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Abstract – Although Heisenberg’s uncertainty principle is represented by a rigorously proven relation about
intrinsic indeterminacy in quantum states, Heisenberg’s error-disturbance relation (EDR) has been commonly
believed as another aspect of the principle. However, recent developments of quantum measurement theory
made Heisenberg’s EDR testable to observe its violations. Here, we study the EDR for Stern–Gerlach mea-
surements. In a previous report, it has been pointed out that their EDR is close to the theoretical optimal.
The present letter reports that even the original Stern-Gerlach experiment in 1922, as the available experimen-
tal data show, violates Heisenberg’s EDR. The results suggest that Heisenberg’s EDR is more ubiquitously
violated than it has long been supposed.

Introduction. – Heisenberg’s uncertainty principle is usu-
ally represented by a rigorously proven relation

σ(A)σ(B) ≥ 1
2
|〈[A,B]〉| (1)

for the standard deviations σ(A), σ(B) of arbitrary observables
A,B, respectively, in any state [1–3]. This expresses intrinsic
indeterminacy in quantum states. However, Heisenberg’s error-
disturbance relation (EDR)

ε(A)η(B) ≥ 1
2
|〈[A,B]〉| (2)

for the mean error ε(A) of an A-measurement in any state and
the mean disturbance η(B) thereby caused on another observ-
able B, originally introduced in his γ-ray microscope thought
experiment [1], has been commonly believed and taught as an-
other aspect of the principle. Although no general proofs are
known, there have been continuing efforts to prove Heisen-
berg’s EDR (2), which have resulted in proving Eq. (2) for
jointly unbiased measurements [4–8] (in a wider context of
approximate simultaneous measurements) and measurements
with independent interventions [9, 10]. However, recent devel-
opments of quantum measurement theory derived a universally
valid EDR

ε(A)η(B) + ε(A)σ(B) + σ(A)η(B) ≥ 1
2
|〈[A,B]〉|, (3)

where σ(A) and σ(B) are the standard deviations of A and
B just before the measurement [9, 10], and made Heisenberg’s

EDR testable to observe its experimental violation [11, 12].
Subsequently, stronger EDRs have appeared [13, 14] and fur-
ther experimental violations of Heisenberg’s EDR have been
reported, though witnessed only in ideally controlled precision
measurements of photons [15–20] and neutrons [21].

Here, we study the EDR for a more common measurement
setup, known as Stern–Gerlach measurements [22–26]. In a
previous report [27], it has been pointed out that their error-
disturbance region is close to the theoretical optimal and that
the Heisenberg’s EDR can be violated in a broad range of
experimental parameters. The present letter reports that, in
fact, the available experimental data show that the original
Stern-Gerlach experiment performed in 1922 [28–30] violates
Heisenberg’s EDR. The results suggest that Heisenberg’s EDR
is more ubiquitously violated than it has been supposed for a
long time.

Spin measurements. – We consider a measurement of a
spin-1/2 particle, S, or an equivalent q-bit system described by
Pauli matrices. We investigate the error and disturbance of the
measurements of the z-component, A = σz , and the distur-
bance of the x-component, B = σx, of the (dimensionless)
spin, where A and B generally denote observables to be mea-
sured and to be disturbed, respectively. We suppose that the
measurement is carried out by the interaction between the sys-
tem S prepared in an arbitrary state ρ and the probe P prepared
in a fixed vector state |ξ〉 from time 0 to time t0 and ends up
with the subsequent reading of the meter observable M of the
probe P. We assume that the meter M has the same spectrum
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as the measured observable σz . The measuring process, M,
determines the time evolution operator, U , of the composite
system of S + P. For any observables X in S and Y in P, the
Heisenberg operators at the corresponding times are given by
X(0) = X ⊗ 1l, Y (0) = 1l ⊗ Y , X(t0) = U†(X ⊗ 1l)U†, and
Y (t0) = U†(1l ⊗ Y )U†.

The quantum root-mean-square (q-rms) error, ε(σz) =
ε(σz,M, ρ), is defined by

ε(σz) = Tr[(M(t0) − σz(0))2ρ ⊗ |ξ〉〈ξ|]1/2. (4)

The q-rms error ε(σz) has the following properties [31].
(i) (Operational definability) ε(σz) is definable by the oper-

ational description of the measuring process M.
(ii) (Correspondence principle) If σz(0) and M(t0) commute

in the state ρ⊗ |ξ〉〈ξ|, the q-rms error ε(σz) coincides with the
classical rms error determined by the joint probability distribu-
tion µ of σz(0) and M(t0) in ρ ⊗ |ξ〉〈ξ|.

(iii) (Soundness) If M accurately measures σz in ρ then
ε(σz) vanishes.

(iv) (Completeness) If ε(σz) vanishes then M accurately
measures σz in ρ.

The quantum root-mean-square (q-rms) disturbance,
η(σx) = ε(σx,M, ρ), is defined by

η(σx) = Tr[(σx(t0) − σx(0))2ρ ⊗ |ξ〉〈ξ|]1/2. (5)

The q-rms disturbance η(σx) has properties analogous to the
q-rms error.

For the above properties of ε(σz) and η(σx), we refer the
reader to Ref. [31] and Appendix A of Ref. [27].

According to Braciard [13] and Ozawa [14], we obtain the
EDR

ε̂(σz)2 + η̂(σx)2 + 2ε̂(σz)η̂(σx)
√

1 − D2
σzσx

≥ D2
σzσx

, (6)

where DAB = 1
2Tr(

∣∣√ρ[A,B]
√

ρ
∣∣),

ε̂(A) = ε(A)

√
1 − ε(A)2

4
, and η̂(B) = η(B)

√
1 − η(B)2

4
.

In the case where

〈σz〉ρ = 〈σx〉ρ = 0, (7)

relation (6) is reduced to the tight relation(
ε(σz)2 − 2

)2
+
(
η(σx)2 − 2

)2 ≤ 4. (8)

See Appendix A in Ref. [27].
Lund and Wiseman [15] proposed a measurement model

M(θ) measuring σz of the system S with another q-bit system
as the probe P prepared in the state |ξ(θ)〉 = cos θ|0〉+sin θ|1〉
with the meter observable M = σz of the probe P. The mea-
suring interaction is described by the controlled-NOT (CNOT)
operation UCNOT = |0〉〈0| ⊗ 1l + |1〉〈1| ⊗ σx. For any state
ρ the error ε(σz) and the disturbance η(σx) of M(θ) satisfy

ε(σz) = 2| sin θ| and η(σx) =
√

2| cos θ − sin θ|. Thus, they
attain the bound

(ε(σz)2 − 2)2 + (η(σx)2 − 2)2 = 4 (9)

for the tight EDR (8). Experimental realizations of this model
were reported by Rozema et al. [16] and Refs. [17–21].

In this study, we consider another type of measurement
model measuring σz , known as Stern–Gerlach measurements,
and investigate the admissible region of the error ε(σz) for σz

measurement and the disturbance ε(σx) on σx, obtained from
Gaussian orbital states.

Stern–Gerlach Measurements. – Let us consider the set-
ting of a Stern–Gerlach measurement as depicted in Figure 1. A
particle with spin-1/2 goes through the inhomogeneous mag-
netic field and then evolves freely. The inhomogeneous mag-
netic field is approximated to be B '

(
0, 0, B0 + B1z

)
.

The state of the spin degree of freedom S is supposed to be
an arbitrary mixed state satisfying 〈σz〉ρ = 〈σx〉ρ = 0, e.g.,
ρ = |σy = ±1〉〈σy = ±1|.

Fig. 1: Illustration of the experimental setup for a Stern–Gerlach mea-
surement [27]. The relations between the length and the time interval
are L2 = vy∆t, L3 = vyτ .

The measuring process of this Stern–Gerlach measurement
is given as follows. The probe system P is the z-component
of the orbital degree of freedom of the particle. We assume
that the initial state of the probe system P is a general Gaus-
sian state given by ξλ(z) = A exp

(
−λz2

)
, where λ ∈ C and

Re λ > 0. The Hamiltonian of the composite system S + P is
given by

H(t)=


µσz ⊗ (B0 + B1Z) +

1
2m

1l ⊗ P 2 (0 ≤ t ≤ ∆t),
1

2m
1l ⊗ P 2 (∆t ≤ t ≤ ∆t + τ).

(10)
The meter observable is M = f(Z), where

f(z) =

{
−1 (if z ≥ 0),
+1 (if z < 0).

Error and Disturbance in Stern–Gerlach Measurements.
– Under the condition above, we obtain the following for-
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mulae for the error and disturbance in Stern–Gerlach measure-
ments:

ε(σz)2 = 2 erfc
(

g0√
2σ(∆t + τ)

)
, (11)

η(σx)2 = 2−2 exp

[
−2µ2B2

1∆t2

~2
σ

(
∆t

2

)2
]

cos
2µ∆tB0

~
,

(12)

where the complementary error function, erfc(x), and the pa-
rameters g0 and σ(t) are given by

erfc(x) =
2√
π

∫ ∞

x

exp(−w2)dw, (13)

g0 =
µB1∆t

m

(
∆t

2
+ τ

)
, (14)

σ(t) =

〈(
Z +

t

m
P

)2
〉1/2

ξλ

. (15)

See Eqs. (62) and (69) in Ref. [27] for the detailed derivations.
The parameter σ(∆t/2) represents the spread of the wave

packet of the particle in the Stern–Gerlach magnet. The particle
in the Stern–Gerlach magnet is exposed to the inhomogeneous
magnetic field and its spin is precessed in an uncontrollable
way. The parameter σ(∆t/2) appears in the formula of the
disturbance, because the disturbance of the spin along the x-
axis is caused by this uncontrollable precession around z-axis.
On the other hand, the error in the Stern–Gerlach setup comes
from the non-zero dispersion σ(∆t+ τ) of the particle position
on the screen. By the uncertainty relation

σ

(
∆t

2

)
σ(∆t + τ) ≥ ~

2m

(
∆t

2
+ τ

)
, (16)

the smaller the dispersion σ(∆t + τ) of the particle position
on the screen, the greater the dispersion σ(∆t/2) of the the
particle position in the Stern–Gerlach magnet. This is why
σ(∆t + τ) appears in the formula of the error, and this yields a
tradeoff between ε(σz) and η(σx).

Minimizing Error of Stern–Gerlach Measurements. –
We minimize the error ε(σz) with respect to the time interval
τ in the case where B ≤ 0 and 〈{Z,P}〉ξλ

< 2
√

2~. If the
condition

m 〈{Z, P}〉ξλ
+
〈
P 2
〉

ξλ
∆t < 0 (17)

holds, then the error is minimized at

τ = τ0

= −
4m2

〈
Z2
〉

ξλ
+ 3m 〈{Z, P}〉ξλ

∆t + 2
〈
P 2
〉

ξλ
∆t2

2
(
m 〈{Z,P}〉ξλ

+ 〈P 2〉ξλ
∆t
) .

(18)

Otherwise, the error is minimized as τ goes to infinity. See
Eq. (65) in Ref. [27] for the detailed derivation.

Range of the Error and Disturbance in Stern–Gerlach
Measurements. – We regard (ε(σz), η(σx)) as a function of
variables λ, B0, τ > 0. As depicted in Figure 2, the range of
the function (ε(σz), η(σx)) is obtained as∣∣∣∣2 − η(σx)2

2

∣∣∣∣ ≤ exp

{
−
[
erf−1

(
2 − ε(σz)2

2

)]2}
, (19)

where erf−1 represents the inverse function of the error func-
tion erf(x) = 2√

π

∫ x

0
exp(−s2)ds. See Eq. (76) in Ref. [27]

for the detailed derivation.
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Fig. 2: The range of the error and disturbance for Stern–Gerlach mea-
surements [27]. Orange region: the region (19) that Stern–Gerlach
measurements can achieve. Long dashed dotted lline: the boundary of
the tight EDR (8). Dashed line: the boundary of Heisenberg’s EDR
(2).

Original Stern–Gerlach measurement. – Here, we esti-
mate the error and disturbance of the original Stern-Gerlach
experiment conducted by Stern and Gerlach [28–30] by our
theoretical model. We summarize the set up of their experi-
ment (cf. Figure 1). A beam of silver atoms emerging from a
small hole of a lid of an oven heated to 1500 [K] was collimated
by two plates made of platinum. The atoms passed a pinhole
with an area of 3 × 10−3[mm] (or d1 = 6.2 × 10−2 [mm] in
diameter) in the first plate P1 and then passed the slit d2 =
3.0 to 4.0 × 10−2 [mm] in width in the second plate P2. The
slit was parallel to the x-axis. These plates were arranged
perpendicular to the orbit of the atoms and the distance be-
tween them was L1 = 3.3 [cm]. An L2 = 3.5 [cm] long
knife edged magnetic pole was arranged parallel to the or-
bit of atoms just after the plate P2. The z-component of the
gradient of the magnetic field around the orbit of atoms was
B1 = −1.35 × 103

[
T · m−1

]
. A glass plate was arranged

immediately after the magnetic pole, in which the atoms are
deposited. These conditions of the experiment is summarized
in Table 1.
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Table 1: The data for the experiment conducted by Gerlach and Stern
[28–30] in 1922.

Experimental
Parameters Values Related Variables

Temperature T
of Oven 1500 [K] ∆t, τ

Gradient B1 of
Magnetic Field −1.35 × 103 [T/m] B1

L1 3.3 × 10−2 [m] ξ
L2 3.5 × 10−2 [m] ∆t
L3 0 [m] τ

Diameter d1 of
Hole of Plate1 6.2 × 10−5 [m] ξ

Width d2 of Slit
of Plate2 4.0 × 10−5 [m] ξ

After the 8 hours of the operation of the system and devel-
oping, they obtained a lip-shaped pattern. The maximum width
of the opening of the lip shaped pattern was 1.1 × 10−1 [mm].
The distance between the centers of the two arc-shaped pattern
was 2.0 × 10−1 [mm]. The velocity distribution of atoms in
the oven is assumed to be the Maxwell distribution. Thus, the
atoms emerging from the small hole of the lid of the oven are
estimated to have the well-known distribution of flux [32]:

fflux(v) = Const. × v3 exp
(
− mv2

2kBT

)
. (20)

The the root-mean-square vy of the y-component of the veloc-
ity of atoms is given by [32]

vy =

√
4kBT

m
. (21)

Let us estimate the z-component |ξλ〉 of the orbital state of
an atom in the beam just before entering the magnetic field.
We assume the orbital state arriving at plate 1 to be ξa(z) =
(2a/π)1/4 exp(−az2) with a > 0. We model the operations of
the collimator and the slit as approximate momentum-position
successive measurements by the canonical Dp-approximate
momentum measurement and the canonical Dz-approximate
position measurement introduced in [33, Eq. (75)], so that for
the outcomes (P,Z) = (0, 0) the posterior (output) state |ξλ〉
for the prior (input) state |ξa〉 is given by

|ξλ〉 ∝ exp
(
− Z2

4D2
z

)
exp

(
− P 2

4D2
p

)
|ξa〉, (22)

where ∝ stands for the equality up to a constant factor. The
parameters Dp and Dz will later be determined relative to the
structure of the collimator and the slit. Then, we have

ξλ(z) ∝ exp

{
−

[(
1
a

+
~2

D2
p

)−1

+
1

4D2
z

]
z2

}
. (23)

We naturally assume σ(P )ξa � Dp, so that we have

1
a

= 4σ(Z)2ξa
=

~2

σ(P )2ξa

� ~2

D2
p

(24)

and we have

ξλ(z) ∝ exp

[
−

(
D2

p

~2
+

1
4D2

z

)
z2

]
(25)

up to arbitrary order.
As depicted in Figure 3 the parameters Dp and Dz are esti-

mated by taking into account the half width δP of the possible
classical momentum after passing through the collimator (with
plates 1 and 2) and the half width δZ of the possible classical
position after passing through the slit (on plate 2) as

Dp ∼ δP =
d1 + d2

2L1
mvy, (26)

Dz ∼ δZ =
d2

2
. (27)

To make unambiguous estimates, we suppose that

0.75 δP ≤ Dp ≤ 1.25 δP, (28)
0.75 δZ ≤ Dz ≤ 1.25 δZ. (29)

orbit w
ith m

aximum 

momentum

orbit with minimum 

momentum

Fig. 3: Geometry of the collimator and the slit.

From Eq. (11) the error ε(σz) of the original Stern-Gerlach
measurement is given by

ε(σz)2 = 2 erfc
(

g0√
2σ(∆t)

)
. (30)

Then, according to the parameter values given in Table 1, we
have

0.972 ≤ g0√
2σ(∆t)

≤ 1.62, (31)
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and, therefore, we conclude

4.38 × 10−2 ≤ ε(σz)2 ≤ 3.38 × 10−1. (32)

For the disturbance ε(σx) of the original Stern-Gerlach mea-
surement, from Eq. (12) we have

η(σx)2 = 2. (33)

See Appendix for the detailed calculations.
From the above we conclude that the error probability

ε(σz)2/4 of the experiment is at most 8.5%. This appears to
be consistent with Stern-Gerlach’s original estimate of the er-
ror to be 10% based on the agreement between the observed
deflection and the theoretical prediction [30].

As depicted in Figure 4, the estimated error-disturbance re-
gion clearly violates Heisenberg’s EDR.
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Fig. 4: The estimated error-disturbance region for the original experi-
ment performed by Gerlach and Stern [28–30] in 1922. Orange region:
the region (19) that Stern–Gerlach measurements can achieve. Thick
line: the estimated error-disturbance region (32), (33) for the origi-
nal Stern–Gerlach experiment in 1922. Long dashed dotted line: the
boundary of the tight EDR (8). Dashed line: the boundary of Heisen-
berg’s EDR (2).

Conclusion. – In a previous study [27], we have deter-
mined the range of the error and disturbance taken by Stern–
Gerlach measurements and compared it with the tight EDR for
general spin measurements. It is interesting to see that Stern–
Gerlach measurements occupy the near optimal subregion of
the theoretically achievable region. Base on the above theo-
retical results, here, we have estimated the error and distur-
bance of the original Stern–Gerlach experiment performed in
1922, and concluded that the original Stern–Gerlach experi-
ment violates Heisenberg’s EDR. This suggests that Heisen-
berg’s EDR is more ubiquitously violated than we have be-
lieved for a long time, and it opens a new research interest ex-
ploring violations of Heisenberg’s EDR in more common mea-
surement setups to deepen our understanding of Heisenberg’s

uncertainty principle. It will contribute to new developments
in precision measurements such as optomechanical metrology
and multi-messenger astronomy.

∗ ∗ ∗

This work was partially supported by JSPS KAKENHI,
Nos. 26247016 and 17K19970, and the IRI-NU Collaboration.

Appendix: Derivations of Eq. (32) and Eq. (33) . – From
2018 CODATA, the Boltzmann constant, the Avogadro con-
stant NA, the electron magnetic moment µ, and the reduced
Planck constant ~ are given by

kB = 1.380649 × 10−23[J/K],

NA = 6.02214076 × 1023
[
mol−1

]
,

µ = −9.2847647043 × 10−24[J/T],

~ = 1.054571817 × 10−34[J · s].

The mass m of the silver atom with the standard atomic weight
107.86822[g/mol] is given by

m =
1.0786822 × 10−1[kg/mol]
6.02214076 × 1023 [mol−1]

= 1.7911939 × 10−25[kg].

From Eq. (21) and Table 1 we obtain

vy =

√
4kBT

m
=

√
4 × 1.380 × 10−23 × 1500

1.791 × 10−25

= 6.80 × 102[m/s].

From Table 1 we obtain

∆t =
L2

vy

=
3.5 × 10−2

6.80 × 102

= 5.14 × 10−5[s].

As depicted in Figure 3, the parameters δP and δZ are intro-
duced as

δP =
d1 + d2

2L1
mvy,

δZ =
d2

2
.

We obtain

1.25δZ =
5d2

8
= 2.50 × 10−6[m],

1.25δP =
5(d1 + d2)

8L1
mvy

=
3.1 × 10−4 + 2.0 × 10−4

8 × 3.3 × 10−2
× 1.791 × 10−25

× 6.80 × 102

= 2.35 × 10−25[kg · m/s].
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The parameters Dp and Dz are assumed to satisfy

Dp = 1.25KδP ,

Dz = 1.25KδZ

for 0.6 ≤ K ≤ 1. We obtain

Var(Z, ξλ) =
1
4

(
D2

p

~2
+

1
4D2

z

)−1

=
1
4

(
(K × 2.35 × 10−25[kg · m/s])2

(1.054 × 10−34[J · s])2

+
1

4(K × 2.50 × 10−6[m])2

)−1

=
1
4
(
K2 × 4.97 × 1018[m−2]

+ K−2 × 4.00 × 1010[m−2]
)−1

= K−2 × 5.03 × 10−20[m2],

∆t2

m2
Var(P, ξλ) =

∆t2

m2

~2

4Var(Z, ξλ)

=
(5.14 × 10−5)2

(1.791 × 10−25)2

× (1.054 × 10−34)2

4 × K−2 × 5.03 × 10−20

= K2 × 4.54 × 10−9[m2],

σ(∆t)2 = Var(Z, ξλ) +
∆t2

m2
Var(P, ξλ)

=
∆t2

m2
Var(P, ξλ)

= K2 × 4.54 × 10−9[m2],

g0 =
µB1∆t2

2m

=
(−9.28 × 10−24[J/T])

2 × (1.791 × 10−25[kg])
× (−1.35 × 103[T/m])

× (5.14 × 10−5[s])2

= 9.26 × 10−5[m],

g0√
2σ(∆t)

=
9.26 × 10−5

K
√

2 × 4.54 × 10−9

= K−1 × 0.972.

From Eq. (30) we have

ε(σz)2 = 2 erfc
(

g0√
2σ(∆t)

)
= 2 erfc

(
K−1 × 0.972

)
.

For K = 1, we obtain

2 erfc(0.972) = 2 × 0.1692 = 3.38 × 10−1.

For K = 0.6, we obtain

2 erfc(0.972/0.6) = 2 erfc(1.620) = 2 × 0.0219

= 4.38 × 10−2.

Thus, we conclude

0.972 ≤ g0√
2σ(∆t)

≤ 1.620,

4.38 × 10−2 ≤ ε(σz)2 ≤ 3.38 × 10−1.

To calculate the disturbance η(σx), we have

σ

(
∆t

2

)2

=
1
4
σ (∆t)2

= K2 × 1.135 × 10−9[m2],

µB1∆t

~
=

(−9.28 × 10−24[J/T])
1.054 × 10−34[J · s]
× (−1.35 × 103[T/m])

× (5.14 × 10−5[s])

= 6.10 × 109[m−1],

2µ2B2
1∆t2

~2
σ

(
∆t

2

)2

= 2 × (6.10 × 109[m−1])2

× K2 × 1.135 × 10−9[m2]

= K2 × 8.44 × 1010,

2 exp

[
−2µ2B2

1∆t2

~2
σ

(
∆t

2

)2
]

= 2 exp(−K2 × 8.44 × 1010)
= 0.

Thus, from Eq. (12) we conclude

η(σx)2 = 2 − 2 exp

[
−2µ2B2

1∆t2

~2
σ

(
∆t

2

)2
]

cos
2µ∆tB0

~

= 2.
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