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ABSTRACT. The aim of this paper is to promote quantum logic as one of the basic

tools for analyzing human reasoning. We compare it with classical (Boolean) logic and

highlight the role of violation of the distributive law for conjunction and disjunction. It

is well known that nondistributivity is equivalent to incompatibility of logical variables

– the impossibility to assign jointly the two-valued truth values to these variables. A

natural question arises as to whether quantum logical nondistributivity in human logic

can be tested experimentally. We show that testing the response replicability effect

(RRE) in cognitive psychology is equivalent to testing nondistributivity –under the pre-

vailing conjecture that the mental state update generated by observation is described

as orthogonal projection of the mental state vector (the projective update conjecture of

Wang and Busemeyer). A simple test of RRE is suggested. In contrast to the previous

works in quantum-like modeling, we proceed in the state-dependent framework; in par-

ticular, distributivity, compatibility, and RRE are considered in a fixed mental state. In

this framework, we improve the previous result on the impossibility to combine ques-

tion order and response replicability effects by using (von Neumann-Lüders) projective

measurements.

KEYWORDS: quantum versus classical reasoning, violation of distributivity of con-

junction and disjunction, incompatibility, response replicability effect, question order

effect, experimental test of distributivity
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1. INTRODUCTION

In this paper, we promote quantum logic as one of the basic tools for analyzing human

reasoning. We emphasize its distinguishing features, especially nondistributivity and

incompatibility for some logical variables. Quantum reasoning can be associated with

heuristic and emotional fast thinking considered by Kahneman [1], though this is merely

an association at present.

We recall that, since the work of Boole [2], classical Boolean logic has been used as

the basic logical tool for human reasoning. Nowadays, Boolean logic is also important

for symbolic AI which is based on propositional representations of knowledge. This

is a logic represented by the algebra of propositions endowed with the operations of

conjunction, disjunction, and negation. For our further consideration, it is important to

stress that the first two operations satisfy the distributive law. Boolean logic is distribu-

tive. The basic mathematical representation of Boolean algebra is the set algebra with

the operations of intersection, union, and complement.

Quantum logic, originally introduced by Birkhoff and von Neumann [3], is, on the

other hand, mathematically represented as the lattice of projections on a complex Hilbert
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space; equivalently, it is represented as the lattice of closed subspaces in a complex

Hilbert space, and those two lattices are isomorphic by the correspondence between a

subspace and the projection onto that subspace. Quantum logic is endowed with the

corresponding logical operations (conjunction, disjunction, and negation). But, interre-

lation between the logical operations differs from the classical case. The main difference

is in violation of the distributive law. Quantum logic relaxes this important law of clas-

sical logic to the orthomodular law [4] and this leads to more general rules of reasoning.

(See, e.g., [5] on violation of Aumann’s theorem about impossibility to agree or disagree

by quantum decision makers.) As is known (Theorem A), nondistributivity of operating

with propositions is equivalent to their incompatibility – the impossibility of assigning

the two-valued truth values to logical variables – even in the state dependent formula-

tion. Can we check the quantumness of human logic explicitly? The natural question

arises:

Can the distributive law in human reasoning be checked experimentally?

Naturally, this sounds a difficult question to answer, because logical laws are used in

a very deep level of human information processing even unconsciously. We show that

the response replicability effect (RRE) known in cognitive psychology might be useful

to find the answer to these questions.

We recall that recently the problem of mathematical modeling of psychological ef-

fects was intensively studied in the framework of quantum measurement theory [6–11]

(for general theory see, e.g., an introductory survey [12] and references therein; for

its application in cognition, psychology, social and political sciences see, e.g., mono-

graphs [13–18], recent reviews [19, 20] and references therein; we also mention a few

recent articles [21]- [24]). In particular, the problem of the possibility to combine of the

question order effect (QOE) and the response replicability effect (RRE) attracted a lot

of interest [25, 26, 28, 29].

Here, QOE is an effect of the dependence of the sequential joint probability distribu-

tion of answers on the questions’ order: pAB 6= pBA. On the other hand, RRE concerns

correlations for the answers to sequential questions. Suppose that after answering the

A-question with the “yes”, Alice is asked another question B, and gives an answer to

it. And then she is asked A again. In the social opinion pools and other natural deci-

sion making experiments, Alice would definitely repeat her original answer to A, “yes”.

This is A−B −A response replicability. (In the absence of B-question, we get A−A

replicability). The combination of A−B−A and B−A−B replicability forms RRE.

QOE has been intensively studied in psychology (see, e.g., [30], where the typical

opinion poll data sets that show QOE are discussed and classified; see also the refer-

ences therein). Its modeling on the basis of the quantum formalism [31–33] stimulated

development of the quantum cognition project. In particular, a pioneering work by
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Wang and Busemeyer [31] models two questions by two noncommuting projections.

This modeling naturally leads to the assumption that the logical structure of human

reasoning about those two questions is based on non-distributive quantum logic.

Subsequently, the role of RRE was highlighted in this project [25, 26, 28, 29]; before

psychologists did not investigate RRE and its role in functioning of human cognition.

RRE is generally considered to hold in the poll, if the respondent is rational and has an

adequate memory. In [25], RRE was coupled to QOE as the obstacle to describing QOE

with the projection-type (von Neumann-Lüders) quantum instruments. We recall that

a quantum instrument [7–11] is a mathematical representative for a general quantum

measurement that describes both the probability of the measurement outcome and the

state update given by any possible outcomes. The latter plays the crucial role in the

problem of combination of QOE and RRE [28, 29].

It seems that RRE has not been subject to much empirical evaluation. To the best

of our knowledge, a single experiment [27] has been performed to test the conclusion

put forward in [25]. The interpretation of experimental statistical data by the authors

of article [27] was questioned in a few comments to this paper (cf. online comments

to [27]).

In this paper, we highlight RRE by coupling it with logic of human reasoning. Under

the prevailing conjecture (see Wang and Busemeyer [31]) that brain’s self-observations

generate the mental state update of the projection type (the projective update conjec-

ture), RRE implies distributivity, which contradicts QOE. We note that under the pro-

jective update conjecture, RRE and QOE are mutually exclusive. Thus, the testable

assumption RRE+QOE negates experimentally the projective update conjecture.

Under the projective update conjecture, Theorem A implies that the above question

on distributivity law of human logic is coupled to another important question:

How can it be shown that mental observables (say questions) are incompatible?

In physics, the question of incompatibility of the basic quantum observables, say po-

sition and momentum, can be easily solved in the theoretical framework. Here quantum

observables are generated from classical phase space mechanics, the Hamilton mechan-

ics, via the quantization procedure, in which the quantum commutator corresponds to

the classical Poisson bracket. For cognition, we cannot proceed in this way, since the

mental analog of phase space mechanics has not been created.

Now we point to another novel invention in this paper. In physics, the use of space

geometry gives the possibility to generate a large variety of quantum states, e.g., by

using polarization beam splitters oriented in different directions. In psychology and

cognition, the class of mental states which can be prepared for measurement of concrete

mental observables is very restricted. Here it is more natural to study state dependent

features of observables (see [11, 34–37] for such an approach in physics). In this paper,
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we introduce the notions of state dependent distributivity, compatibility and RRE, QOE.

We show that, for the fixed state, distributivity of logic and compatibility are equivalent

and that they are equivalent to RRE. The result of paper [25] is made much stronger,

even for the fixed mental state, QOE and RRE are incompatible (for the von Neumann-

Lüders measurements). We think that such state dependent treatment of observables is

the right way to proceed in cognitive, psychological, and financial [38] modeling.

Since our paper is rather technical (although the proofs are placed in Appendixes A-

B), it may be difficult to proceed through its first part. Paper’s main output can be found

in section 6. In particular, this section contains the description of an experimental test

to check incompatibility of mental observables or in other words classicality (distribu-

tivity) of logic used in the process of decision making.

2. QUANTUM REASONING

2.1. Basics of quantum logic. Operations of quantum logic are defined on the set C(H)

of closed subspaces of a Hilbert space H, or equivalently on the set P(H) of projections

on H. 1 Subspaces (projections) are interpreted as mathematical representatives of

propositions (events) on a system under consideration.

Let P be a projection. Denote by R(P ) its range, i.e., R(P ) = P (H). For a sub-

space L, denote by P(L) the corresponding projection. For a projection P , denote the

projection onto the orthogonal complement of the subspace R(P ) by the symbol P⊥,

i.e., H = R(P ) ⊕ R(P⊥) and P⊥ = I − P , where I denotes the identity operator.

Negation of proposition P is represented by P⊥. The operations of conjunction ∧ and

disjunction ∨ are defined as follows.

Let P and Q be projections representing some propositions. The conjunction P ∧Q

is defined as the projection on the intersection of subspaces R(P ) and R(Q), i.e.,

R(P ∧Q) = R(P )∩R(Q). We remark that this operation is well defined even for non-

commuting projections, i.e., incompatible quantum observables with values in {0, 1}.

Moreover, it is commutative:

P ∧Q = Q ∧ P (1)

The same can be said about the operation of disjunction. Here the subspace R(P ∨Q)

is defined as the subspace generated by the union of subspaces R(P ) and R(Q), i.e.,

P ∨ Q is the projection onto this subspace. This operation is also well defined for

1Hereafter, we call a closed subspace as a ”subspace” for brevity where no confusion may occur. We

do not specify the dimension of the underlying Hilbert space H. To understand this paper without any

knowledge of mathematics for infinite dimensional Hilbert spaces, the reader may assume that H is finite

dimensional.
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non-commuting projections and, moreover, it is commutative:

P ∨Q = Q ∨ P (2)

Thus logical operations of quantum logic is commutative. Typically this fact is not

highlighted. Thus, in quantum reasoning noncommutativity is not present at the level of

the basic operations of quantum logic, conjunction and disjunction.

3. INTERRELATION OF DISTRIBUTIVITY AND COMMUTATIVITY

3.1. Two propositions. We start with the simplest form of distributive law, for propo-

sitions P and Q and R = Q⊥, the negation of Q. We remark that, for any proposition

Q, we have Q ∨Q⊥ = I . Then, the distributive law can be written in the form:

P = (P ∧Q) ∨ (P ∧Q⊥), (3)

i.e.,

P ∧ (Q ∨ R) = (P ∧Q) ∨ (P ∧ R)), (4)

in the same way

Q = (Q ∧ P ) ∨ (Q ∧ P⊥), (5)

The following theorem [3] is a cornerstone of our modeling:

Theorem A. The distributive law in the form (3), (5) or equivalently

I = (P ∧Q) ∨ (P ∧Q⊥) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥) (6)

holds if and only if the projections P,Q (multiplicatively) commute, i.e., [P,Q] = 0,

where [P,Q] = PQ−QP .

The above theorem was suggested by the observation of Birkhoff and von Neumann

[3, p. 833] that [P,Q] = 0 if and only if Eq. (3) holds. A proof for the equivalence of

Eq. (6) and [P,Q] = 0 will be given in Appendix A for the reader’s convenience.

Thus, the distributivity for 4 propositions P,Q, P⊥, Q⊥ is equivalent to the commu-

tativity for 2 projections P,Q. The operator defined by

com(P,Q) = (P ∧Q) ∨ (P ∧Q⊥) ∨ (P⊥ ∧Q) ∨ (P⊥ ∧Q⊥) (7)

is called the (quantum logical) commutator of P and Q. We set

d(P,Q) = I − com(P,Q), (8)

Note that Marsden [39] originally introduced (.P,Q) as the commutator of P,Q. In

quantum logic, quantities com(P,Q) and d(P,Q) are the measures of distributivity and

nondistributivity, respectively for propositions P,Q, P⊥, and Q⊥; com(P,Q) = 1 or

d(P,Q) = 0 in the distributive case. According to Theorem A, the distributivity of

propositions is equivalent to their compatibility, i.e., the possibility to assign their joint
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eigenvalues to them, say (P,Q) = (0, 0), (0, 1), (1, 0), or (1, 1). In fact, the projections

P ∧Q, P ∧Q⊥, P⊥ ∧Q, and P⊥ ∧Q⊥ correspond, respectively, to the joint eigensub-

spaces for (P,Q) = (1, 1), (P,Q) = (1, 0), (P,Q) = (0, 1), and (P,Q) = (0, 0). Thus,

Eq. (6) means that every vector is a superposition of joint eigenvectors.

We remark that the operator com(P,Q) is Hermitian. By axioms for quantum theory

it represents an observable. In particular, it is a projection, so that it is {0, 1}-valued,

or yes-no, observable. Thus, by Theorem A the distributive law can be represented

via a quantum mechanical yes-no observable. Theoretically by measurement of this

observable it is possible to check the distributivity for two propositions. However, it

seems to be difficult to present the concrete measurement procedure of this observable.

It reflects the similar problem with experimental checking of incompatibility. Consider

the Hermitian operator i[P,Q]. Theoretically by its measurement it is possible to check

compatibility. However, the measurement procedure is not straightforward.

Typically the lattice P(H) of projections is considered as a union of Boolean al-

gebras, representing classical sub-logics of quantum logic. In this construction, the

essence of Booleanity is commutativity of projections. Thus, commutativity of pro-

jections ensures that every inference rule in classical logic holds for all the sentences

constructed by those commuting projections. And distributivity of the basic operations,

conjunction and disjunction, is the basic law of (classical) logic. Now, in view of Theo-

rem A, we can characterize classical logic as the domains of validity of the distributive

law.

3.2. Three propositions and their negations. Consider now interrelation of commu-

tativity and distributivity for three propositions {P,Q,R}. Per definition the triple is

commutative if and only if each pair {P,Q}, {P,R}, {Q,P} is commutative. To cou-

ple commutativity and distributivity, we need to consider not only these propositions,

but also their negations P⊥, Q⊥, R⊥ (otherwise the relation between commutativity and

distributivity is not clear). By distributivity of {P,Q,R} we mean the validity of equal-

ity

X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z)), (9)

where X, Y, Z = P,Q,R, P⊥, Q⊥, R⊥.

Triple {P,Q,R} is commutative if and only (9) holds, i.e., the lattice P(P,Q,R)

generated by {P, P⊥, Q,Q⊥, R, R⊥} is distributive, or the ortholattice generated by

{P,Q,R} is a Boolean algebra. According to Bruns and Kalmbach [40], these condi-

tions are equivalent to the equality

com(P,Q,R) = I, (10)
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where the (quantum logical) commutator com(P,Q,R) of P,Q,R is given by

com(P,Q,R) = (P∧Q∧R)∨(P∧Q∧R⊥)∨(P∧Q⊥∧R)∨(P∧Q⊥∧R⊥)∨(P⊥∧Q∧R)

(11)

∨(P⊥ ∧Q ∧ R⊥) ∨ (P⊥ ∧Q⊥ ∧R) ∨ (P⊥ ∧Q⊥ ∧R⊥).

We also introduce the measure of nondistributivity.

d(P,Q,R) = I − com(P,Q,R) (12)

It equals zero in the distributive case.

As in the case of two propositions, the operator com(P,Q,R) is a projection and

it represents a {0, 1}-valued quantum observable. But, we repeat that design of the

corresponding measurement procedure is not straightforward.

4. STATE DEPENDENT QUANTUM LOGIC

4.1. Quantum Platonism. Reasoning based on the Birkhoff-von Neumann quantum

logic (BvN-logic) is state-independent. It reflects intrinsic logic of interrelation between

propositions based on the relation P ≤ Q (P implies Q ) if and only if {P} ⊆ {Q},

where {P} and Q stand for the sets of states for which the proposition P and Q hold,

respectively, with certainty [3, p. 827]. We can compare such viewpoint on propositions

with Platonism as universals existing independently of particulars, in our case systems’

states. The state-independent reasoning is an important area of information processing

by humans, processing independent of human believes.

4.2. Distributivity. Now, let us couple BvN-calculus (“quantum Platonic calculus”) to

the states of mind - mental states. Then, for some states, the distributive law holds true

Pψ = [(P ∧Q) ∨ (P ∧Q⊥)]ψ and P⊥ψ = [P⊥ ∧Q) ∨ (P⊥ ∧Q⊥)]ψ, (13)

or

ψ = com(P,Q)ψ, or equivalently d(P,Q)ψ = 0, (14)

even if “Platonic equalities” of section 3 are violated; for three statements,

ψ = com(P,Q,R)ψ or equivalently d(P,Q,R)ψ = 0. (15)

Note that the above condition (14) or (15) is equivalent to the condition that the mea-

surement of the yes-no observable com(P,Q) or com(P,Q,R), respectively, in the

state ψ always (with probability 1) leads to the “yes” result. Consider the ortholattice

P(P,Q,R) generated by P,Q,R. If condition (15) holds, then the lattice P(P,Q,R) is

distributive for the state ψ :

X ∧ (Y ∨ Z)ψ = [(X ∧ Y ) ∨ (X ∧ Z)]ψ, (16)
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where X, Y, Z = P,Q,R, P⊥, Q⊥, R⊥. We set

LQ,P,R = {ψ ∈ H : d(P,Q,R)ψ = 0}, (17)

the kernel of the operator d(P,Q,R). This is a linear subspace of H. Moreover,

LP,Q,R is a common invariant subspace of P,Q,R, and hence by replacing P,Q,R

by PLP,Q,R, QLP,Q,R, RLP,Q,R, projections P,Q,R act on LP,Q,R as mutually commut-

ing projections. We call it the distributivity subspace of the lattice P(P,Q,R). For

states from this subspace, logic of reasoning is classical. We remark that such classical-

ity is the delicate issue. Logic of propositions in P(P,Q,R) can be nonclassical, i.e.,

d(P,Q,R) = I − com(P,Q,R) can be nonzero. But, for states from LQ,P,R, reasoning

is classical – the distributive law holds true.

This is good place to remark that

LQ,P,R = com(P,Q,R)H. (18)

In fact, the lattice P(P,Q,R) is acting on LQ,P,R as a Boolean algebra, or the lattice

P(PLP,Q,R, QLP,Q,R, RLP,Q,R) is indeed a Boolean algebra.

4.3. General theory. The (quantum logical) commutator of two projections P,Q was

originally introduced by Marsden [39] by the dual form to Eq. (7) as

d(P,Q) = (P ∨Q) ∧ (P ∨Q⊥) ∧ (P⊥ ∨Q) ∧ (P⊥ ∨Q⊥), (19)

which is equivalent to Eq. (8). We follow the recent convention to call com(P,Q)

the (quantum logical) commutator of two projections P,Q. Bruns and Kalmbach [40]

extended this notion to any finite set F of propositions by

com(F) =
∨

α:F→{id,⊥}

∧

P∈F

P α(P ), (20)

where {id,⊥} stands for the set consisting of the identity operation id and the orthocom-

plementation ⊥. Note that for F = {P,Q,R}, Eq. (20) reduces to Eq. (11). Generaliz-

ing this notion to arbitrary sets A of propositions, Takeuti [41] defined the commutator

com(A) of A by

com(A) =
∨

{E ∈ P(H) | [E, P ] = 0 and [P,Q]E = 0 for all P,Q ∈ A}. (21)

Subsequently, Pulmannová [42] proved the relation

com(A) =
∧

{com(F) | F is a finite subset of A}. (22)

Thus, com(A) is the limit of com(F) for F → A.

From Eq. (21), it can be seen that the subspace LA = com(A)H is the maximum

A-invariant subspace of H such that any pair P,Q in A commute on LA.

The notion of commutators and the state-dependent perspective of quantum logic

play a crucial role in the recent study of quantum set theory [36, 41, 43–45], which
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reconstructs quantum theory in the mathematical universe based on quantum logic with

a close connection to the topos approach to quantum theory [46].

5. VALUE FUNCTION

As in any logical reasoning, it is useful to explore a value function. In quantum logic,

it is based on quantum probability defined by the Born’s rule

Pr{P‖ψ} = ‖Pψ‖2. (23)

This value function is explored in the process of reasoning. The proposition P holds in

the state ψ iff Pr{P‖ψ} = 1. In particular, the distributive law holds in ψ if

Pr{com(P,Q,R)‖ψ} = ‖com(P,Q,R)ψ‖2 = 1. (24)

Now let us characterize (equivalent) conditions for validity of the statement: “con-

junction P ∧Q of the propositions P and Q holds in the state ψ”,

Theorem B. The following conditions are all equivalent.

(1) Pr{P ∧Q‖ψ} = 1;

(2) P holds in ψ and simultaneously Q holds in ψ;

(3) Pr{P‖ψ} = Pr{Q‖ψ} = 1;

(4) (i) P and Q are commuting in ψ, i.e., [P,Q]ψ = 0, and (ii) P holds in ψ and

simultaneously Q holds in ψ, i.e.,

Pr{com(P,Q)‖ψ} = Pr{P‖ψ} = Pr{Q‖ψ} = 1. (25)

We shall give a proof in Appendix B for the reader’s convenience, although the asser-

tion is rather well-known [45].

It has often been claimed that the state-independent interpretation of the conjunction

P ∧Q in quantum logic is ambiguous if projectionsA andB do not commute. However,

Theorem B shows that the state-dependent interpretation as “P ∧ Q holds in the state

ψ” is unambiguous, since if “P ∧Q holds in the state ψ” then P and Q are commuting

in the state ψ, i.e., two projections P and Q are actually commuting on the relevant

subspace LP,Q. For further discussions on the state-dependent interpretations of other

logical operations in quantum logic, we refer the reader to [45, Section 5].

6. RRE AS EXPERIMENTAL TEST OF DISTRIBUTIVITY OF HUMAN LOGIC

6.1. Notion of response replicability. We recall that the projective instrument IP is

a family {IP (x)|x = 0, 1} of positive maps IP (x) on the space L(H) of operators on

H defined by the relation IP (1)ρ = PρP and IP (0)ρ = P⊥ρP⊥ for all ρ ∈ L(H).

See [28, 29] for further information.
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We consider two projections P,Q, and their projective instruments IP and IQ, and a

state vector ψ. Denote their output probability by

p(Xx, Y y, Zz, ..) = Tr(· · · IZ(z)IY (y)IX(x)|ψ〉〈ψ|) (26)

for X, Y, Z ∈ {P,Q} and x, y, z ∈ {0, 1}. Then we have

p(Xx, Y y, Zz, ..) = ‖ · · ·Z(z)Y (y)X(x)ψ‖2, (27)

where X(0) = X⊥ and X(1) = X for all X ∈ {P,Q}. The instruments IP and IQ

show the repeatability, i.e., p(Px, Px) = p(Px) and p(Qx,Qx) = p(Qx) for any

P,Q and ψ. We say that IP and IQ show RRE (the response replicability effect) in ψ iff

p(Px,Qy, Px) = p(Px,Qy) and p(Qx, Py,Qx) = p(Qx, Py) for any x, y, z ∈ {0, 1},

i.e.,

p(P1, Q1, P1) = p(P1, Q1), (28)

p(P1, Q0, P1) = p(P1, Q0), (29)

p(P0, Q1, P0) = p(P0, Q1), (30)

p(P0, Q0, P0) = p(P0, Q0), (31)

p(Q1, P1, Q1) = p(Q1, P1), (32)

p(Q1, P0, Q1) = p(Q1, P0), (33)

p(Q0, P1, Q0) = p(Q0, P1), (34)

p(Q0, P0, Q0) = p(Q0, P0). (35)

6.2. Equivalence of distributivity and RRE. The following theorem holds:

Theorem 6.1. The projective instruments of P and Q show RRE in a state ψ if and only

if com(P,Q)ψ = ψ.

The proof will be given in Appendix C.

Since the above proof of (⇒) uses only Eqs. (28)–(31), we have

Corollary 6.2. In the definition of RRE, Eqs. (28)–(31) imply Eqs. (32)–(35).

From the above theorem, we can test the distributivity of human logic (or by The-

orem A, commutativity of projections P and Q) in a given state ψ by two projective

instruments IP and IQ; namely, P and Q commute in ψ if and only if IP and IQ show

RRE, or equivalently IP and IQ show Eqs. (28)–(31).

6.3. Towards testing distributivity of human logic. In this paper, we highlight the

role of the distributive law in human reasoning. We couple violations of classical logic

with violation of distributivity. Theorem 6.1 provides (really unexpected) possibility

to dive into the deepest level of human information processing. RRE can be checked



HUMAN LOGIC AND COGNITIVE PSYCHOLOGY 12

experimentally, see Eqs. (28)-(35) (in fact, it is sufficient to check Eqs. (28)–(31)). We

hope that coupling of RRE with logic of human reasoning will stimulate psychologists

to perform new experiments. In the light of paper [31], analysis of the methodology

and design should precede experiment. By finding experimental violation of one of

Eqs. (28)–(35), experimenters can conclude that

• either the distributive law is violated (in the state ψ prepared for the experiment),

• or the state update generated by observations cannot be described straightfor-

wardly as orthogonal projection.

We stress that the projective-state update implies the classical Bayesian update of

probability for two commuting observables [47] and the use of Bayesian inference in

reasoning. Non-projective instruments generate the non-Bayesian state updates and new

inference procedures [28, 29].

6.4. Towards testing incompatibility of mental observables. As was already pointed

out, it is difficult if possible at all to prove compatibility (incompatibility) of mental

observables in the theoretical framework (see introduction). It seems that it can be

determined only experimentally. Since commutativity is equivalent to distributivity, the

RRE-test can be used as well for checking compatibility (incompatibility) of projection

observables.

6.5. Impossibility of description by projective instruments of combination

QOE+RRE for one concrete state. All the previous considerations of this section were

done in the state-dependent framework. This gives the possibility to improve essentially

the basic result [25] on the impossibility to describe combination of QOE and RRE by

projective type instruments. This no-go theorem was formulated under the following

stability assumption:

“If ψ is a possible initial state vector for a given measurement sequence in an n-

dimensional Hilbert space, then there is an open ball Br(ψ) centered at ψ with a suf-

ficiently small radius r > 0, such that any vector ψ + δ in this ball, normalized by its

length ‖ψ + δ‖, is also a possible initial state vector for this measurement sequence.”

Now, we can omit this stability condition and consider just one fixed state ψ. If

QOE+RRE holds for this state, then measurements cannot be described by projective

instruments.

7. CONCLUDING REMARKS

We discuss the conjecture that quantum logic is a tool of human reasoning; the brain

functioning includes the special system for information processing based on quantum

logic, the QL-system. The role of violation of distributivity is highlighted. As is shown
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(Theorem A), distributivity is equivalent to compatibility (and in the quantum formal-

ism, to commutativity of operators).

The state-dependent character of quantum reasoning is emphasized. We think that

state-dependent modeling of quantum reasoning is especially important for applications

to cognition and psychology.

Our present study is closely coupled to the previous research on quantum-like mod-

eling of QOE and RRE [28, 29]. The role of RRE was highlighted through coupling

to quantum reasoning, its (non-)distributivity and using (in)compatible logical vari-

ables. We proposed the experimental test for RRE and it can be considered as a test

of distributivity-compatibility under the assumption of projective type representation of

mental observables. Finally, we improved the no-go theorem from article [25], on the

impossibility of combination of QOE and RRE.

It is often questioned whether POVMs (positive [or, probability] operator valued mea-

sures) are relevant to the present problem. First of all, we should note that it is some-

times claimed that all measurements are classified as projective measurements or POVM

measurements. However, this is not a correct classification of measurements, since the

notion of projective measurements implies that the state is updated by the measurement

by the projection onto the eigensubspace determined by the measurement outcome and

measured observable, but the notion of POVM does not imply any particular way of the

state update. Thus, it is appropriate to say that all measurements are classified as sharp

measurements or unsharp measurements. Every sharp measurement has a projection

valued measure to determine the probability distribution of the outcome of the mea-

surement and every unsharp measurement has a POVM that is not a projection valued

measure. Now, sharp measurements are classified as repeatable sharp measurements and

non-repeatable sharp measurements, where “repeatability” is synonymous with “A−A

response replicability”. All repeatable sharp measurements are classified as projective

(or non-invasive repeatable sharp) measurements or invasive repeatable sharp measure-

ments. In our previous paper we have shown that a pair of invasive repeatable sharp

measurements shows RRE and QOE consistently. Thus, invasive repeatable sharp mea-

surements are the most appropriate class to model opinion poll data. This class of mea-

surements are well-described as quantum instruments, which are derived from general

quantum measurement theory and do not satisfy the Bayesian belief-update rule [9,12].

Unsharp positive operator valued measures are not relevant, since they do not show

repeatability in the finite dimensional case [48] (see also [9, Theorem 6.5]).

In this direction of research the following open problem remains:

Are there any quantum instrumental model (IP , IQ) of QOE+RRE such that P and

Q do not commute.
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The Wang-Busemeyer model [31] satisfies QOE, and is such that P and Q do not

commute, but violates RRE, as their model is of the projective update type. In this

paper, we have concluded, in any models (IP , IQ) of the projective update type, QOE

implies the noncommutativity of P and Q, but RRE implies the commutativity of P and

Q. Our model [28,29] satisfies both QOE and RRE, but P andQ in the model commute.

It is an interesting problem as to whether there is some type of opinion poll data sets

that demands models (IP , IQ) of QOE+RRE such that P and Q do not commute.

We hope that this paper would attract attention of psychologists and experts in brain

studies to quantum logic conjecture for human reasoning. In experimental research,

coupling of RRE with the basics of quantum reasoning would stimulate its further test-

ing (cf. [27]).

The present research, though qualitative, motivates a further quantitative research.

We expect that the tests of the RRE involves measurement error, but the deviation from

RRE by this error is too small to explain the degree of QOE that manifests in the existing

poll data. Thus, projective measurement model would not explain RRE+QOE (in the

poll data) even compromised by the error.
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APPENDIX A. PROOF OF THEOREM A

Proof. Since P ∧Q, P ∧Q⊥, P⊥ ∧Q, and P⊥ ∧Q⊥ are mutually orthogonal, we have

(P∧Q)∨(P∧Q⊥)∨(P⊥∧Q)∨(P⊥∧Q⊥) = (P∧Q)+(P∧Q⊥)+(P⊥∧Q)+(P⊥∧Q⊥).

(⇒) Since R(P ∧ Q) ⊆ R(P ), we have P (P ∧ Q) = P ∧ Q. Similarly, Q(P ∧

Q) = P ∧ Q. Thus, PQ(P ∧ Q) = QP (P ∧ Q) = P ∧ Q. Similarly, we have

PQ(P ∧Q⊥) = QP (P ∧Q⊥) = 0, PQ(P⊥ ∧Q) = QP (P⊥ ∧Q) = 0, and PQ(P⊥ ∧

Q⊥) = QP (P⊥ ∧Q⊥) = 0. Thus, the assertion follows easily.

(⇐) It is well known that if [P,Q] = 0 then P ∧ Q = PQ, P⊥ ∧ Q = (I − P )Q =

Q−PQ, P∧Q⊥ = P (I−Q) = P−PQ, P⊥∧Q⊥ = (I−P )(I−Q) = I−P−Q+PQ.

Thus, the assertion follows easily. �

APPENDIX B. PROOF OF THEOREM B

Proof. (1) ⇒ (4): From (1) we have ‖(P ∧Q)ψ‖2 = 1. Since P ∧Q ≤ com(P,Q), we

have 1 = ‖(P ∧ Q)ψ‖2 ≤ ‖com(P,Q)ψ‖2, so that Pr{com(P,Q)‖ψ} = 1. Similarly,

Pr{P‖ψ} = 1 follows from P ∧ Q ≤ P , and Pr{Q‖ψ} = 1 from P ∧ Q ≤ Q. Thus,

the implication (1) ⇒ (4) follows.
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Now, the implications (4) ⇒ (3), (3) ⇒ (2), and (2) ⇒ (1) can be shown easily. �

APPENDIX C. PROOF OF THEOREM 6.1

Proof. (⇐) Suppose com(P,Q)ψ = ψ. Then

QPψ = QP com(P,Q)ψ = Q[(P ∧Q) ∨ (P ∧Q⊥)]ψ = (P ∧Q)ψ,

PQPψ = P (P ∧Q)ψ = (P ∧Q)ψ.

Thus, we have PQPψ = QPψ. Similarly, we have X(x)Y (y)X(x)ψ = Y (y)X(x)ψ, and

RRE follows.

(⇒) From Eq. (28), ‖PQPψ‖2 = ‖QPψ‖2. Since ‖QPψ‖2 = ‖PQPψ‖2 +

‖P⊥QPψ‖2, we have P⊥QPψ = 0, and hence QPψ = PQPψ. Thus, QPψ ∈

R(P ) ∩ R(Q), and hence (P ∧ Q)QPψ = QPψ, so that com(P,Q)QPψ = QPψ.

Similarly, from Eqs. (28)–(31) we have com(P,Q)Q(y)P (x)ψ = Q(y)P (x)ψ. Thus, we

have

com(P,Q)ψ = com(P,Q)
∑

x,y

Q(y)P (x)ψ =
∑

x,y

com(P,Q)Q(y)P (x)ψ

=
∑

x,y

Q(y)P (x)ψ = ψ.

Therefore, we conclude that the projective measurements of P and Q show RRE in ψ if

and only if com(P,Q)ψ = ψ. �

REFERENCES

[1] D. Kahneman, Thinking, Fast and Slow, Farrar Straus and Giroux, 1994.

[2] G. Boole, An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories

of Logic and Probabilities. Macmillan, (1958[1854]).Reprinted with corrections, Dover Publications,

New York, NY (reissued by Cambridge University Press, 2009).

[3] Birkhoff, G. and von Neumann, J. The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936).

[4] Kalmbach, G. Orthomodular lattices. Academic Press, London, New York, 1983.

[5] Khrennikov, A., and Basieva, I. (2014). Possibility to agree on disagree from quantum information

and decision making. J. Math. Psychol., 62, 1-15.

[6] von Neumann, J. Mathematical Foundations of Quantum Mechanics (Princeton UP, Princeton, NJ,

1955). [Originally published: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin,

1932)].

[7] Davies, E. B. and Lewis, J. T. An operational approach to quantum probability. Commun. Math. Phys.

17, 239–260 (1970).

[8] Davies, E. B. Quantum Theory of Open Systems (Academic, London, 1976).

[9] Ozawa, M. (1984). Quantum measuring processes for continuous observables. J. Math. Phys., 25,

79-87.

[10] Ozawa, M. (1997). An operational approach to quantum state reduction. Ann. Phys. (N.Y.), 259,

121-137.



HUMAN LOGIC AND COGNITIVE PSYCHOLOGY 16

[11] Ozawa, M. Uncertainty relations for noise and disturbance in generalized quantum measurements.

Ann. Phys. (N.Y.) 311, 350–416 (2004).

[12] M. Ozawa, Quantum measurement theory for systems with finite dimensional state spaces, to appear

in The Quantum-Like Revolution: A Festschrift in Honor of Professor Andrei Khrennikov, edited by

E. Haven and A. Plotnitsky (Springer, Switzerland). https://arxiv.org/abs/2110.03219.

[13] Khrennikov, A. (2004). Information dynamics in cognitive, psychological, social, and anomalous

phenomena, Ser.: Fundamental Theories of Physics. Dordreht: Kluwer.

[14] Khrennikov, A. (2010). Ubiquitous quantum structure: from psychology to finances. Berlin-

Heidelberg-New York: Springer.

[15] Busemeyer, J. and Bruza, P.(2012). Quantum models of cognition and decision. Cambridge: Cam-

bridge Univ. Press.

[16] Bagarello, F. (2019). Quantum concepts in the social, ecological and biological sciences. Cam-

bridge: Cambridge Unive. Press.

[17] Haven, E. and Khrennikov, A. (2013). Quantum social science. Cambridge: Cambridge Univ. Press.

[18] Haven, E., Khrennikov, A. and Robinson, T. R. (2017). Quantum methods in social science: A first

course. Singapore: WSP.

[19] Pothos, E. M., and Busemeyer, J. R. (2022). Quantum cognition. An. Rev. Psych., 73, 749-778.

[20] Basieva, I., Khrennikov, A., and Ozawa, M. (2021). Quantum-like modeling in biology with open

quantum systems and instruments. Biosystems, 201, 104328.

[21] Basieva, I., Cervantes, V. H., Dzhafarov, E. N., and Khrennikov, A. (2019). True contextuality beats

direct influences in human decision making. J. Exp. Psych.: General, 148(11), 1925.

[22] Obeid, A. K., Bruza, P., Moreira, C., Bruns, A., and Angus, D. (2022). An Extension Of Combina-

torial Contextuality For Cognitive Protocols. Front. Psychol., 2557.

[23] Basieva, I., Pandey, V., and Khrennikova, P. (2022). More Causes Less Effect: Destructive Interfer-

ence in Decision Making. Entropy, 24(5), 725. ’

[24] Khrennikov, A. (2022). Order stability via Fröhlich condensation in bio, eco, and social systems:
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