanishes, i.e., ε(σz) = 0.

(iv) Completeness. If ε(σz) vanishes then M accurately

measures σz in ρ.

It is known that the completeness property may not hold in the

general case [40], but for any dichotomic measurements such

that A(0)2 =M(t0)
2 = 1l holds for the measured observable

A and the mete observable M as in the case of the present
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investigation, the completeness property holds [17]. Thus,

the q-rms error ε(σz) satisfies all the properties required for

any reliable quantum generalizations of the classical rms er-

ror, i.e., (i) operational definability, (ii) correspondence prin-

ciple, (iii) soundness, and (iv) completeness; see Appendix A

for further discussions.

The quantum root-mean-square (q-rms) disturbance,

η(σx) = ε(σx,M, ρ), is defined by

η(σx) = Tr[(σx(t0)− σx(0))
2ρ⊗ |ξ〉〈ξ|]1/2. (13)

The q-rms disturbance η(σx) has properties analogous to the

q-rms error as follows.

(i) Operational definability. The q-rms disturbance η(σx)
is definable by the non-selective operation T of M with

the observable σx to be disturbed, and the initial state ρ
of the measured system S.

(ii) Correspondence principle. In the case where σx(0) and

σx(t0) commute in ρ⊗ |ξ〉〈ξ|, the relation

η(σx) = εG(µ) (14)

holds for the joint probability distribution µ of σx(0)
and σx(t0) in ρ⊗ |ξ〉〈ξ|.

(iii) Soundness. If M does not disturb σx in ρ then η(σx)
vanishes.

(iv) Completeness. If η(σx) vanishes then M does not dis-

turb σx in ρ.

It is known that the completeness property may not hold in

the general case [41, p. 750], but for any dichotomic observ-

ables such that B2 = 1l to be disturbed as in the case of the

present investigation the completeness property always holds

[17]. Thus, the q-rms disturbance η(σx) satisfies all the prop-

erties required for any reliable quantum generalizations of the

classical rms change of observable B from time 0 to t0, i.e.,

(i) operational definability, (ii) correspondence principle, (iii)

soundness, and (iv) completeness; see Appendix A for further

discussions.

Since σ2
z = σ2

x = 1l and M2 = 1l, from Eq. (A32) in

Appendix A we obtain

ε̂(σz)
2 + η̂(σx)

2 + 2ε̂(σz)η̂(σx)
√

1−D2
σzσx

≥ D2
σzσx

,

(15)

where

Dσzσx = Tr(|√ρσy
√
ρ|), (16)

ε̂(σz) =

√

1−
(

ε(σz)2 − 2

2

)2

, (17)

η̂(σx) =

√

1−
(

η(σx)2 − 2

2

)2

(18)

from the EDR obtained by Branciard [14] for pure states and

extended to mixed states by one of the authors [16].

In the case where

〈σz〉ρ = 〈σx〉ρ = 0, (19)

relation (15) is reduced to the tight relation

(

ε(σz)
2 − 2

)2
+
(

η(σx)
2 − 2

)2 ≤ 4 (20)

as depicted in FIG. 1 (see Eq. (A34) in Appendix A).

η 
(σ

x
)2

ε (σz)
2

 0
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FIG. 1. ε(σz)
2 -η(σx)

2 plot of tight EDR (15) for spin measurements

in the state satisfying Eq. (19).

Lund and Wiseman [21] proposed a measurement model

measuring Pauli σz = |0〉〈0|−|1〉〈1| observable of an abstract

qubit described by the Hilbert space H = C2 with a computa-

tional basis {|0〉, |1〉}. The probe is another qubit prepared in

the state |ξ(θ)〉 = cos θ|0〉+sin θ|1〉 and the meter observable

M is chosen as Pauli σz observable of the probe. The measur-

ing interaction is described by the unitary operator UCNOT on

C2 ⊗ C2 performing the controlled-NOT (CNOT) operation

controlled on the measured qubit. Thus, the measuring pro-

cess is specified as M(θ) = (C2, |ξ(θ)〉, UCNOT, σz). Then,

for the system state |ψ〉 = |σy = +1〉 = (1/
√
2)(|0〉 + i|1〉),

which satisfies condition (19) for ρ = |ψ〉〈ψ|, the measure-

ment error ε(σz) of M(θ) for A = σz and the disturbance

η(σx) of M(θ) for B = σx is given by

ε(σz) = 2| sin θ|, (21)

η(σx) =
√
2| cos θ − sin θ|. (22)

Thus, the error ε(σz) and disturbance η(σx) satisfy the rela-

tion

(ε(σz)
2 − 2)2 + (η(σx)

2 − 2)2 = 4, (23)

and attain the bound for the EDR (15). Experimental realiza-

tions of this EDR for optical polarization measurements were

reported by Rozema et al. [22] and others [23, 25, 26].

In this paper, we consider another type of measurement

model, known as Stern–Gerlach measurements, measuring the

Pauli σz observable of a concrete qubit, the z-component of

the spin of a spin 1/2 particle, and investigate the admissible

region of the error ε(σz) for σz and the disturbance ε(σx) for

σx, obtained from Gaussian orbital states.
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B. Stern–Gerlach measurements

Let us consider a measurement of the spin component of an

electrically neutral spin-1/2 particle with a Stern–Gerlach ap-

paratus. A particle moving along the y-axis passes through an

inhomogeneous magnetic field, and then the orbit is deflected

depending on the spin component of the particle along the di-

rection of the magnetic field. This situation is illustrated in

FIG. 2. To analyze this measurement, we make the following

FIG. 2. Illustration of the experimental setup for a Stern–Gerlach

measurement. The relations between the length and the time interval

are L2 = vy∆t and L3 = vyτ .

assumptions.

(i) The magnetic field points everywhere in the z-axis.

(ii) The strength of the magnetic field increases propor-

tional to the z-coordinate,

Bz = B0 +B1z, (24)

where B0 and B1 are real numbers representing the

value at the origin and the gradient of Bz , respectively.

(iii) The velocity, vy , in the y-direction is large in compar-

ison with the motion in the x–z plane as well as the

length L2 is large in comparison with the separation of

the pole faces. Thus we can treat the times ∆t = L2/vy
and τ = L3/vy as deterministic for our purpose, be-

cause the determination of the spin does not depend in

a sensible way on the precise evaluation of ∆t and τ
[35, pp. 595–596].

To describe the measuring process, M, of a Stern–Gerlach

measurement, the measured system S is taken as the spin de-

gree of freedom described by the two-dimensional state space,

H, with the Pauli operators, σx, σy, σz, describing the x-, y-

and z-components of the spin, respectively, of the spin 1/2

particle. The probe system P is taken as the orbital degree of

freedom in the z-direction described by the Hilbert space, K,

of wave functions with position Z and momentum P satisfy-

ing the canonical commutation relation

[Z, P ] = i~. (25)

The particle enters the magnetic field at time 0, emerges out

of the magnetic field at time ∆t, and freely evolves until

time ∆t + τ at which the particle reaches the screen and

the observer can measure the meter observable, M , that as-

signs +1 or −1 depending on the particle z-coordinate, Z , as

M = f(Z), with function f such that

f(z) =

{

−1 if z ≥ 0,

+1 otherwise.
(26)

Thus, the measuring process starts at time 0, when the system

S is in any input state ρ and the probe P is prepared in the

fixed state |ξ〉, and ends up at time t0 = ∆t + τ . The time

evolution operator, U = U(∆t+ τ), of the composite system

S + P during the measurement is determined by the time-

dependent Hamiltonian,H(t), of the particle given by

H(t)=











µσz ⊗ (B0 +B1Z) +
1

2m
1l⊗ P 2 (0 ≤ t ≤ ∆t),

1

2m
1l⊗ P 2 (∆t ≤ t ≤ ∆t+ τ),

(27)

where µ denotes the magnetic moment of the particle and m
denotes the mass of the particle. By solving the Schrödinger

equation, we obtain the time evolution operator,U(t), ofS+P

for 0 ≤ t ≤ ∆t+ τ by

U(t) =











































exp

{

t

i~

[

µσz ⊗ (B0+B1Z) +
1

2m
1l⊗ P 2

]}

(0 ≤ t ≤ ∆t),

exp

[

t−∆t

2i~m
1l⊗ P 2

]

× exp

{

∆t

i~

[

µσz⊗(B0+B1Z) +
1

2m
1l⊗ P 2

]}

(∆t ≤ t ≤ ∆t+ τ).
(28)

To describe the time evolution of composite system S+P

in the Heisenberg picture, we introduce Heisenberg operators

for 0 ≤ t ≤ ∆t+ τ as

Z(0) = 1l⊗ Z, Z(t) = U(t)†Z(0)U(t), (29)

P (0) = 1l⊗ P, P (t) = U(t)†P (0)U(t), (30)

σj(0) = σj ⊗ 1l, σj(t) = U(t)†σj(0)U(t), (31)

where j = x, y, z. For the relation between the time evolu-

tion operators in the Heisenberg picture and the Schrödinger

picture, we refer the reader to Appendix D.

We also use the matrix representations of Pauli operators as

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

(32)

By solving Heisenberg equations of motion for Z(t), P (t),
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σx(t), σy(t), and σz(t), as shown in Appendix E, we have

Z(∆t+ τ) = Z(0) +
∆t+ τ

m
P (0)

− µB1∆t

m

(

τ +
∆t

2

)

σz(0), (33)

P (∆t+ τ) = P (0)− µB1∆tσz(0), (34)

σx(∆t+ τ) =

(

0 exp iS(∆t)
exp−iS(∆t) 0

)

, (35)

σy(∆t+ τ) =

(

0 −i exp iS(∆t)
i exp−iS(∆t) 0

)

, (36)

σz(∆t+ τ) = σz(0), (37)

where

S(∆t) =
2µ∆t

~

[

B0 +B1

(

Z(0) +
∆t

2m
P (0)

)]

. (38)

III. ERROR

Let us consider the quantum rms error of a Stern–Gerlach

measurement, M, of the z-component, σz(0), of the spin at

time 0 using the meter observable,

M(∆t+ τ) = f(Z(∆t+ τ)), (39)

introduced in Section II. The noise operator, N , of this mea-

surement is given by

N =M(∆t+ τ)− σz(0). (40)

Initial state ρ of the spin S is supposed to be an arbitrary

state with the matrix

ρ =
1

2
(1l + nxσx + nyσy + nzσz) (41)

where nx, ny, nz ∈ R and n2
x+n

2
y+n

2
z ≤ 1, so that the initial

state of the composite system S + P is given by ρ ⊗ |ξ〉 〈ξ| ,
where |ξ〉 is a fixed but arbitrary wave function describing the

initial state of the orbital degree of freedom, P. Then, the

error, namely, the quantum rms error, of this measurement of

σz is given by

ε(σz) =
√

〈N2〉ρ⊗|ξ〉〈ξ|, (42)

where we abbreviate Tr[Aρ] as 〈A〉ρ for observable A and

density operator ρ. We will give an explicit formula for ε(σz),
which eventually show that the error depends only on the pa-

rameter nz in Eq. (41).

Let

Ut = exp

[

t

2i~m
P 2

]

, (43)

Ũt = 1lS ⊗ Ut, (44)

g0 =
µB1∆t

m

(

τ +
∆t

2

)

. (45)

From Eq. (33), we have

Z(∆t+ τ)

= Ũ †
∆t+τ

(

Z − g0 0
0 Z + g0

)

Ũ∆t+τ . (46)

Thus, we have

N = f(Z(∆t+ τ)) − σz(0)

= 2Ũ †
∆t+τ

(

−χ+(Z − g0) 0
0 χ−(Z + g0)

)

Ũ∆t+τ ,

(47)

where

χ+(z) =

{

1 if z ≥ 0,

0 otherwise,
(48)

χ−(z) = 1− χ+(z), (49)

f(z) = 1− 2χ+(z). (50)

It follows that

N2 = 4Ũ †
∆t+τ

(

χ+(Z − g0) 0
0 χ−(Z + g0)

)

Ũ∆t+τ .

(51)

Therefore, we have

ε(σz)
2 = 〈N2〉ρ⊗|ξ〉〈ξ|

=
〈

ξ|TrS[N
2ρ]|ξ

〉

= 2(1 + nz)〈ξ|U †
∆t+τχ+(Z − g0)U

†
∆t+τ |ξ〉

+ 2(1− nz)〈ξ|U †
∆t+τχ−(Z − g0)U

†
∆t+τ |ξ〉.

(52)

Consequently, we have

ε(σz)
2 = 2(1 + nz)

∫ ∞

g0

|U∆t+τξ(z)|2dz

+ 2(1− nz)

∫ −g0

−∞
|U∆t+τξ(z)|2dz.

(53)

IV. DISTURBANCE

Let us consider the quantum rms disturbance, η(σx), for

the x-component of the spin in Stern–Gerlach measurements.

The disturbance operator, σx, is given by

D = σx(∆t+ τ)− σx(0). (54)

From Eq. (35),

D =

(

0 exp iS(∆t)− 1
exp−iS(∆t)− 1 0

)

. (55)
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Consequently, we have

D2 = 1l⊗ (2− 2 cosS(∆t)) . (56)

Thus, we have

η(σx)
2

= 2−2

〈

cos

{

2µ∆t

~

[

B0 +B1

(

Z +
∆t

2m
P

)]}〉

ξ

. (57)

V. ERROR AND DISTURBANCE FOR GAUSSIAN STATES

Let us consider the error and disturbance in Stern–Gerlach

measurements under the condition that the orbital state of the

particle is in the family G of Gaussian states given by

G =



















ξλ ∈ L
2(R)

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξλ(z) = A exp[−λz2],
∫ ∞

−∞
|ξλ(z)|2dz = 1,

λ ∈ C,Re (λ) > 0



















. (58)

This family of states consists of all Gaussian pure states [42],

whose mean values of the position and momentum are both 0.

For simplicity, it is assumed that the spin state of the particle is

in the eigenstate of the spin component, σy . It is easy to min-

imize the error of the measurement with respect to the mean

values of the position and momentum. In particular, G is the

family of optimal states for the measurement among the Gaus-

sian pure states if the spin state of the particle is the eigenstate

of σy . We remark that the equality in the Schrödinger inequal-

ity (see Eq. (B1) in Appendix B 1) holds for any state ξ in G,

i.e.,

〈Z2〉ξ〈P 2〉ξ −
1

4
〈{Z, P}〉2ξ =

~2

4
. (59)

Here, we use the abbreviation 〈A〉ξ = 〈ξ|A|ξ〉. The converse

also holds, that is, any state ξ satisfying 〈P 〉ξ = 〈Z〉ξ = 0
and Eq. (59) belongs to G.

Let us consider the range of the error and disturbance of

Stern–Gerlach measurements. Let

V (ψ, t) =

〈

(

Z +
t

m
P

)2
〉

ψ

(60)

for any orbital state ψ. For disturbance η(σx), from Eq. (57),

η(σx)
2

= 2− 2

〈

cos

[

2µ∆t

~
(B0 +B1Z)

]〉

U∆t/2ξλ

= 2− 2
√

2πV (ξλ,∆t/2)

×
∫ ∞

−∞
exp

(

− z2

2V (ξλ,∆t/2)

)

cos

[

2µ∆t

~
(B0 +B1z)

]

dz

= 2− 2 exp

(

−2µ2B2
1∆t

2

~2
V (ξλ,∆t/2)

)

cos
2µ∆tB0

~
.

(61)

From the above formula, the disturbance is determined by

V (ξλ,∆t/2) and the parameters of the magnet if the or-

bital state is in G. Now, for a fixed constant, v, let us find

the error for state ξλ in G and time interval ∆t satisfying

V (ξλ,∆t/2) = v. In the following, we fix the time interval,

∆t.
From Eq. (53), we have

ε(σz)
2 = 4

∫ ∞

g0

|U∆t+τξλ(z)|2 dz

=
4√
π

∫ ∞

g0/
√

2V (ξλ,∆t+τ)

exp(−w2)dw. (62)

Here, we use the relation nz = 0, which is obtained from

the assumption that the mean value of the z-component of the

spin of the particle is 0. Equation (62) shows that the error

is minimized by maximizing the lower limit of the integration

g0/
√

2V (ξλ,∆t+ τ). First, we fix state ξλ and focus on time

interval τ . Let Wξλ(τ) = g0/
√

2V (ξλ,∆t+ τ). From now

on, we suppose B1 ≤ 0. As shown in Appendix F, if

m 〈{Z, P}〉ξλ +
〈

P 2
〉

ξλ
∆t < 0 (63)

holds, then Wξλ(τ) assumes maximum value

Wξλ(τ0) =

√

2V (ξλ,∆t/2)µB1∆t

~
(64)

at

τ =τ0

=−
4m2

〈

Z2
〉

ξλ
+ 3m 〈{Z, P}〉ξλ ∆t+ 2

〈

P 2
〉

ξλ
∆t2

2
(

m 〈{Z, P}〉ξλ + 〈P 2〉ξλ ∆t
) .

(65)

On the other hand, if condition (63) does not hold, the supre-

mum of Wξλ(τ) is given by

sup
τ≥0

Wξλ(τ) = lim
τ→∞

Wξλ(τ) =
µB1∆t√

2

〈

P 2
〉−1/2

ξλ
. (66)

Now, let us consider the maximization of Wξλ(τ) with re-

spect to state ξλ. For any pair of orbital states, ψ and φ, in

G satisfying V (ψ,∆t/2) = v and V (φ,∆t/2) = v, respec-

tively, if ψ satisfies condition (63), then

Wψ(τ0) ≥ lim
τ→∞

Wφ(τ) (67)

holds, since Wψ(τ0)/ limτ→∞Wφ(τ) ≥ 1 by the Kennard

inequality (2). Therefore, we obtain the supremum ofWξλ(τ)
with respect to state ξλ and time interval τ as

sup
Re(λ)>0,τ≥0

Wξλ(τ) =

√
2vµB1∆t

~
. (68)

See Appendix F for the detailed derivation.

Although the above argument is for finding the range of

the error and disturbance that Stern–Gerlach measurements



7

can assume, it contains one more important assertion. That

is, the calculation suggests that the error of Stern–Gerlach

measurements is minimized by placing the screen at a finite

distance from the magnet under the condition represented by

(63), in contrast to the conventional assumption that the er-

ror is minimized by placing the screen at infinity. If a state

in G satisfies condition (63), then the correlation term [7],
〈{

Z − 〈Z〉ξλ , P − 〈P 〉ξλ
}〉

ξλ
, is negative, and this leads to

a narrowing of the standard deviation of the position of the

particle during the free evolution (see Appendix B 4). Such a

class of states is introduced by Yuen [7] and they are known

as contractive states.

Let us return to the problem of finding the range of the val-

ues of the error and disturbance that Stern–Gerlach measure-

ments can assume. Now, setting W0 =
√
2vµB1∆t/~, the

disturbance and the infimum of the error under the condition

that V (λ,∆t/2) = v for fixed ∆t and v are

η(σx)
2 = 2− 2 exp

(

−W 2
0

)

cos
2µ∆tB0

~
, (69)

inf
λ,T

ε(σz)
2 =

4√
π

∫ ∞

W0

exp(−w2)dw, (70)

respectively. By varying the parameter of the magnet, B0, we

obtain the range of the disturbance as

2− 2 exp
(

−W 2
0

)

≤ η(σx)
2 ≤ 2 + 2 exp

(

−W 2
0

)

. (71)

We obtain the range of the disturbance and the infimum of the

error of Stern–Gerlach measurements for each constant, v. By

varying v, we obtain the range of the error and disturbance as

the inequalities

∣

∣

∣

∣

η(σx)
2 − 2

2

∣

∣

∣

∣

≤ exp

{

−
[

erf−1

(

ε(σz)
2 − 2

2

)]2
}

, (72)

0 ≤ ε(σz)
2 ≤ 2, (73)

where erf−1 represents the inverse of the error function

erf(x) = (2/
√
π)
∫ x

0 exp(−s2)ds. The square of the error

varies from 0 to 2 since W0 is positive.

We now remove the constraint B1 ≤ 0. For B1 ≥ 0, simi-

larly to the above discussion, we have

∣

∣

∣

∣

η(σx)
2 − 2

2

∣

∣

∣

∣

≤ exp

{

−
[

erf−1

(

ε(σz)
2 − 2

2

)]2
}

, (74)

2 ≤ ε(σz)
2 ≤ 4. (75)

Therefore we have

∣

∣

∣

∣

η(σx)
2 − 2

2

∣

∣

∣

∣

≤ exp

{

−
[

erf−1

(

ε(σz)
2 − 2

2

)]2
}

. (76)

The plot of this region is shown in FIG. 3.
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FIG. 3. (a) Range of the error and disturbance for Stern–Gerlach measurements. Blue region: the region (76) that Stern–Gerlach measurements

can achieve. Red dotted line: the boundary of the Branciard–Ozawa tight EDR (20). Green dashed line: the boundary of Heisenberg’s EDR

(6). Black dotdash line: the theoretical boundary (7) of the EDR of the experiment conducted by Hasegawa and co-workers [18, 19]. The

error–disturbance region of Stern-Gerlach measurements is close to the theoretical optimal given by the Branciard–Ozawa tight EDR (20), and

actually violates Heisenberg’s EDR (6) in a broad range of experimental parameters. (b) The enlarged plot for the part [0, 2]× [0, 2].
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For comparison, the figure shows the plot of the boundary

of the Branciard-Ozawa tight EDR (20) for general spin mea-

surement. From this plot, we conclude that the range of the

error and disturbance for Stern–Gerlach measurements con-

sidered in this paper is close to the theoretical optimal given

by the Branciard–Ozawa tight EDR (20). Here, the range of

the error and disturbance for Stern–Gerlach measurements is

also compared with Heisenberg’s EDR (6) (green line) and

the EDR (7) for the neutron experiment [18, 19] (black line).

We conclude that Stern-Gerlach measurements actually vio-

late Heisenberg’s EDR (6) in a broad range of experimental

parameters.

Roughly speaking, the parameter v represents the spread of

the wave packet of the particle in the Stern–Gerlach magnet.

The reason why v appears in the formula of the disturbance

is that the particle in the Stern–Gerlach magnet is exposed to

the inhomogeneous magnetic field and its spin is precessed in

an uncontrollable way. This uncontrollable precession occurs

because the position of the particle is uncertain while the mag-

netic field is inhomogeneous and hence depends on the posi-

tion. The disturbance of the spin along the x-axis is caused by

this uncontrollable precession around z-axis. This is why v
appears in the formula of the disturbance. On the other hand,

the error in our Stern–Gerlach setup comes from the non-zero

dispersion of the z-component of the particle position when

the particle has reached the screen. The smaller the disper-

sion of the particle position when the particle has reached the

screen, the greater the dispersion of the z-component of the

particle position in the Stern–Gerlach magnet. This is why v
appears in the formula of the error.

VI. COMPARISON WITH “ASPECTS OF NONIDEAL

STERN–GERLACH EXPERIMENT AND TESTABLE

RAMIFICATIONS”

Home et al. [39] discussed the same error of Stern–Gerlach

measurements as our paper does for similar conditions. There-

fore, their paper is among the papers preceding ours. We con-

sider in what sense their paper is related to ours, and we com-

pare its results with ours. They derived the wave function of

a particle in the Stern–Gerlach apparatus under the following

conditions.

(i) The magnetic field is oriented along the z-axis every-

where, and the gradient of the z-component of the mag-

netic field is non-zero only in the z-direction.

(ii) The initial orbital state is a Gaussian state whose mean

values of the position and momentum, and the corre-

lation term of the particle in the wave function are all

zero.

(iii) Unlike Bohm’s discussion [35], the kinetic energy of

the particle in the magnetic field is not neglected.

Based on their argument, they discussed the distinguishabil-

ity of the value of the measured observable by observing the

probe system directly in Stern–Gerlach measurements. To

consider this problem, they introduced the two indices,

I :=

∣

∣

∣

∣

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗
+(x, τ)ψ−(x, τ)dx

∣

∣

∣

∣

, (77)

E(t) :=

∫ 0

−∞

∫ ∞

−∞

∫ ∞

−∞
|ψ+(x, t)|2 dxdydz, (78)

where ψ± are the wave functions of the particle in the

Schrödinger picture whose spin z-components are ±1/2, re-

spectively. The origin of time is taken to be the moment when

the particle enters the Stern–Gerlach magnet. τ is the time

at which the particle emerges from the Stern–Gerlach magnet

(τ corresponds to ∆t in our notation), and t is any time af-

ter emerging from the Stern–Gerlach magnet (t corresponds

to ∆t + τ in our notation). Namely, they adopted the inner

product, I , of the two wave functions with different spin di-

rections, and the probability,E(t), of finding the particle with

the spin z-components of +1/2 and −1/2 within the lower

and upper half planes, respectively, at time t. They concluded

that I always vanishes wheneverE(t) vanishes, but that E(t)
does not necessarily vanish even when I vanishes.

We discuss the relation between their paper and ours. The

relation between the quantities E(t) and ε(σz) is

ε(σz)
2 = 4E(t). (79)

This relation, model-dependent though, bridges the two ap-

proaches and will enforce a theoretical background for our

definition of a sound and complete quantum generalization of

the classical root-mean-square error [17].

We compare their research with ours as follows.

(i) Their set up and approximation are the same as ours and

they used the same Hamiltonian as in our research.

(ii) In both papers, the orbital state of the particle is as-

sumed to be the pure state where the mean values of its

position and momentum are zero. We assume that the

correlation term of a Gaussian pure state is not neces-

sarily zero, whereas they assumed that the orbital state

is a Gaussian pure state with no correlation.

(iii) We evaluate the tradeoff between the error and distur-

bance, whereas they compared the error with the in-

ner product, I , of the emerging wave functions express-

ing formal distinguishability. In addition, we obtain the

range of the error and disturbance under the condition

that the orbital state is a Gaussian pure state whose cor-

relation term is not necessarily zero.

VII. CONCLUSION

Stern–Gerlach measurements, originally performed by Ger-

lach and Stern in 1922 [32–34], have been discussed for long

as a typical model or a paradigm of quantum measurement

[35]. As Heisenberg’s uncertainty principle suggests, Stern–

Gerlach measurements of one spin component inevitably dis-

turb its orthogonal component, and Heisenberg’s EDR (6) has
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been commonly believed as its precise quantitative expres-

sion. However, general quantitative relations between error

and disturbance in arbitrary quantum measurements was ex-

tensively investigated in the last two decades and universally

valid EDRs were obtained to reform Heisenberg’s original

EDR (see e.g., [11, 14, 17, 18, 28] and references therein).

Here, we investigated the EDR for this familiar class of

measurements in the light of the general theory leading to

the universally valid EDR relations. We have determined

the range of the possible values of the error and disturbance

achievable by arbitrary Stern–Gerlach apparatuses, assuming

that the orbital state is a Gaussian state. Our result is depicted

in Fig. 3 and the boundary of the error–disturbance region

is given in Eq. (76) as a closed formula. The result shows

that the error–disturbance region of Stern–Gerlach measure-

ments occupies a near-optimal subregion of the universally

valid error–disturbance region for arbitrary measurements. It

can be witnessed that one of the earliest methods of quantum

measurement violates Heisenberg’s EDR (6) in a broad range

of experimental parameters. Furthermore, we found a class of

initial orbital states in which the error can be minimized arbi-

trarily small at the screen in a finite distance from the magnet

in contrast to the conventional assumption that the error de-

creases aymptotically.

The relation for the general class of states beyond Gaussian

states is left to the future study. In addition, we also leave

it to the future research to analyze more realistic models; for

example, a model described by the magnetic field satisfying

Maxwell’s equations [37, 38] or a model considering the de-

coherence of the particle during the measuring process [43].

Our results will contribute to answer the question as to how

various experimental parameters can be controlled to achieve

the ultimate limit. We expect that the present study will pro-

voke further experimental studies.
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Appendix A: Error and disturbance in quantum measurements

In this section, we review the general theory of error and

disturbance in quantum measurements developed in [13, 17].

1. Classical root-mean-square error

Let us consider the classical case first. Recall the root-

mean-square (rms) error introduced by Gauss [44]. Consider

a measurement of the value x of a quantity, X , by actually

observing the value y of a meter quantity, Y . Then the er-

ror of this measurement is given by y − x. If these quantities

obey a joint probability distribution, µ(x, y), then the rms er-

ror, εG(µ), is defined as

εG(µ) =

(

∑

x,y

(y − x)2 µ(x, y)

)1/2

. (A1)

2. Quantum measuring processes

We consider a quantum system, S, described by a finite di-

mensional Hilbert space, H. We assume that every measuring

apparatus for the system S has its own output variable, x. The

statistical properties of the apparatus, A(x), having the output

variable x are determined by (i) the probability distribution,

Pr{x = m‖ρ}, of x for the input state ρ, and (ii) the output

state, ρ{x=m}, given the outcome x = m.

A measuring process of the apparatus A(x) measuring S

is specified by a quadruple, M = (K, |ξ〉, U,M), consisting

of a Hilbert space, K, describing the probe system P, a state

vector, |ξ〉, in K describing the initial state of P, a unitary op-

erator, U , on H⊗K describing the time evolution of the com-

posite system S+P during the measuring interaction, and an

observable, M , called the meter observable, of P describing

the meter of the apparatus.

The instrument of the measuring process M is defined as a

completely positive map valued function, I, given by

I(m)ρ = TrK[(1l⊗ PM (m))U(ρ⊗ |ξ〉〈ξ|)U †] (A2)

for any state ρ and real number m. The statistical properties

of the apparatus A(x) are determined by the instrument I of

M as

Pr{x = m‖ρ} = Tr[I(m)ρ], (A3)

ρ{x=m} =
I(m)ρ

Tr[I(m)ρ]
. (A4)

The non-selective operation T of M is defined by

T =
∑

m∈R

I(m). (A5)

Then, we have

T (ρ) = TrK[U(ρ⊗ |ξ〉〈ξ|)U †]. (A6)

See [4, 10, 13] for the detailed descriptions on measuring

processes and instruments.

3. Heisenberg picture

In the measuring process M, we suppose that the measur-

ing interaction is turned on from time t = 0 to time t = t0.

Then, the outcome x = m of the apparatus A(x) described

by the measuring process M is defined as the outcome m of

the meter measurement at time t = t0. To describe the time
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evolution of the composite system S + P in the Heisenberg

picture, let

A(0) = A⊗ 1l, A(t0) = U †A(0)U,
B(0) = B ⊗ 1l, B(t0) = U †B(0)U,
M(0) = 1l⊗M, M(t0) = U †M(0)U,

(A7)

where A, B are observables of S.

Then, the POVM Π of M is defined as

Π(m) = 〈ξ|PM(t0)(m)|ξ〉, (A8)

and satisfies

Pr{x = m‖ρ} = Tr[Π(m)ρ]. (A9)

The n-th moment operator of Π for n = 1, . . . , n is defined

by

Π̂(n) = 〈ξ |M(t0)
n| ξ〉 . (A10)

The dual non-selective operation T ∗ of M is defined by

T ∗(B) = 〈ξ|B(t0)|ξ〉 (A11)

for any observableB of S and satisfies

Tr[(T ∗(B))ρ] = Tr[B(T (ρ))] (A12)

for any observableB and state ρ.

4. Measurement of observables

If the observables A(0) and M(t0) commute in the initial

state ρ⊗ |ξ〉〈ξ|, that is,

[PA(0)(a), PM(t0)(m)](ρ⊗ |ξ〉〈ξ|) = 0 (A13)

for all a,m ∈ R, then their joint probability distribution,

µ(a,m), is defined as

µ(a,m) = Tr[PA(0)(a)PM(t0)(m) (ρ⊗ |ξ〉〈ξ|)] (A14)

and satisfies

Tr[f(A(0),M(t0))(ρ⊗ |ξ〉〈ξ|)] =
∑

a,m

f(a,m)µ(a,m)

(A15)

for any polynomial f(A(0),M(t0)) of A(0) and M(t0).
We say that the measuring process M accurately measures

the observable A in a state ρ if A(0) and M(t0) are perfectly

correlated in the state ρ ⊗ |ξ〉〈ξ| [17, 41, 45]; namely, one of

the following two equivalent conditions holds:

(S) A(0) and M(t0) commute in ρ ⊗ |ξ〉〈ξ| and their joint

probability distribution µ satisfies
∑

a,m:a=m

µ(a,m) = 1. (A16)

(W) For any a,m ∈ R with a 6= m,

Tr
[

Π(m)PA(a) ρ
]

= 0. (A17)

Note that ν(a,m) := Tr
[

Π(m)PA(a) ρ
]

, called the weak

joint distribution of A(0) and M(t0), always exists and

is operationally accessible by weak measurement and post-

selection [21, 46], but possibly takes negative or complex val-

ues. Since ν(a,m) is operationally accessible, our definition

of accurate measurements is operationally accessible.

5. Quantum root-mean-square error

The noise operator N(A,M) of the measuring process M

for measuring A is defined as

N(A,M) =M(t0)−A(0). (A18)

The (noise-operator based) quantum root-mean-square (q-

rms) error εNO(A,M, ρ) for measuring A in ρ by M is de-

fined as the root-mean-square of the noise operator, i.e.,

εNO(A,M, ρ) = Tr[N(A,M)2(ρ⊗ |ξ〉〈ξ|)]1/2. (A19)

To argue the reliability of the error measure εNO defined

above, we consider the following requirements for any re-

liable error measures ε generalizing the classical root mean

square error εG to quantify the mean error ε(A,M, ρ) of the

measurement of an observable A in a state ρ described by a

measuring process M [17].

(i) Operational definability. The error measure ε should

be definable by the POVM Π of the measuring process

M with the observableA to be measured and the initial

state ρ of the measured system S.

(ii) Correspondence principle. In the case where A(0) and

M(t0) commute in ρ⊗ |ξ〉〈ξ|, the relation

ε(A,M, ρ) = εG(µ) (A20)

holds for the joint probability distribution µ ofA(0) and

M(t0) in ρ⊗ |ξ〉〈ξ|.

(iii) Soundness. If M accurately measures A in ρ then ε
vanishes, i.e., ε(A,M, ρ) = 0.

(iv) Completeness. If ε vanishes then M accurately mea-

sures A in ρ.

It is shown in [17] that the noise-operator-based q-rms error

ε = εNO satisfies requirements (i)–(iii), so that it is a sound

generalization of the classical rms error. However, as pointed

out by Busch, Heinonen, and Lahti [40], ε = εNO may not sat-

isfy the completeness requirement (iv) in general. To improve

this point, in Ref. [17] a modification of the noise-operator

based q-rms error εNO is introduced to satisfy all the require-

ments (i)–(iv) as follows. The locally uniform q-rms error ε
is defined by

ε(A,M, ρ) = sup
t∈R

εNO(A,M, e−itAρeitA). (A21)

Then, ε = ε satisfies all the requirements (i)–(iv) including

completeness. In addition to (i)–(iv), the new error measure ε
has the following two properties:

(v) Dominating property. The error measure ε dominates

εNO, i.e., εNO(A,M, ρ) ≤ ε(A,M, ρ).

(vi) Conservation property for dichotomic measurements.

The error measure ε coincides with εNO for dichotomic

measurements, i.e., ε(A,M, ρ) = εNO(A,M, ρ) if

A(0)2 =M(t0)
2 = 1l.
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By property (v) the new error measure ε maintains the pre-

viously obtained universally valid EDRs [11, 14, 16]. In this

paper, we consider the measurement of a spin component σz
of a spin-1/2 particle using a dichotomic meter observableM ,

i.e., M2 = 1l, so that by property (vi) of ε, we conclude that

the noise-operator-based q-rms error εNO satisfies all the re-

quirements (i)–(iv) for our measurements under consideration

without modifying it to be ε.
As shown in Eq. (47), in our model of the Stern-Gerlach

measurement, the Heisenberg observables A(0) and M(t0)
commute , so that the error measure satisfying (i) and (ii) are

uniquely determined as the (noise-operator) based q-rms error.

Busch, Lahti, and Werner [28] criticized the use of the

noise-operator based q-rms error, by comparing it with the

error measure based on the Wasserstein 2-distance, another

error measure defined as the Wasserstein 2-distance between

the probability distributions of A(0) and M(t0). As shown

in Ref. [17] the error measure based on the Wasserstein 2-

distance, or based on any distance between he probability dis-

tributions ofA(0) andM(t0), satisfies (i) and (iii) but does not

satisfy (ii) nor (iv), so that the discrepancies between those

two measures do not leads to the conclusion that the noise-

operator based q-rms error is less reliable than the error mea-

sured based on the Wasserstein 2-distance or based on any dis-

tance between probability distributions of ofA(0) andM(t0).
In what follows, we shall write ε(A) = εNO(A) for brevity,

where no confusion may occur.

6. Disturbance of observables

We say that the measuring process M does not disturb the

observableB in a state ρ if B(0) and B(t0) are perfectly cor-

related in the state ρ⊗ |ξ〉〈ξ| [41, 45, 47]; namely, one of the

following two equivalent conditions holds:

(S) B(0) and B(t0) commute in ρ ⊗ |ξ〉〈ξ| and their joint

probability distribution µ satisfies

∑

b,b′:b=b′

µ(b, b′) = 1. (A22)

(W) For any b, b′ ∈ R with b 6= b′,

Tr
[

PB(t0)(b′)PB(0)(b)ρ⊗ |ξ〉〈ξ|
]

= 0. (A23)

Note that the left-hand side of Eq. (A23) is called the weak

joint distribution of B(0) and B(t0) and always exists pos-

sibly taking negative or complex values. The weak joint dis-

tribution is operationally accessible by weak measurement of

B(0) and post-selection for B(t0) [21, 46]. Thus, our defini-

tion of non-disturbing measurement is operationally accessi-

ble.

7. Quantum root-mean-square disturbance

For any observable B of the system S, the disturbance op-

erator D(B,M) for the measuring process M causing on the

observable B is defined as the change of the observable B
during the measurement, i.e.,

D(B,M) = B(t0)− B(0). (A24)

Similarly to the q-rms error, the q-rms disturbance

η(B,M, ρ) of B in ρ caused by M is defined as the rms of

the disturbance operator, i.e.,

η(B,M) = Tr[D(B,M)2(ρ⊗ |ξ〉〈ξ|)]1/2. (A25)

The q-rms disturbance η has properties analogous to the

(noise-operator-based) q-rms error as follows.

(i) Operational definability. The q-rms disturbance η is de-

finable by the non-selective operation T of the measur-

ing process M, the observable B to be disturbed, and

the initial state ρ of the measured system S.

(ii) Correspondence principle. In the case where B(0) and

B(t0) commute in ρ⊗ |ξ〉〈ξ|, the relation

η(B,M, ρ) = εG(µ) (A26)

holds for the joint probability distributionµ ofB(0) and

B(t0) in ρ⊗ |ξ〉〈ξ|.

(iii) Soundness. If M does not disturb B in ρ then η van-

ishes.

(iv) Completeness for dichotomic observables. In the case

where B2 = 1l, if η vanishes then M does not disturb

B in ρ.

Korzekwa, Jennings, and Rudolph [48] criticized the use

of the operator-based q-rms disturbance relying on their def-

inition of non-disturbing measurements. They define non-

disturbing measurements in a system state ρ as measurements

satisfying that B(0) and B(t0) have the identical probabil-

ity distributions for the initial state ρ ⊗ |ξ〉〈ξ|. They claimed

that the operator-based q-rms disturbance does not satisfy

the soundness requirement based on their definition of non-

disturbing measurements. However, the conflict can be eas-

ily reconciled, since their definition of non-disturbing mea-

surement is not strong enough, i.e., they call a measurement

non-disturbing even when the disturbance is operationally de-

tectable. In fact, they supposed that the projective measure-

ment of A = σz of a spin 1/2 particle in the state |σz = +1〉
does not disturb the observable B = σx. However, this mea-

surement really disturbs the observable B = σx. In fact, we

have

〈ψ, ξ|PB(t0)(b′)PB(0)(b)|ψ, ξ〉
= |〈σz = +1|σx = b′〉|2|〈σz = +1|σx = b〉|2.

Thus, B(0) and B(t0) have the same probability distribution,

i.e.,

〈ψ, ξ|PB(t0)(b)|ψ, ξ〉 = 〈ψ, ξ|PB(0)(b)|ψ, ξ〉, (A27)
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but the weak joint distribution operationally detects the distur-

bance on B, i.e.,

〈ψ, ξ|PB(t0)(−1)PB(0)(+1)|ψ, ξ〉 = 1/4. (A28)

In this case, we have η(B,M, ρ) =
√
2 6= 0 [49, p. S680].

However, this does not mean that η does not satisfy the

soundness requirement, since M disturbs B in ρ according

to Eq. (A28).

8. Universally valid error–disturbance relations

In the following, we abbreviate ε(A,M, ρ) as ε(A) and

η(B,M, ρ) as η(B) where no confusion may occur.

In 2003, one of the authors [11] derived the relation

ε(A)η(B)+ ε(A)σ(B)+σ(A)η(B) ≥ 1

2
|Tr([A,B]ρ)|

(A29)

holding for any pair of observables A,B, state |ψ〉, and mea-

suring process M. Later, Brancirard [14] and one of the au-

thors [16] obtained a stronger EDR given by

ε(A)2σ(B)2 + σ(A)2η(B)2

+2ε(A)η(B)
√

σ(A)2σ(B)2 −D2
AB ≥ D2

AB, (A30)

where

DAB =
1

2
Tr(|√ρ[A,B]

√
ρ|). (A31)

In the case where A2 = B2 = 1l and M2 = 1l, the above

relation can be strengthened as [14, 16]

ε̂(A)2 + η̂(B)2 + 2ε̂(A)η̂(B)
√

1−D2
AB ≥ D2

AB, (A32)

where ε̂(A) = ǫ(A)
√

1− ǫ(A)2

4 and η̂(B) =

η(B)
√

1− η(B)2

4 . In the case where

A = σz, B = σx, 〈σz(0)〉ρ = 〈σx(0)〉ρ = 0, (A33)

the above inequality (A32) is reduced to the tight relation [14,

16]

(

ε(σz)
2 − 2

)2
+
(

η(σx)
2 − 2

)2 ≤ 4 (A34)

as depicted in FIG 1.

Appendix B: Gaussian wave packets

In this appendix, we review relations between Gaussian

states and inequalities. Let Z and P be the canonical po-

sition and momentum observables, respectively, of a one-

dimensional quantum system. These observables satisfy the

usual canonical commutation relation, [Z, P ] = i~. Here, we

only consider a vector state denoted by ψ. However, some of

the results in this appendix can easily be generalized to mixed

states.

1. Schrödinger inequality

For the variances of the position and momentum, the fol-

lowing inequality holds [50]:

Varψ(Z)Varψ(P ) ≥
(〈{Z, P}〉ψ − 2〈Z〉ψ〈P 〉ψ)2 + ~2

4
.

(B1)

Inequality (B1) is known as the Schrödiner inequality. The

proof proceeds as follows. First, we consider the case 〈Z〉ψ =
〈P 〉ψ = 0. Then, we have

Im 〈Zψ, Pψ〉 = 1

2i
〈[Z, P ]〉ψ = ~/2 (B2)

Re 〈Zψ, Pψ〉 = 1

2
〈{Z, P}〉ψ. (B3)

Consequently, we have

|〈Zψ, Pψ〉|2 =
(〈{Z, P}〉ψ)2 + ~2

4
. (B4)

On the other hand, according to the Cauchy–Schwarz inequal-

ity,

|〈Zψ, Pψ〉|2 ≤ 〈Z2〉ψ〈P 2〉ψ = Varψ(Z)Varψ(P ). (B5)

Hence, the Schrödinger inequality (B1) holds if 〈Z〉ψ =
〈P 〉ψ = 0 holds. We can obtain the proof for the general

case by substituting Z and P into Z − 〈Z〉ψ and P − 〈P 〉ψ,

respectively. This concludes the proof.

The equation in this inequality holds if and only if

(Z − 〈Z〉ψ)ψ = c (P − 〈P 〉ψ)ψ (B6)

for some complex number c. From the condition above, we

obtain the differential equation for the wave function as

d

dz
ψ(z) = −2k

[

z −
(

〈Z〉ψ +
i

2~k
〈P 〉ψ

)]

ψ(z), (B7)

where k is a complex number. Therefore, we have

ψ(z) = A exp

(

−k
[

z −
(

〈Z〉ψ +
i

2~k
〈P 〉ψ

)]2
)

, (B8)

where A is a constant. Since the wave function should be

normalizable, constant k must satisfy Re k > 0.

2. Kennard inequality

The inequality, which is known as the Kennard inequality

[2],

Varψ(Z)Varψ(P ) ≥ ~
2/4, (B9)

can be derived from the Schrödinger inequality (B1). The

equality in Eq. (B9) holds if and only if 2i~k (Z − 〈Z〉ψ)ψ =
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(P − 〈P 〉ψ)ψ for some positive real number k. A wave func-

tion ψ satisfies the equality in the Kennard inequality (B9) if

and only if ψ has the form

ψ(z) = A exp

(

−k
[

z −
(

〈Z〉ψ +
i

2~k
〈P 〉ψ

)]2
)

(B10)

for some positive real number k. This wave function has the

same form as that of Eq. (B8) except for the condition of

the constant k. i.e., the constant k in Eq. (B8) is a complex

number with a positive real part whereas the constant k in

Eq. (B10) is a positive real number. The state in Eq.(B10) is

known as the minimal uncertainty state.

3. Squeezed state

For any two complex numbers, µ and ν, satisfying |µ|2 −
|ν|2 = 1, squeezed operator cµ,ν is defined as

cµ,ν := µa+ νa†, (B11)

where a and a† are the annihilation and creation operators,

respectively.

a :=

√

mω

2~
Z + i

√

1

2~mω
P. (B12)

Here, m and ω are the mass and angular frequency of the cor-

responding harmonic oscillator, respectively. A coherent state

[51] is defined as the eigenstate of the annihilation operator,

a, in Eq. (B12). A squeezed state [52] is defined as the eigen-

state of squeezed operator cµ,ν ,

cµ,νψ = λψ. (B13)

By this definition, the wave function of every squeezed state

satisfies the differential equation,

[

(µ+ ν)

√

mω

2~
z + (µ− ν)

√

~

2mω

d

dz

]

ψ(z) = λψ(z).

(B14)

The solution of this differential equation is

ψ(z) := A exp



−mω
2~

µ+ ν

µ− ν

(

z −
√

2~

mω

λ

µ− ν

)2


 .

(B15)

Hence, the equality in the Schrödinger inequality (B1) holds

for squeezed states.

Next, let us consider the relation between these parameters

and the mean values of the position and momentum. By com-

paring the two formulas, (B8) and (B15), we have

〈Z〉ψ +
i

mω

µ− ν

µ+ ν
〈P 〉ψ =

√

2~

mω

λ

µ− ν
. (B16)

Taking the imaginary part, we have

〈P 〉ψ =
√
2~mω|µ+ ν|2Im

(

λ

µ− ν

)

, (B17)

〈Z〉ψ =

√

2~

mω
Re

(

(µ+ ν)(µ∗ − ν∗)

µ− ν
λ

)

. (B18)

Next, let us calculate the variances of the position and momen-

tum and the correlation 〈{Z, P}〉ψ. Setting z̃ = z−〈Z〉ψ, we

have

Var(Z)

= |A|2
∫ ∞

−∞
z̃2 exp

(

−mω
~

× Re

[

µ−ν
µ+ν

(

µ+ν

µ−ν z̃+
i

mω
〈P 〉ψ

)2
])

dz̃

=
~

2mω
|µ− ν|2. (B19)

To calculate the variance of the momentum, it is convenient

to obtain the Fourier transform of the wave function, ψ̃(z̃) :=
ψ(z̃ + 〈Z〉ψ),

ψ̂(p) =
1√
2π~

∫ ∞

−∞
ψ̃(z̃) exp(ipz̃/~)dz̃

= Â exp

[

− 1

2~mω

µ− ν

µ+ ν
(p− 〈P 〉ψ)2

]

, (B20)

where Â is the normalization constant. Consequently, we have

Var(P ) = 〈(P − 〈P 〉ψ)2〉ψ

= |A|2
∫ ∞

−∞
p̃2 exp

[

− 1

~mω
Re

(

µ− ν

µ− ν

)

p̃2
]

dp̃

=
~mω

2
|µ+ ν|2. (B21)

Finally, we calculate the correlation term,

〈{Z − 〈Z〉ψ , P − 〈P 〉ψ}〉ψ
= 〈{Z − 〈Z〉ψ, P}〉ψ
= 2Re 〈Z̃ψ, Pψ〉

= 2Re

(

|A|2imω

×
∫ ∞

−∞

µ+ ν

µ− ν
z̃2exp

[

−mω
~

Re

(

µ+ ν

µ− ν
z̃2
)]

dz̃

)

= 2~Im (µ∗ν). (B22)

The coherent state is defined as the eigenstate of the annihi-

lation operator. Using the results of the calculation above, the

corresponding wave function is

ψ(z) = A exp



−mω
2~

(

z −
√

2~

mω
λ

)2


 , (B23)
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where λ is the corresponding eigenvalue of the annihilation

operator. Thus, every coherent state satisfies the equation in

the Schrödinger inequality (B1) and the Kennard inequality

(B9).

Since
µ+ ν

µ− ν
moves all over the right half-plane of the com-

plex plane as µ and ν move all over the complex plane satisfy-

ing |µ|2−|µ|2 = 1, the union of all squeezed states and coher-

ent states coincides with the states that satisfy the Schrödinger

inequality (B1), namely, G.

4. Contractive state

The contractive state is introduced by Yuen [7] as a

squeezed state whose correlation term is negative. This state

contracts during some period of time if it evolves freely. To

see this, let us calculate the variance of the position in the

Heisenberg picture. The position operator Z(t) at time t in

the Heisenberg picture is

Z(t) = exp

[

− t

2i~m
P (t)2

]

Z(0) exp

[

t

2i~m
P (t)2

]

= Z(0) +
t

m
P (0). (B24)

Hence, we have

Varψ (Z(t))

=

〈

(

Z(0) +
t

m
P (0)− 〈Z(0) + t

m
P (0)〉ψ

)2
〉

ψ

=
t2

m2
Varψ (P (0)) + Varψ (P (0))

+
t

m
〈{Z(0)− 〈Z(0)〉ψ, P (0)− 〈P (0)〉ψ}〉ψ . (B25)

Therefore, if the state is a contractive state, the variance of

the position contracts until the time

t = −m〈{Z(0)− 〈Z(0)〉ψ, P (0)− 〈P (0)〉ψ}〉ψ
2〈P (0)2〉ψ

. (B26)

5. Covariance matrix formalism

Recently, the covariace matrix is used in order to character-

ize Gaussian states [53]. For a single-mode Gaussian state,

ψ(z) = A exp

(

−k
[

z −
(

〈Z〉ψ +
i

2~k
〈P 〉ψ

)]2
)

,

(B27)

the covariance matrix, V , is defined as

V =

(

Varψ (Z) Corψ(Z, P )
Corψ(Z, P ) Varψ (P )

)

=

(

(4Re(k))
−1 −~Im(k)

Re(k)

−~Im(k)
Re(k)

~
2|k|2

Re(k)

)

. (B28)

Here, we used the abbreviation,

Corψ(Z, P ) = 〈{Z − 〈Z〉ψ, P − 〈P 〉ψ}〉ψ. (B29)

6. Summary

We have discussed the relation between the inequalities and

the subclasses of Gaussian states whose wave functions are of

the form

ψ(z) = A exp

(

−k
[

z − (〈Z〉ψ +
i

2~k
〈P 〉ψ)

]2
)

(B30)

and obtained the relations shown in Table. I. FIG. 4 repre-

sents the inclusion relation between the subsets of the set of

Gaussian wave packets.

TABLE I. Classification of Gaussian states in terms of parameter k.

k Name of state
inequality whose

equality holds

Rek > 0 Squeezed Schrödinger

Re k > 0 and

Im k > 0
Contractive Schrödinger

Re k > 0 and

Im k = 0
Minimal uncertainty Kennard

k = ~ Coherent Kennard

FIG. 4. Inclusion relation of the subsets of wave functions. A wave

function is in the yellow region if and only if the equality in the Ken-

nard inequality holds. A wave function is in the blue or yellow region

if and only if the equality in the Schrödinger inequality holds.

Appendix C: Time evolution of Gaussian wave packets

In this appendix, we discuss the time evolution of the proba-

bility density of a Gaussian wave packet during free evolution.
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The wave function under consideration is the Gaussian wave

packet derived in the previous section,

ψ(z) := A exp
[

−kz2
]

, (C1)

where k is a complex number with a positive real part. For

simplicity, we consider only the case in which the mean values

of the position and momentum are zero. applying the Fourier

transform F successively, we obtain

exp

(

t

2i~m
P 2

)

ψ(z)

= F−1 exp

(

t

2i~m
p2
)

Â exp

(

− p2

4k~2

)

=
Â√
2π~

∫ ∞

−∞
exp

[(

t

2i~m
− 1

k~2

)

p2 − ipz/~

]

dp

= N exp

[

− z2
(

k−1 − 2~t
im

)

]

, (C2)

where N is the normalization constant. Thus, the probability

density, Pr(z), at time t has the form

Pr(z) = |N |2 exp
(

−rz2
)

(C3)

for some positive real number r. That is, we have again ob-

tained a Gaussian distribution. Since the variance of the Gaus-

sian distribution is

〈

Z(t)2
〉

ψ
=

〈

(

Z(0) +
t

m
P (0)

)2
〉

ψ

, (C4)

we have

Pr(z) = |N |2 exp
(

− z2

2〈
(

Z(0) + t
mP (0)

)2〉ψ

)

. (C5)

Appendix D: Relationship between the Heisenberg picture and

the Schrödinger picture

Let us consider the relation between the Heisenberg picture

and the Schrödinger picture. Consider the time evolution of

quantum system S described by H. Let A be an observable of

system S and state ψ. Denote by E(A,ψ, t) the expectation

value of the outcome of the measurement of observable A at

time t, provided that system S is in state ψ at time 0. In the

Schrödinger picture, state ψ(t) evolves in time t as a solution

of the Schrödinger equation by the time evolution operator,

U(t), as ψ(t) = U(t)ψ with the initial condition, U(0) = 1l,
so that E(A,ψ, t) = 〈ψ(t), Aψ(t)〉 holds. The unitary opera-

tor US(t2, t1) describing the time evolution from time t = t1
to t = t2 (t1 ≤ t2) in the Schrödinger picture is defined by

US(t2, t1) = U(t2)U
†(t1). (D1)

Then, we have

US(t2, t1)ψ(t1) = ψ(t2), (D2)

US(t3, t2)U
S(t2, t1) = US(t3, t1). (D3)

In the Heisenberg picture, observable A(t) evolves in time

t by the time evolution operator U(t) as A(t) = U(t)†AU(t),
so that E(A,ψ, t) = 〈ψ,A(t)ψ〉 holds. The unitary operator,

UH(t2, t1), describing the time evolution from time t = t1 to

t = t2 (t1 ≤ t2) in the Heisenberg picture is defined by

UH(t2, t1) = U †(t1)U(t2). (D4)

Then, we have

UH(t2, t1)
†A(t1)U

H(t2, t1) = A(t2), (D5)

αH(t3, t2)α
H(t2, t1) = αH(t3, t1), (D6)

where

αH(t2, t1)A = UH(t2, t1)
†AUH(t2, t1). (D7)

We have the following relations between the Schrödinger

picture and the Heisenberg picture.

U(t) = US(t, 0) = UH(t, 0). (D8)

UH(t2, t1) = U(t1)
†US(t2, t1)U(t1). (D9)

Let f(A1, . . . , An, t, s) be a function of observables

A1, . . . , An and real numbers t, s. If

US(t2, t1) = f(A1, . . . , An, t1, t2), (D10)

then

UH(t2, t1) = f(A1(t1), . . . , An(t1), t1, t2). (D11)

Appendix E: Solutions of Heisenberg equations of motion for

Z(t), P (t), σx(t), σy(t), and σz(t)

To consider the time evolution from time t = ∆t to time

∆t + τ , suppose ∆t ≤ t ≤ ∆t + τ . By the Heisenberg

equation of motion, position operator Z(t) satisfies

d

dt
Z(t) =

1

i~
[Z(t),

1

2m
P (t)2] =

1

m
P (t). (E1)

Thus, we have

Z(t) = Z(∆t) +
1

m

∫ t

∆t

P (t′)dt′. (E2)

In contrast, P (t) does not change since [P (t), H(t)] = 0.

Consequently, we have

Z(t) = Z(∆t) +
t−∆t

m
P (∆t), (E3)

P (t) = P (∆t). (E4)

Since σz(t) and σx(t) commute with H(t), we have

σz(t) = σz(∆t), σx(t) = σx(∆t). (E5)

To describe the observables at time t = ∆t in terms of the

observables at time t = 0, suppose 0 ≤ t ≤ ∆t. With the

Heisenberg equations of motion, we obtain

d

dt
Z(t) =

1

i~
[Z(t), H(t)] =

1

m
P (t), (E6)
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and

Z(∆t) = Z(0) +
1

m

∫ ∆t

0

P (t)dt. (E7)

On the other hand, we have

d

dt
P (t) =

1

i~
[P (t), H(t)] = −µB1σz(t). (E8)

Now, σz(t) commutes with Hamiltonian H(t). Hence, we

have

σz(t) = σz(0). (E9)

Consequently, we have

P (t) = P (0)− µB1tσz(0), (E10)

Z(t) = Z(0) +
t

m
P (0)− µB1t

2

2m
σz(0). (E11)

Therefore, we have

Z(∆t+ τ) = Z(0) +
∆t+ τ

m
P (0)

− µB1∆t

m

(

τ +
∆t

2

)

σz(0), (E12)

P (∆t+ τ) = P (0)− µB1∆tσz(0), (E13)

σz(∆t+ τ) = σz(0). (E14)

Next, we calculate the x- and y-components of the spin of

the particle at time t = ∆t+ τ . Since HamiltonianH(t) from

time t = ∆t to time ∆t + τ commutes with σx(t) and σy(t),
we have

σx(t) = σx(∆t), (E15)

σy(t) = σy(∆t) (E16)

if ∆t ≤ t ≤ ∆t + τ , and it suffices to calculate σx(∆t) and

σy(∆t).
Suppose 0 ≤ t ≤ ∆t. By the Heisenberg equations of

motion, we have

d

dt
σx(t) =

1

i~
[σx(t), H(t)]

=
1

i~

[

σx(t),
P (t)2

2m
+ µ (B0 +B1Z(t))σz(t)

]

=
µ

i~
(B0 +B1Z(t)) (−2iσy(t))

= −2µ

~
(B0 +B1Z(t)) σy(t). (E17)

Similarly, we have

d

dt
σy(t) =

1

i~
[σy(t), H(t)]

=
1

i~

[

σy(t),
P (t)2

2m
+ µ (B0 +B1Z(t)) σz(t)

]

=
µ

i~
(B0 +B1Z(t)) (2iσx(t))

=
2µ

~
(B0 +B1Z(t))σx(t). (E18)

Now, let us introduce σ+ and σ− by

σ+(t) =
1√
2
(σx(t) + iσy(t)) , (E19)

σ−(t) =
1√
2
(σx(t)− iσy(t)) . (E20)

From Eqs. (E17) and (E18), we have

d

dt
σ±(t) = ±2µi

~

[

B0 +B1

(

U †(t)Z(0)U(t)
)]

σ±(t).

(E21)

Let

γ±(t) = U(t)σ±(t) = exp

[

H(0)

i~
t

]

σ±(t). (E22)

The left-hand side (LHS) and right-hand side (RHS) of Eq.

(E21) satisfy

LHS =
d

dt
U(−t)γ±(t)

= −H(0)

i~
U(−t)γ±(t) + U(−t) d

dt
γ±(t), (E23)

RHS = ±2µi

~
U †(t) (B0 +B1Z(0))U(t)U †(t)γ±(t)

= ±2µi

~
U(−t) (B0 +B1Z(0)) γ±(t). (E24)

Hence, we have

d

dt
γ±(t) =

[

H(0)

i~
± 2µi

~
(B0 +B1Z(0))

]

γ±(t). (E25)

The solution of the above differential equation is given by

γ±(t) = exp

{

it

~
[−H(0)± 2µ (B0 +B1Z(0))]

}

γ±(0).

(E26)

Since γ±(0) = σ±(0), we have

σ±(t) = exp

(

it

~
H(0)

)

× exp

{

it

~
[−H(0)± 2µ (B0 +B1Z(0))]

}

σ±(0). (E27)

Using the Baker-Campbell-Hausdorff formula [54] we have

expA expB = exp
[

(A+B) +
1

2
[A,B]

+
1

12
([[A,B] , B]− [[A,B] , A]) + · · ·

]

. (E28)

Hence, for

A =
it

~
H(0), (E29)

B =
it

~
[−H(0)± 2µ (B0 +B1Z(0))] , (E30)
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we have

[A,B] =

[

it

~
H(0),

it

~
(−H(0)± 2µ (B0 +B1Z(0)))

]

= − t2

~2

[

1

2m
P (0)2,±2µ (B0 +B1Z(0))

]

= ±2iµB1t
2

m~
P (0), (E31)

[[A,B], A] =

[

±2iµB1t
2

m~
P (0),

it

~
H(0)

]

= ∓2µB1t
3

m~2
[P (0), µ (B0 +B1Z(0))σz(0)]

= ±2iµ2B2
1t

3

m~
σz(0), (E32)

[[A,B], B]

=

[

±2iµB1t
2

m~
P (0),

it

~
[−H(0)± 2µ (B0 +B1Z(0))]

]

= ∓2iµ2B2
1t

3

m~
σz(0)

∓ 2µB1t
3

m~2
[P (0),±2µ (B0 +B1Z(0))σz(0)]

=
2iµ2B2

1t
3

m~
(2∓ σz(0)) . (E33)

The commutators of the higher orders “· · · ” in Eq. (E28) are 0
since the third commutators, [[A,B], A] and [[A,B], B], com-

mute with A and B, respectively.

Let

R(t) =
µ2B2

1t
3

3m~
, (E34)

S(t) =
2µt

~

[

B0 +B1

(

Z +
t

2m
P

)]

. (E35)

We have

σ±(t) = exp i ([R(t)± S(t)]1l∓R(t)σz(0))σ±(0). (E36)

Since

σ+(0) =
1√
2
(σz(0) + iσy(0)) =

(

0
√
2

0 0

)

, (E37)

σ−(0) =
1√
2
(σz(0)− iσy(0)) =

(

0 0√
2 0

)

, (E38)

we have

σ+(t)

=

(

exp iS(t) 0

0 exp i(S(t) + 2R(t))

)(

0
√
2

0 0

)

= exp iS(t)σ+(0), (E39)

σ−(t)

=

(

exp i(−S(t) + 2R(t)) 0

0 exp−iS(t)

)(

0 0√
2 0

)

= exp−iS(t)σ−(0). (E40)

Therefore, σx(t) and σy(t) from time t = 0 to time t = ∆t
are

σx(t) =
1√
2
(σ+(t) + σ−(t))

=

(

0 exp iS(t)

exp−iS(t) 0

)

, (E41)

σy(t) = − i√
2
(σ+(t)− σ−(t))

=

(

0 −i exp iS(t)
i exp−iS(t) 0

)

. (E42)

Appendix F: Supremum of the function Wλ(t)

Let us consider the supremum of the function in section V,

Wξλ(τ) = α

(

τ+
∆t

2

)

[

a+b(∆t+τ)+c(∆t+τ)2
]−1/2

.

(F1)

Here we put α =
µB1∆t√

2m
, a =

〈

Z2
〉

, b =
〈{Z, P}〉

m
, and

c =

〈

P 2
〉

m2
. The derivative of function Wξλ(τ) is

d

dτ
Wλ(τ)

=
α

4

[

a+ b(∆t+ τ) + c(∆t+ τ)2
]−3/2

× [2(b+ c∆t)(∆t+ τ) + 4a+ b∆t] . (F2)

Hence, Wξλ(t) assumes the maximum value at τ = τ0 =

−4a+ 3b∆t+ 2c∆t2

2(b+ c∆t)
≥ 0 if the following conditions hold.

(i) W ′(0) > 0.

(ii) 2b+ 2c∆t < 0.

Condition (i) holds automatically. In fact, (i) is equivalent to

condition

4a+ 3b∆t+ 2c∆t2 ≥ 0. (F3)

Now let us consider function

f(t) = 4a+ 3bt+ 2ct2. (F4)
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This function assumes the minimum value at t = − 3b
4c ,

f(t) ≥ f

(

−3b

4c

)

=
32ac− 9b2

8c

=
9

8c
(4ac− b2)− 4ac

8c

≥ 9~2

8cm2
− ~2

8cm2

=
~2

cm2

> 0. (F5)

Therefore, condition (i) is satisfied automatically. Here, we

use Schrödinger inequality (B1). Hence, if condition (ii)

holds, function Wλ(τ) assumes the maximum value at τ =

τ0 ≥ 0. The maximum value of Wξλ(τ) for τ ≥ 0 is

Wξλ(τ0) = −α4a+ 2b∆t+ c∆t2

2(b+ c∆t)

×
[

a+ b(∆t+ τ0) + c(∆t+ τ0)
2
]−1/2

= α
(

4a+ 2b∆t+ c∆t2
)1/2

(4ac− b2)−1/2

=
2αm

~

[

a+ b
∆t

2
+ c

(

∆t

2

)2
]1/2

=

√
2µB1∆t

~

〈

(

Z +
∆t

2m
P

)2
〉1/2

ξλ

. (F6)

If condition (ii) does not hold, function Wξλ(τ) increases

monotonically and we have

sup
τ≥0

Wξλ(τ) = lim
τ→∞

Wξλ(τ) =
µB1∆t
√

2〈P 2〉ξλ
. (F7)
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