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Quantum Measurement Theory for Systems
with Finite Dimensional State Spaces

Masanao Ozawa

Abstract In this paper, we present a general theory of finite quantum measurements,

for which we assume that the state space of the measured system is a finite dimen-

sional Hilbert space and that the possible outcomes of a measurement is a finite set

of the real numbers. We develop the theory in a deductive manner from the basic

postulates for quantum mechanics and a few plausible axioms for general quan-

tum measurements. We derive an axiomatic characterization of all the physically

realizable finite quantum measurements. Mathematical tools necessary to describe

measurement statistics such as POVMs and quantum instruments are not assumed

at the outset, but we introduce them as natural consequences of our axioms. Our

objective is to show that those mathematical tools can be naturally derived from

obvious theoretical requirements.

1 Introduction

Theories in physics are closely related to mathematics. In most cases, their basic

principles are given undisputed mathematical expressions. Hilbert’s sixth problem

explicitly asked to treat such mathematical formulations of physical theories in the

rigorous axiomatic method that was successful in the investigations on the founda-

tions of geometry [9]. One of the typical outcomes of this problem is an axiomatiza-

tion of quantum mechanics due to von Neumann, given in his book “Mathematical

Foundations of Quantum Mechanics” (English translation) [16] originally published

in 1932.
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In contrast to the prevailing view that this has completed the axiomatization

of non-relativistic quantum mechanics without any superselection rules, von Neu-

mann’s axioms need to be completed by revising his treatments on quantum mea-

surements. It is true that until the 1970s there were no problems in non-relativistic

quantum mechanics that cannot be solved because of the deficiency of von Neu-

mann’s axioms. However, in the debate occurred in the 1980s on the sensitivity

limit to gravitational-wave detectors, it was revealed that von Neumann’s axioms

were not sufficient.

In quantum mechanics, the notion of measurement plays an indispensable role.

Nevertheless, “theory of measurement” was left incomplete in von Neumann’s ax-

iomatization. Quantum mechanics as axiomatized by von Neumann was only jus-

tified in experiments in which the object is prepared in the known state, undergoes

time evolution with the known Hamiltonian, and then is subject to a measurement of

one of its observables. Von Neumann’s quantum postulates successfully predict the

probability distribution of the outcome of the measurement. However, they are not

sufficient to predict the joint probability distribution of the outcomes of successive

measurements in time.

Experimental technology was not precise enough to carry out successive mea-

surements for comparing with the theory for long. However, the emerging laser

technology in the 1960s enabled us to control quantum states and measuring inter-

action between the object and the apparatus quantum mechanically to make precise

successive measurements.

For the statistics of successive measurements, we need the notion of state changes

caused by measurements, often called quantum state reductions, which has been

considered one of the most difficult notions in quantum mechanics. In order to deal

with quantum systems to be measured sequentially, we need a general notion of

quantum state reductions and mathematical methods to calculate them. For this pur-

pose, we have to mathematically characterize all of the possible state changes caused

by the most general type of measurements.

Von Neumann [16] introduced the repeatability hypothesis to determine the

quantum state reduction, which implies that the state of the measured system

changes to the eigenstate of the measured observable corresponding to the outcome

of the measurements. This principle uniquely determines the state change for mea-

surements of non-degenerate discrete observables, of which all the eigenspaces are

one dimensional. For degenerate observables the eigenstate is not uniquely deter-

mined. Subsequently, Lüders [11] proposed the projection postulate, called the von

Neumann-Lüders projection postulate, to determine the unique eigenstate. A math-

ematical problem was considered to extend this notion to measurements of observ-

ables with continuous spectra (or continuous observables for brevity). Nakamura

and Umegaki [15] pointed out that the unique sate change described by von Neu-

mann’s repeatability hypothesis for measurements of non-degenerate observables is

an instance of Umegaki’s conditional expectations on operator algebras [45], which

is a projection of the full operator algebra onto the subalgebra generated by the mea-

sured observable, and they conjectured that von Neumann’s repeatability hypothesis

can be extended to continuous observables as a conditional expectation of the full
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operator algebra onto the subalgebra generated by the measured observable. In fact,

for general discrete observables the state change described by the von Neumann-

Lüders projection postulate is a conditional expectation of the full operator algebra

onto the commutant of the measured observable. However, Arveson [1] proved that

the corresponding conditional expectation does not exist as long as the measured

observable has a continuous spectral.

Based on the above results, Davies and Lewis [5] proposed to abandon the re-

peatability hypothesis as the first principle, and introduced a general mathematical

framework, based on the mathematical notion called instruments, which general-

izes the notion of conditional expectations [45], the notion of operations described

for discrete observables by Schwinger [40,42,43] and introduced in the context of

algebraic quantum field theory by Haag and Kastler [6], and the notion of effects in-

troduce by Ludwig [12,13]. The Davies-Lewis (DL) instruments were considered as

a general mathematical notion that may describe all the possible quantum measure-

ments. However, the consistency problem for their proposal remained. It was not

clear whether the class of DL instruments are too general to describe quantum mea-

surements, or whether every DL instrument is consistent with quantum mechanics,

or whether every DL instrument has a quantum mechanical model.

The project of gravitational wave detection was one of the earliest attempts to use

the new technology for precision measurements. This is an experiment to transfer

the effect of gravitational wave on the motion of a macroscopic object to be mon-

itored in time. The effect of gravitational wave is so weak that the monitoring the

macroscopic object, called the gravitational wave antenna, is considered as a series

of successive measurements of a quantum observable.

In the early days, two types of methods, called the resonator type and the inter-

ferometer type, were proposed to detect gravitational waves. Braginsky, Caves and

their collaborators [2,3] promoted the resonator type detector. They claimed that

there is a sensitivity limit called the standard quantum limit (SQL) for gravitational

wave detection due to Heisenberg’s uncertainty principle. According to them, how-

ever, the SQL can be circumvented by resonator type detectors that monitors the

harmonic oscillator position by the technique called the back-action evading mea-

surement based on the theory of quantum non-demolition measurements. In con-

trast, they claimed that the SQL is an unescapable limit for the interferometer type

detector that monitors the free-mass position.

In 1983 Yuen [47] questioned the derivation of the SQL for monitoring of the

free-mass position and claimed that the SQL can be broken by a measurement that

measures the free-mass position leaving the object in a contractive state that evolves

to a near position eigenstate at the time of the next position measurement. How-

ever, his claim was not readily accepted, because it was questioned whether a mea-

surement with a sufficient accuracy leaving the free-mass in a contractive state is

physically realizable or not. At that time no general way was known at all to judge

whether a newly proposed measurement is physically realizable or not.

In fact, Yuen [48] proposed a problem to find a mathematical characterization of

all the physically realizable quantum measurements, and he conjectured that the DL

instruments are too general. It was quickly realized that this problem was already
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solved by the present author [20] showing that all the physically realizable quantum

measurements are faithfully characterized by completely positive instruments, the

notion which modifies the notion of the Davies-Lewis instrument by requiring com-

plete positivity. Later, Yuen’s idea of contractive state measurements was realized

by a solvable model that breaks the SQL to the arbitrary accuracy [14,24,26].

This completed von Neumann’s axiomatization of quantum mechanics, since it

provided the most general measurement axiom, or the most general description of

quantum state reductions, consistent with the other axioms.

In this paper, we present a general theory of finite quantum measurements to

introduce a general theory of quantum measurements developed as outlined above

in a form accessible without sophisticated mathematics for operators in infinite di-

mensional Hilbert spaces and probability theory for continuous random variables.

Thus, we assume that the state space of the measured system is a finite dimensional

Hilbert space and that the possible outcomes of a measurement is a finite set of the

real numbers. We develop the theory in a deductive manner from the basic postulate

for quantum mechanics and a few plausible axioms for general quantum measure-

ments, and we derive an axiomatic characterization of all of the physically realizable

finite quantum measurements. Mathematical tools necessary to describe measure-

ment statistics, such as POVMs and quantum instruments, are not assumed at the

outset, but we introduce them as natural consequences of our intuitive axioms. Our

objective is to show that those mathematical tools can be naturally derived from

obvious theoretical requirements. We define observables as physical quantities of

the system. We adopt the conventional postulate that observables corresponds to

self-adjoint operators on the state space. The notion of POVMs are introduced as

statistical properties of measurements at the outset. A POVM is considered to be

an observable, a physical quantity, or a physical property belonging to the mea-

sured system only if it is a projection valued measure, uniquely associated with a

self-adjoint operator on the state space of the system through the spectral decompo-

sition.

As a chapter of a Festschrift celebrating Andrei Khrennikov and the quantum-

like revolution, the author hopes that this work would help the readers to extend the

scope of quantum measurement theory based on the notion of quantum instruments

beyond quantum physics.

2 Quantum Mechanics

In this paper, we consider quantum systems described by finite dimensional Hilbert

spaces. Mathematically, a finite dimensional Hilbert space is defined as any finite di-

mensional linear space H over the complex number field with inner product (ξ ,η)
defined for all ξ ,η ∈ H , which we assume linear in η and conjugate linear in ξ
following the physics convention.

Let H be a finite dimensional Hilbert space. A linear operator on H is a linear

mapping defined everywhere on H with values in H . Denote by L (H ) the space
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of linear operators on H . The adjoint of a linear operator A on H is a linear oper-

ator A† uniquely determined by the condition (ξ ,A†η) = (Aξ ,η) for all ξ ,η ∈ H .

A linear operator A is said to be self-adjoint if A† = A, or equivalently (ξ ,Aξ ) is a

real number for all ξ ∈ H . A linear operator A is said to be positive, in symbols

A ≥ 0, if (ξ ,Aξ )≥ 0 for all ξ ∈ H . The trace of a linear operator A is defined by

Tr[A] = ∑ j(φ j,Aφ j) for any orthonormal basis {φ j}.1 A linear operator ρ is called

a density operator if positive and of unit trace, i.e., ρ ≥ 0 and Tr[ρ ] = 1.

Axioms for quantum mechanics of finite level systems without any superselec-

tion rules are given as follows.

Axiom Q1 (Quantum systems, states, and observables). Every quantum sys-

tem S is described by a finite dimensional Hilbert space H called the state space of

S. States of S are represented by density operators on H and observables of S are

represented by self-adjoint operators on H . Every density operator on H corre-

sponds to a state of S, and every self-adjoint operator corresponds to an observable

of S.

By Axiom Q1 we shall identify states with density operators, and observables

with self-adjoint operators. The state of the form ρ = |ψ〉〈ψ| is called a pure state.2

If S is in the state ρ = |ψ〉〈ψ|, S is said to be in the (vector) state ψ . We denote by

S (H ) the space of states, or density operators, on H and by O(H ) the space of

observables, or self-adjoint operators, on H .

Axiom Q2 (Born statistical formula). If an observable A is measured in a state

ρ , the outcome obeys the probability distribution of A in ρ defined by

Pr{x = x‖ρ}= Tr[PA(x)ρ ] (1)

where x ∈R, and PA(x) stands for the projection onto the subspace {ψ ∈H |Aψ =
xψ}.

The projection PA(x) is called the spectral projection of A for the real number x.

The map PA : x 7→ PA(x) is called the spectral measure of A [7]. From Axiom Q2,

the mean value 〈A〉 and the standard deviation σ(A) are given by

〈A〉 = Tr[Aρ ], (2)

σ(A)2 =
〈

A2
〉

−〈A〉2 . (3)

The standard deviations σ(A),σ(B) of observables A,B in a state ρ satisfy Robert-

son’s inequality

1 The trace is independent of the choice of the orthonormal basis {φ j}. To see this let {ξk}
be another orthonormal basis. Then, we have Tr[A] = ∑ j(φ j,Aφ j) = ∑ j,k(φ j,ξk)(ξk,Aφ j) =

∑ j,k(A
†ξk,φ j)(φ j,ξk) = ∑k(A

†ξk,ξk) = ∑k(ξk,Aξk). Thus, the trace is independent of the choice

of the orthonormal basis.
2 For any ξ ,η ∈ H , the operator |ξ 〉〈η| is defined by (|ξ 〉〈η|)ψ = (η,ψ)ξ for all ψ ∈ H .
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σ(A)σ(B)≥ 1

2
| 〈[A,B]〉 |. (4)

Axiom Q3 (Time evolution). Suppose that a system S is an isolated system with

the (time-independent) Hamiltonian H from time t to t+τ . The system S is in a state

ρ(t) at time t if and only if S is in the state ρ(t + τ) at time t + τ satisfying

ρ(t + τ) = e−iτH/ℏρ(t)eiτH/ℏ, (5)

where ℏ stands for the Planck constant divided by 2π .

Axiom Q4 (Composite systems). The state space of the composite system S =
S1 +S2 of a system S1 with the state space H and a system S2 with the state space

K is given by the tensor product H ⊗K . The observable A of S1 is identified with

the observable A⊗ I of S and the observable B of S2 is identified with I ⊗B of S.

For any orthonormal bases {ξ j} of H and {ηk} of K , the family of their tensor

products {ξ j ⊗ηk} forms an orthonormal basis of H ⊗K . The tensor product of

A ∈ L (H ) and B ∈ L (K ) is the linear operator A⊗B ∈ L (H ⊗K ) defined

by (A⊗B)(ξ ⊗η) = Aξ ⊗Bη for all ξ ∈ H and η ∈ K . Every A ∈ L (H ⊗K )
is of the form A = ∑ j,k C j ⊗Dk where C j ∈ L (H ) and Dk ∈ L (K ). The partial

traces TrK [A] over K and TrH [A] over H of A ∈ L (H ⊗K ) are defined by

TrK [A] = ∑ j,k C j ⊗ Tr[Dk] and TrH [A] = ∑ j,k Tr[C j]⊗Dk if A = ∑ j,k C j ⊗Dk. It

follows from Axiom Q4 that if the system S1 +S2 is in a state ρ12, then the system

S1 is in the state ρ1 = TrK [ρ12] and S2 is in the state ρ2 = TrH [ρ12].

3 Statistical properties of measuring apparatuses

In this section, we discuss statistical properties of measuring apparatus. We intro-

duce plausible axioms of statistical properties of measuring apparatus required for

every apparatus to satisfy, and then we show that statistical properties of physically

realizable measuring apparatus can be naturally described by POVMs and com-

pletely positive instruments.

3.1 Output probability distributions

Axiom M1 (Output probability distributions and quantum state reductions).

An apparatus A(x) with output variable x to measure a system S determines the

probability Pr{x = x‖ρ} of the outcome x = x of the measurement depending on the

input state ρ (the state of S just before the measurement), and determines the output
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state ρ{x=x} (the state of S just after the measurement) depending on the input state

ρ and the outcome x = x of the measurement.

The variable representing the outcome of the apparatus is called the output vari-

able. Let S be a quantum system, to be referred to the object, described by a Hilbert

space H of state vectors. Let A(x) be a measuring apparatus with an output vari-

able x to measure the object S. We assume that x takes values in the real line R. For

any real number x ∈ R, we shall denote by “x = x” the probabilistic event that the

output variable of apparatus A(x) takes the value x. By Axiom M1, the probability

distribution of the output variable x is determined by the input state ρ . Denote it by

Pr{x = x‖ρ}, and call it as the output distribution of A(x) in the input state ρ . If the

state ρ is a vector state ρ = |ψ〉〈ψ|, we also write Pr{x = x‖ψ} = Pr{x = x‖ρ}.

For any subset ∆ ⊆ R, we define Pr{x ∈ ∆‖ρ} = ∑x∈∆ Pr{x = x‖ρ}. We suppose

that the output distribution satisfies the following conditions.

(i) Positivity: Pr{x = x‖ρ} ≥ 0 for every x ∈ R.

(ii) Unity: ∑x∈R Pr{x = x‖ρ}= 1.

(iii) Finiteness: There exists a finite subset of S ⊆ R such that if x 6∈ S then

Pr{x = x‖ρ}= 0 for any state ρ .

The output probability distribution should satisfy the following postulate.eq

Axiom M2’ (Mixing law of output probability). For any apparatus A(x), the

function ρ 7→ Pr{x = x‖ρ} is an affine function of states ρ for any real number x.

This means that we have

Pr{x = x‖pρ1 +(1− p)ρ2}= pPr{x = x‖ρ1}+(1− p)Pr{x = x‖ρ2},

where ρ1 and ρ2 are density operators and 0 < p < 1.

The above axiom is justified by the following interpretation of the mixture of

states: The system S is in the state pρ1+(1− p)ρ2 if it is in state ρ1 with probability

p and in state ρ2 with probability 1− p.

3.2 Probability operator-valued measures

In order to characterize output probability distributions, we introduce a mathemati-

cal definition. A mapping Π : x 7→ Π(x) of R into the space L (H ) of linear opera-

tors on H is called a probability operator-valued measure (POVM), also known as

a positive operator-valued measure or a probability operator measure (POM) [8], if

the following conditions are satisfied:

(i) Positivity: Π(x)≥ 0 for all x ∈ R.

(ii) Unity: ∑x∈R Π(x) = 1.

(iii) Finiteness: There exists a finite subset of S ⊆ R such that if x 6∈ S then

Π(x) = 0.



8 Masanao Ozawa

One of important consequences from the above postulate is the following char-

acterization of output probability distributions [18].

Theorem 1 Axiom M2’ (the mixing law of output probability) holds if and only if

for any apparatus A(x), there uniquely exists a POVM Π satisfying

Pr{x = x‖ρ}= Tr[Π(x)ρ ] (6)

for any real number x and density operator ρ .

The POVM Π defined by Eq. (6) is called the POVM of A(x).

3.3 The Born statistical formula

Let A be an observable of system S. According to Axiom Q2 (Born statistical for-

mula), we say that apparatus A(x) satisfies the Born statistical formula (BSF) for

observable A on input state ρ , if we have

Pr{x = x‖ρ}= Tr[PA(x)ρ ] (7)

for every real number x, where PA(x) is the spectral projection of A for x. From

Eqs. (6) and (7), apparatus A(x) satisfies the Born statistical formula on every input

state if and only if the POVM Π of A(x) is the spectral measure PA. In this case,

the apparatus A(x) is called an A-measuring apparatus. Naturally, we assume that

for every observable A of S there is at least one A-measuring apparatus.

The Born statistical formula is a necessary condition for the state-dependent ac-

curacy of measurement, or for the accurate measurements of an observable A in a

single state ρ . For a necessary and sufficient condition for the state-dependent ac-

curacy of measurement, we refer the reader to [37–39]. According to those studies

of the state-dependent accuracy of measurement, an apparatus accurately measures

an observable A in every state ρ if and only if the Born statistical formula holds

for every state ρ . Thus, the state-dependent accuracy of measurement required for

every state is consistent with the conventional state-independent accuracy of mea-

surement.

3.4 Quantum state reductions

According to Axiom M1, depending on the input state ρ , any apparatus A(x) deter-

mines the state ρ{x=x} just after the measurement for any possible outcome x = x

with Pr{x = x‖ρ}> 0. The operational meaning of the state ρ{x=x} is given as fol-

lows. If a measurement using the apparatus A(x) on input state ρ is immediately

followed by a measurement using another apparatus A(y) with output variable y,

we shall denote by Pr{y = y|x = x‖ρ} the conditional probability of the outcome
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y = y of the measurement using A(y) given the outcome x = x of the measurement

using A(x). Then, under the condition x = x the state just before the measurement

using A(y) is the state ρ{x=x} so that we naturally have

Pr{y = y|x = x‖ρ}= Pr{y = y‖ρ{x=x}}. (8)

If Pr{x = x‖ρ} = 0, the state ρ{x=x} is taken to be indefinite. The state ρ{x=x} is

called the output state of the apparatus A(x) given the outcome x = x on input state

ρ .

Two apparatuses are called statistically equivalent if they have the same output

probabilities and the same output states for any outcomes and any input states.

3.5 Joint output probability distributions

If a measurement using apparatus A(x) on input state ρ is immediately followed

by a measurement using apparatus A(y), then from Eq. (8) the joint probability

distribution Pr{x = x,y = y‖ρ} of the output variables x and y is given by

Pr{x = x,y = y‖ρ}= Pr{y = y‖ρ{x=x}}Pr{x = x‖ρ}. (9)

Thus, the joint probability distribution of outputs of successive measurements de-

pends only on the input state of the first measurement. We shall call the above joint

probability distribution the joint output probability distribution of A(x) followed by

A(y). The joint output probability distributions should satisfy the following axiom:

Axiom M2 (Mixing law of joint output probability). For any apparatuses

A(x) and A(y), the function ρ 7→ Pr{x = x,y = y‖ρ} is an affine function of density

operators ρ for any real numbers x,y.

Since the joint probability Pr{x = x,y = y‖ρ} depends on the initial input state

ρ , the above axiom is also justified by the following interpretation of the mixture of

states: The system S is in the state pρ1+(1− p)ρ2 if it is in state ρ1 with probability

p and in state ρ2 with probability 1− p.

By summing up y in Eq. (9) and using the unity relation ∑y∈R Pr{y= y‖ρ{x=x}}=
1, we have

∑
y∈R

Pr{x = x,y = y‖ρ}= Pr{x = x‖ρ} (10)

for any x and ρ . Thus, we conclude that Axiom M2 (the mixing law of joint output

probability) implies Axiom M2’ (the mixing law of output probability).
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3.6 Instruments

Davies and Lewis [4,5] introduced the following mathematical notion for unified

description of statistical properties of measurements. A mapping I : x 7→ I (x)
of R into the space L (L (H )) of linear transformations on L (H ) is called a

Davies-Lewis (DL) instrument, if the following conditions are satisfied.

(i) Positivity: I (x) maps positive operators in L (H ) to positive operators in

L (H ) for anyx ∈ R.

(ii) Unity: ∑x∈RI (x) is trace-preserving.

(iii) Finiteness: There exists a finite subset S ⊂ R such that I (x) = 0 for all

x ∈ S.

For any apparatus A(x), we define the mapping I (x) : ρ 7→ I (x)ρ by

I (x)ρ = Pr{x = x‖ρ}ρ{x=x}, (11)

where ρ ∈ S (H ) and x ∈ R. The mapping I (x) transforms any density operator

ρ to a positive operator with the trace equal to Pr{x = x‖ρ}. It follows from Axiom

M2 (the mixing law of joint output probability) that I (x) is an affine mapping and

can be extended to a linear transformation on the space L (H ) of linear operators

on H [31,34]. Then it is easy to see that the mapping I (x) : ρ 7→ I (x)ρ satisfies

the Davies and Lewis definition of instruments. Conversely, if any apparatus A(x)
has a Davies-Lewis instrument I satisfying Eq. (11), then Axiom M2 (the mixing

law of joint output probability) holds. Thus, we have [34]

Theorem 2 Axiom M2 (the mixing law of joint output probability) holds if and

only if for any apparatus A(x) there uniquely exists a DL instrument I satisfying

Eq. (11) for any real number x and density operator ρ .

The mapping I (x) defined by Eq. (11) for the apparatus A(x) is called the op-

eration of A(x) given the outcome x = x. The mapping I is called the instrument

of A(x). Then, the output probability and the output state can be expressed by

Pr{x = x‖ρ} = Tr[I (x)ρ ], (12)

ρ{x=x} =
I (x)ρ

Tr[I (x)ρ ]
(13)

where the second relation assumes Pr{x = x‖ρ} > 0. Thus, if Ix and Iy are the

instruments of A(x) and A(y), respectively, then the joint output probability distri-

bution can be expressed by

Pr{x = x,y = y‖ρ}= Tr[Iy(y)Ix(x)ρ ] (14)

for any state ρ and any real numbers x,y.

Both the output probability distribution and the output states are determined by

the instrument. Thus, two apparatuses are statistically equivalent if and only if they

have the same instrument.



Quantum Measurement Theory 11

For any linear transformation T on the space L (H ) of linear operators on H ,

the dual of T is defined to be the linear transformation T ∗ on L (H ) satisfying

Tr[A(Tρ)] = Tr[(T ∗A)ρ ] (15)

for any A,ρ ∈ L (H ). The dual of the operation I (x) is called the dual operation

I (x)∗ given x = x; by Eq. (15) it is defined by the relation

Tr[AI (x)ρ)] = Tr{[I (x)∗A]ρ} (16)

for any A,ρ ∈ L (H ).
The operator I (x)∗I obtained by applying the dual operation I (x)∗ to the iden-

tity operator I is called the effect of the operation I (x). By Eq. (12) and Eq. (15)

we have

Pr{x = x‖ρ}= Tr[(I (x)∗I)ρ ]. (17)

Since ρ is arbitrary, comparing with Eq. (6), we have

Π(x) = I (x)∗I (18)

for any real number x. Thus, the POVM of A(x) is determined by the effects of the

instrument I .

Let Ix and Iy be the instruments of A(x) and A(y), respectively, and let Πy be

the POVM of A(y). Then, we have

Tr[Iy(y)Ix(x)ρ ] = Tr{[Iy(y)
∗I][Ix(x)ρ ]}

= Tr{[Πy(y)[Ix(x)ρ ]}
= Tr{[I (x)∗Πy(y)]ρ} (19)

Thus, the joint output probability distribution can be expressed by

Pr{x = x,y = y‖ρ}= Tr{[I (x)∗Πy(y)]ρ} (20)

for any x,y ∈ R.

3.7 Selective quantum state reduction

For any subset ∆ of R, the outcome event “x ∈ ∆” means that the outcome of the

measurement is an element of ∆ . The probability of outcome event x ∈ ∆ is given

by

Pr{x ∈ ∆‖ρ}= ∑
x∈∆

Pr{x = x‖ρ}. (21)

If the input state is ρ , the state just after the measurement given the outcome event

x ∈ ∆ is denoted by ρ{x∈∆}. This state is determined as follows. Let A be an observ-
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able of the object S. Suppose that the observer measures the object S in the state

ρ{x∈∆} using another apparatus A(y) with the POVM Πy = PA. Then we have

Pr{x ∈ ∆ ,y = y‖ρ} = Pr{y = y‖ρ{x∈∆}}Pr{x ∈ ∆‖ρ}
= Tr[PA(y)Pr{x ∈ ∆‖ρ}ρ{x∈∆}] (22)

On the other hand, by Eq. (9) we have

Pr{x ∈ ∆ ,y = y‖ρ} = ∑
x∈∆

Pr{x = x,y = y‖ρ}

= ∑
x∈∆

Pr{y = y‖ρ{x=x}}Pr{x = x‖ρ}

= Tr[PA(y) ∑
x∈∆

Pr{x = x‖ρ}ρ{x=x}]. (23)

Since A is an arbitrary observable, by comparing Eq. (22) and Eq. (23), we have

Pr{x ∈ ∆‖ρ}ρ{x∈∆} = ∑
x∈∆

Pr{x = x‖ρ}ρ{x=x}. (24)

For any subset ∆ of R, we write I (∆) = ∑x∈∆ I (x) and Π(∆) = ∑x∈∆ Π(x). Let

I be the instrument of an apparatus A(x). For any state ρ we have

I (∆)ρ = Pr{x ∈ ∆‖ρ}ρ{x∈∆}. (25)

I (∆) is called the operation given the outcome event x ∈ ∆ of the apparatus A(x).
The state change from the state ρ to the state ρ{x=x} is called an (individual)

quantum state reduction. The state change from the state ρ to the state ρ{x∈∆} is

called a selective quantum state reduction. On the other hand, the state change ρ 7→
ρ{x∈R} is called a non-selective quantum state reduction. For the instrument I of

the apparatus A(x), the operation T = I (R) is called the non-selective operation

of A(x), and T ∗ = I (R)∗ is called the non-selective dual operation of A(x). In

general a linear transformation T on L (H ) is called a positive map if T ρ ≥ 0 for

all ρ ≥ 0. For any DL instrument I , I (∆) is a positive map. The non-selective

operation T is trace-preserving, i.e.,

Tr[T ρ ] = Tr[ρ ], (26)

for any ρ ∈ L (H ), while the non-selective dual operation T ∗ is unit-preserving,

T ∗I = I. (27)
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3.8 Repeatability Hypothesis

In the early days of quantum mechanics, only a restricted class of measurements

was seriously studied. The following axiom was broadly accepted in the 1930s.

(M) Measurement axiom. If an observable A is measured in a system S to obtain

the outcome a, then the system S is left in an eigenstate of A for the eigenvalue a.

Von Neumann [16] showed that this assumption is equivalent to the following

assumption called the repeatability hypothesis [16, p. 335], posed with a clear op-

erational condition generalizing a feature of the Compton-Simons experiment [16,

pp. 212–214].

(R) Repeatability hypothesis. If an observable A is measured twice in succes-

sion in a system S, then we get the same value each time.

It can be seen from the following definition of measurement due to Schrödinger

given in his famous “cat paradox” paper [41] that von Neumann’s repeatability hy-

pothesis was broadly accepted in the 1930s.

The systematically arranged interaction of two systems (measured object and measuring in-

strument) is called a measurement on the first system, if a directly-sensible variable feature

of the second (pointer position) is always reproduced within certain error limits when the

process is immediately repeated (on the same object, which in the meantime must not be

exposed to any additional influences) [41].

The repeatability hypothesis uniquely determines the state after the measurement

if the measured observable A is non-degenerate, i.e., every eigensubspace is one-

dimensional. Let A = ∑n an |φn〉〈φn| be a non-degenerate observable, where |φn〉〈φn|
stands for the projection onto the subspace spanned by the eigenvector φn for the

eigenvalue an. Then the measuring apparatus satisfies the repeatability hypothesis if

and only if the corresponding instrument is of the form:

I (x)ρ = |φn〉〈φn|ρ |φn〉〈φn| (28)

for any ρ ∈ S (H ) if x = an; and I (x) = 0 otherwise.

If the measured observable is degenerate, the repeatability hypothesis does not

determine the unique eigenstate as the state after the measurement. Lüders [11]

proposed the projection postulate to determine the eigenstate uniquely.

(P) The von Neumann-Lüders projection postulate. If a measurement of an

observable A in a state ρ leads to the outcome x = x, the state ρ{x=x} just after the

measurement is given by

ρ{x=x} =
PA(x)ρPA(x)

Tr[PA(x)ρ ]
. (29)
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Thus, the projection postulate uniquely determines the instrument for measure-

ment of A as

I (x)ρ = PA(x)ρPA(x) (30)

for all x ∈ R and ρ ∈ S (H ).
It is well known that the same observable can be measured with many different

ways that do not satisfy the projection postulate. Thus, the von Neumann-Lüders

projection postulate should not be taken as a universal postulate for quantum me-

chanics but should be taken as a defining condition for a class of measurements

called projective measurements.

For any sequence of projective measurements, we can determine the joint proba-

bility distribution of the outcomes of measurements [46].

Theorem 3 (Wigner’s formula) Let A1, . . . ,An be observables with a discrete spec-

trum of a system S in a state ρ at time 0. If one carries out projective measurements

of observables A1, . . . ,An at times (0 <)t1 < · · · < tn and otherwise leaves the sys-

tem S isolated with the Hamiltonian H, then the joint probability distribution of the

outcomes x1, . . . ,xn of those measurements is given by

Pr{x1 = x1, . . . ,xn = xn‖ρ} = Tr[EAn({xn}) · · ·U(t2− t1)E
A1({x1})U(t1)ρ

×U(t1)
†EA1({x1})U(t2− t1)

† · · ·EAn({xn})],
(31)

where U(t) = e−iHt/ℏ.

3.9 Abandoning the Repeatability Hypothesis

The repeatability hypothesis applies only to a restricted class of measurements and

does not generally characterize the state changes caused by quantum measurements.

In fact, there exist commonly used measurements of discrete observables, such as

photon counting, that do not satisfy the repeatability hypothesis [10]. Moreover, it

has been shown that the repeatability hypothesis cannot be generalized to continu-

ous observables in the standard formulation of quantum mechanics [20,22,25,44].

In 1970, Davies and Lewis [5] proposed abandoning the repeatability hypothesis

and introduced a new mathematical framework to treat all the physically realizable

quantum measurements.

One of the crucial notions is that of repeatability which we show is implicitly assumed in

most of the axiomatic treatments of quantum mechanics, but whose abandonment leads to

a much more flexible approach to measurement theory [5, p. 239].

The proposal of Davies and Lewis [5] can be stated as follows.

(DL) The Davies-Lewis thesis. For every measuring apparatus A(x) with output

variable x there exists a unique DL instrument I satisfying
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Pr{x = x‖ρ} = Tr[I (x)ρ ], (32)

ρ → ρ{x=x} =
I (x)ρ

Tr[I (x)ρ ]
. (33)

We have previously shown that under Axiom M1, the Davies-Lewis thesis is

equivalent to Axiom M2 (the mixing law of joint output probability).

3.10 Complete positivity

Is every Davies-Lewis instrument physically relevant? We shall show that this is

not the case. In physics various phenomena can be described by mathematical mod-

els, and even in a single physical theory a single phenomenon can be modeled by

various different mathematical models. Nevertheless, we should have consistency

relations among all the models describing a single physical phenomenon such as in-

variance under the change of coordinate systems. In quantum measurement theory,

a single measuring apparatus can have different models even with a fixed coordi-

nate system, according to the arbitrariness of the spacial boundary of the measured

object. As described by Axiom Q4, the observable A in a system S can have a differ-

ent mathematical representative A⊗ I in a larger system S+S′. Thus, an apparatus

measuring the observable A is accompanied by another model describing it as an

apparatus measuring the observable A⊗ I. Namely, any model of an apparatus mea-

suring the system S is always accompanied by the model for an apparatus measuring

the system S+S′. It is interesting that this rather obvious fact leads to an important

common property of measuring apparatuses.

Axiom M3 (Extendability). For any apparatus A(x) measuring a system S and

any quantum system S′ not interacting with A(x) nor S, there exists an apparatus

A(x′) measuring system S+S′ with the following statistical properties:

Pr{x′ = x‖ρ ⊗ρ ′} = Pr{x = x‖ρ}, (34)

(ρ ⊗ρ ′){x′=x} = ρ{x=x}⊗ρ ′ (35)

for any x,x′ ∈ R, any state ρ of S, and any state ρ ′ of S′.

The above postulate is justified as follows. Suppose that apparatus A(x) measures

object S. Let S′ be any system, described by a Hilbert space H ′, remote from S and

A(x). Naturally, the apparatus A(x) makes no measurement on S′ but then the same

apparatus can be formally described as an apparatus A(x′) measuring the system

S+S′ with the following statistical properties:

Pr{x′ = x‖ρ ⊗ρ ′} = Pr{x = x‖ρ}, (36)

(ρ ⊗ρ ′){x′=x} = ρ{x=x}⊗ρ ′ (37)
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for any real number x, any state ρ of S and any state ρ ′ of S′. Let I ′ be the instru-

ment of the apparatus A(x′). Then, we have

I
′(x)(ρ ⊗ρ ′) = Pr{x′ = x‖ρ ⊗ρ ′}(ρ ⊗ρ ′){x′=x}

= Pr{x = x‖ρ}ρ{x=x}⊗ρ ′

= [I (x)ρ ]⊗ρ ′. (38)

It follows that the operation I ′(x) of the extended apparatus A(x′) given x′ = x is

represented by I
′(x) =I (x)⊗ id, where id stands for the identity map on L (H ′).

Let H ′ be a finite dimensional Hilbert space. Any linear transformation T on

L (H ) can be extended naturally to the linear transformation T ⊗ idH ′ on L (H ⊗
H ′) = L (H )⊗L (H ′) by

(T ⊗ id)(∑
j

ρ j ⊗ρ ′
j) = ∑

j

T (ρ j)⊗ρ ′
j (39)

for any ρ j ∈ L (H ) and ρ ′
j ∈ L (H ′). Then, T is called completely positive

(CP), if T ⊗ id maps positive operators in L (H ⊗H
′) to positive operators in

L (H ⊗H ′) for any H ′. A DL instrument I is called a completely positive (CP)

instrument, if the operation I (x) is CP for every x ∈ R.

Then, from the positivity of the operation I ′(x), the complete positivity of the

original operation I (x) follows. Thus, Axiom M3 (Extendability) is equivalent to

the following Axiom M3’ (Complete positivity).

Axiom M3’ (Complete positivity). The instrument of every apparatus should be

a CP instrument.

We have posed two plausible requirements for the measurement statistics to be

satisfied by any apparatus, the mixing law of joint output probability distributions

Pr{x = x,y = y‖ρ} and the extendability of measurement statistics, as a set of nec-

essary conditions for every apparatus to satisfy. Under these conditions, we have

shown that every apparatus corresponds uniquely to a CP instrument that determines

the output probability distributions and the quantum state reduction caused by the

apparatus. Thus, the problem of determining physically possible output probability

distributions and quantum state reductions is reduced to the problem as to which

CP instrument corresponds to a physically realizable apparatus. This problem will

be discussed in the next section and it will be shown that every CP instruments

corresponds to a physically realizable apparatus.

Now we note that there indeed exists a DL instrument that is no a CP instrument.

The transpose operation of matrices in a fix basis is a typical example of a positive

linear map which is not CP [17]. Let T be a transpose operation on L (H ) for H ,

and let µ(x) be any probability distribution supported in a finite subset of R, i.e.,

there exists a finite subset S ⊆ R such that µ(x) = 0 if x 6∈ S. Then, the relation

I (x)ρ = µ(x)T (ρ) (40)
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for any subset ∆ and any operator ρ defines a DL instrument. However, since T

is not CP, the operation I (∆) is not CP, so the I is not a CP instrument. The

extendability postulate implies that there is no physically realizable apparatus cor-

responding to the above instrument.

4 Measuring processes

In this section, we discuss measuring processes. We introduce indirect measurement

models, a class of universal models for measuring processes, carried out by physi-

cally realizable measuring apparatuses. We analyze them according to quantum me-

chanics, and show that every indirect measurement models uniquely determines the

instrument of the apparatus that is a completely positive instrument, and conversely

that every completely positive instrument is described by an indirect measurement

model of an apparatus. Since any apparatus described by an indirect measurement

model is considered physically realizable, in principle, we conclude that an appara-

tus is physically realizable if and only if its statistical properties are described by a

CP instrument.

4.1 Indirect measurement models

Let A(x) be a measuring apparatus with the macroscopic output variable x to mea-

sure the object S. The measuring interaction turns on at time t, the time of measure-

ment, and turns off at time t +∆ t between object S and apparatus A(x). We assume

that the object and the apparatus do not interact each other before t nor after t +∆ t

and that the composite system S+A(x) is isolated in the time interval (t, t +∆ t).
The probe P is defined to be the minimal part of apparatus A(x) such that the com-

posite system S+P is isolated in the time interval (t, t +∆ t). By minimality, we

naturally assume that probe P is a quantum system represented by a Hilbert space

K . Denote by U the unitary operator on H ⊗K representing the time evolution

of S+P for the time interval (t, t+∆ t).
At the time of measurement the object is supposed to be in an arbitrary input state

ρ and the probe is supposed to be prepared in a fixed state σ . Thus, the composite

system S+P is in the state ρ ⊗σ at time t and in the state U(ρ ⊗σ)U† at time t +
∆ t. Just after the measuring interaction, the object is separated from the apparatus,

and the probe is subjected to a local interaction with the subsequent stages of the

apparatus. The last process is assumed to measure an observable M, called the meter

observable, of the probe, without further interacting with the object S, and the output

is represented by the value of the output variable x.

Any physically realizable apparatus A(x) can be modeled as above by a quadru-

ple (K ,σ ,U,M), called an indirect measurement model, of a Hilbert space K ,

a density operator σ in K , a unitary operator U on K ⊗H , and a self-adjoint
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operator M on K , where K represents the state space of the probe, σ the prepa-

ration of the probe, U the interaction between the object and the probe, and M the

probe observable to be detected. An indirect measurement model (K ,σ ,U,M) is

called pure, if σ is a pure state; we shall write (K ,σ ,U,M) = (K ,ξ ,U,M), if

ρ = |ξ 〉〈ξ |.

4.2 Output probability distributions

Let A(x) be an apparatus with indirect measurement model (K ,σ ,U,M). Since the

outcome of this measurement is obtained by the measurement of the probe observ-

able M at time t +∆ t, by the BSF for observable M on input state U(ρ ⊗σ)U† the

output probability distribution of A(x) is determined by

Pr{x = x‖ρ}= Tr{[I ⊗PM(x)]U(ρ ⊗σ)U†}. (41)

By linearity of operators and the trace, it is easy to check that the output prob-

ability distribution of A(x) satisfies the mixing law of output probability. Thus, by

Theorem 1 there exists the POVM Π of A(x). To determine Π , using the partial

trace operation TrK over K we rewrite Eq. (41) as

Pr{x = x‖ρ}= Tr[TrK {U†[I ⊗PM(x)]U(I⊗σ)}ρ ]. (42)

Since ρ is arbitrary, comparing Eqs. (6) and (42), POVM of A(x) is determined as

Π(x) = TrK {U†[I⊗PM(x)]U(I⊗σ)} (43)

for any subset ∆ .

4.3 Quantum state reductions

Since the composite system S+P is in the state U(ρ ⊗σ)U† at time t +∆ t, from

Axiom Q4 it is standard that the object state at the time t+∆ t is obtained by tracing

out the probe part of that state. Thus, the nonselective state change is determined by

ρ 7→ ρ ′ = TrK [U(ρ ⊗σ)U†]. (44)

In order to determine the quantum state reduction caused by apparatus A(x), sup-

pose that at time t +∆ t the observer would locally measure an arbitrary observable

B of the same object S. Let A(y) be a B-measuring apparatus with output variable

y. Since both the M measurement on P and the B measurement on S at time t +∆ t

are local, the joint probability distribution of their outcomes satisfies the joint prob-
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ability formula for the simultaneous measurement of I ⊗M and B⊗ I in the state

U(ρ ⊗σ)U† [35].

It follows that the joint output probability distribution of A(x) and A(y) is given

by

Pr{x = x,y = y‖ρ}= Tr{[PB(y)⊗PM(x)]U(ρ ⊗σ)U†}. (45)

Thus, using the partial trace TrK we have

Pr{x = x,y = y‖ρ}= Tr[PB(y)TrK {[I⊗PM(x)]U(ρ ⊗σ)U†}]. (46)

On the other hand, from Eq. (9) the same joint output probability distribution can be

represented by

Pr{x = x,y = y‖ρ} = Tr[PB(y)ρ{x=x}]Pr{x = x‖ρ}
= Tr[PB(y)Pr{x = x‖ρ}ρ{x=x}]. (47)

Since B is chosen arbitrarily, comparing Eqs. (46) and (47), we have

Pr{x = x‖ρ}ρ{x=x} = TrK {[I ⊗PM(x)]U(ρ ⊗σ)U†} (48)

From Eq. (48), the state ρ{x=x} is uniquely determined as

ρ{x=x} =
TrK {[I⊗PM(x)]U(ρ ⊗σ)U†}
Tr{[I ⊗PM(x)]U(ρ ⊗σ)U†} (49)

By Eq. (48) the instrument I of the apparatus A(x) is determined by

I (x)ρ = TrK {[I⊗PM(x)]U(ρ ⊗σ)U†} (50)

for any x ∈ R and any state ρ . From the above relation, it is easy to see that I (x)
satisfies the complete positivity; as an alternative characterization, it is well-known

that a linear transformation T on L (H ) is completely positive if and only if

∑
i j

(ξi,T (ρ
†
i ρ j)ξ j)≥ 0 (51)

for any finite sequences ξ1, . . . ,ξn ∈ H and ρ1, . . . ,ρn ∈ L (H ) [20]. In fact, we

have

∑
i j

(ξi,I (x)(ρ†
i ρ j)ξ j) = ∑

i j

Tr[I (x)(ρ†
i ρ j)

∣

∣ξ j

〉

〈ξi|]

= ∑
i j

Tr{[
∣

∣ξ j

〉

〈ξi|⊗PM(x)]U(ρ†
i ρ j ⊗σ)U†}

= Tr[X†X ]≥ 0,

where
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X = ∑
j

U(ρ j ⊗
√

σ)U†
∣

∣ξ j

〉

〈φ |⊗PM(x)

for an arbitrary unit vector φ .

Thus, we conclude that the instrument of any apparatus with indirect measure-

ment model (K ,σ ,U,M) is a CP instrument.

The converse of this assertion was proven in [20], and hence we conclude this

section by the following theorem.

Theorem 4 (Realization theorem) The instrument of any apparatus with an indi-

rect measurement model is a CP instrument, and conversely every CP instrument is

obtained in this way with a pure indirect measurement model.

According to the above theorem, we conclude that an apparatus satisfying Axiom

M1 is physically realizable if and only if it satisfied Axiom M2 (the mixing law of

joint output probability) and Axiom M3 (the extendability).

5 Conclusion

For quantum systems with finite dimensional state spaces, we can now complete

von Neumann’s axiomatization of quantum mechanics by augmenting it by the gen-

eral measurement axiom that describes all the physically realizable measurement

consistent with other axioms of quantum mechanics.

Axiom Q5 (General measurement axiom). Every physically realizable appa-

ratus A(x) for the system S with the state space H uniquely corresponds to a com-

pletely positive instrument I for H such that the statistical properties of A(x) are

determined by

I (x)ρ = Pr{x = x‖ρ}ρ{x=x}, (52)

or equivalently

Pr{x = x‖ρ} = Tr[I (x)ρ ], (53)

ρ{x=x} =
I (x)ρ

Tr[I (x)ρ ]
, if Tr[I (x)ρ ]> 0 (54)

for all x ∈ R and ρ ∈ S (H ). Conversely, every completely positive instrument

I for H has at least one physically realizable apparatus A(x) with the above

statistical properties.

According to the General measurement axiom, we can generalize Wigner’s for-

mula to arbitrary sequence of measurements, and determine the joint probability

distribution of the outcomes of any sequence of measurements using physically re-

alizable apparatuses.
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Theorem 5 (Generalized Wigner’s formula) Let I1, . . . ,In be completely posi-

tive instruments for the system with the state space H in a state ρ at time 0. If

one carries out measurements described by I1, . . . ,In at times (0 <)t1 < · · · < tn
and otherwise leaves the system S isolated with the Hamiltonian H, then the joint

probability distribution of the outcomes x1, . . . ,xn of those measurements is given

by

Pr{x1 = x1,x2 = x2, . . . ,xn = xn‖ρ}
= Tr[In(xn)α(tn − tn−1) · · ·I2(x2)α(t2 − t1)I1(x1)α(t1)ρ ], (55)

for any x1,x2, . . . ,xn ∈ R and ρ ∈ S (H ), where α is defined by α(t)ρ =
e−iHt/ℏρeiHt/ℏ for all t ∈ R and ρ ∈ S (H ).

Foundations of quantum measurement theory based on the notion of completely

positive instruments and indirect measurement models have been developed in [19–

39].

References

1. Arveson, W.: Analyticity in operator algebras. Amer. J. Math. 89, 578–642 (1967)

2. Braginsky, V.B., Vorontsov, Y.I., Thorne, K.S.: Quantum nondemolition measurements. Sci-

ence 209, 547–557 (1980)

3. Caves, C.M., Thorne, K.S., Drever, R.W.P., Sandberg, V.D., Zimmermann, M.: On the mea-

surement of a weak classical force coupled to a quantum mechanical oscillator, I, Issues of

principle. Rev. Mod. Phys. 52, 341–392 (1980)

4. Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)

5. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math.

Phys. 17, 239–260 (1970)

6. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–

861 (1964)

7. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea,

New York (1951)

8. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

9. Hilbert, D.: Grundlagen der Geometrie. B.G. Teubner, Leipzig (1903)

10. Imoto, N., Ueda, M., Ogawa, T.: Microscopic theory of the continuous measurement of photon

number. Phys. Rev. A 41, 4127–4130 (1990)

11. Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys. 443(5–8), 322–328

(1950)

12. Ludwig, G.: Attempt of an axiomatic foundation of quantum mechanics and more general

theories, II. Commun. Math. Phys. 4, 331–348 (1967)

13. Ludwig, G.: Attempt of an axiomatic foundation of quantum mechanics and more general

theories, III. Commun. Math. Phys. 9, 1–12 (1968)

14. Maddox, J.: Beating the quantum limits. Nature 331, 559 (1988)

15. Nakamura, M., Umegaki, H.: On von Neumann’s theory of measurements in quantum statis-

tics. Math. Japon. 7, 151–157 (1962)

16. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton UP, Prince-

ton, NJ (1955). [Originally published: Mathematische Grundlagen der Quantenmechanik

(Springer, Berlin, 1932)]



22 Masanao Ozawa

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge

UP, Cambridge (2000)

18. Ozawa, M.: Optimal measurements for general quantum systems. Rep. on Math. Phys. 18,

11–28 (1980)

19. Ozawa, M.: Conditional expectation and repeated measurements of continuous quantum ob-
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