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A B S T R A C T

Accurate biomarkers are crucial for early disease detection and improved prognosis. However, the inconsistent
reporting of different key biomarkers in the same types of samples from patients with identical diseases in
biomarker discovery studies is often questioned. In contrast to such instrumental analyses, the murine olfactory
system consistently distinguishes subtle variations in genetically determined individual-unique body odors in
urine samples and more pronounced differences in diet-modulated and fluctuating body odors. Interestingly,
sniffer mouse behavioral assays revealed that prostate and bladder cancers alter olfactory cues in urine samples to
be more intense compared with diet-modulated or genetically determined individual-specific body odors. The
causes of inconsistent key biomarkers include high inter-individual and inter-sample variability due to diet-
induced metabolites and cosmetic or environmental contaminations. Previously, we proposed experimental
procedures tolerant to such noise-like variability or fluctuation, leading to the identification of ten urinary volatile
biomarkers for prostate cancer, including 2,6-di(propan-2-yl)phenol as a unique biomarker for bladder cancer.
This commentary discusses the theoretical basis of urinary volatile biomarkers and future directions for com-
plementary biomarker development for diagnosis.
1. Data are always correct even in inappropriate experimental
designs

Accurate biomarkers are crucial for early disease detection and
improved prognosis. However, the inconsistent reporting of different key
biomarkers in the same types of samples from patients with identical
diseases in biomarker discovery studies is often questioned. Cancer is a
complex and dynamic disease and there is a lack of consensus on non-
invasively measured volatile biomarkers, even in studies using sniffer
dogs. In this commentary, we discuss volatile biomarkers examined in
basic studies to distinguish between healthy individuals and those with
cancer. For instance, various studies have reported different urinary
volatile biomarkers for prostate cancers1–8 except those from the same
laboratory, as well as different volatile biomarkers for lung cancers.9–12

The inconsistent results regarding key biomarkers can be attributed to
inherent heterogeneity and the markedly high inter-individual and
inter-sample variability, such as diet-induced metabolites and cosmetic
or environmental chemical contaminations. The observed heterogeneity
across individual tumors suggests the presence of distinct co-occurring
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resistance mechanisms within a patient, leading to variations in sensi-
tivity or resistance to specific treatment agents across different regions of
the same malignancy at treatment initiation.13 Consequently, biomarker
profiles for identical tissue cancers would differ due to inherent hetero-
geneity. Notably, humans exhibit greater variability in body odor owing
to various diets and genetic backgrounds compared with animals with
regular diets and congenic backgrounds. The extent to which each factor
alters olfactory cues in urine samples warrants further investigation.

Subtle variations in urinary olfactory cues can be sensitively
discriminated by dogs, rats, and mice with over 800 olfactory receptor
repertoires. The urinary olfactory cues likely consist of eight elemental
components: (1) urine-common odors, (2) genetically determined
individual-unique body odors,14 (3) disease-altered body odors, (4)
occult blood odors, (5) diet-induced odors, (6) drug metabolite odors, (7)
odors of cosmetic chemical contaminations, and (8) odors of environ-
mental chemical contaminations. Notably, urinary odors exhibit greater
dietary variations than genetically determined individual-unique body
odors,15 and diet significantly modifies the odors of exhaled breath.16
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(SPME-GC-MS) analysis has revealed the presence of environmental
chemical contaminations in urinary volatile compounds originating from
walls or paints in the urine sampling room.9 Building upon our previous
evaluation of the relative intensities of urinary elemental odors,6,17 a
mouse behavioral assay established the increasing order of 2nd–6th
element-related urinary odor as genetically determined
individual-unique body odor < dietary odor variation < bladder cancer
< occult blood < prostate cancer (after neoadjuvant endocrine therapy)
< antibiotic drug metabolites < prostate cancer. Notably, different
odorants are often perceived with varying relative odor intensities, even
at the same concentration. Furthermore, important biomarkers can
sometimes be minor metabolites under healthy or diseased conditions.
Thus, scientists must exercise caution when designing experimental
procedures to detect crucial biomarkers, aiming to minimize high
inter-individual and inter-sample variability. Inadequate variability- or
fluctuation-tolerant experimental procedures can lead to different key
biomarkers for the same diseases, implying that somemay be false even if
they appear correct under specific experimental conditions.

To address the second origin of inconsistent key biomarkers, we
proposed utilizing a mixture of 25 equal-volume urine samples (5 pa-
tients � 5 samples). This approach, similar to data averaging in respec-
tive studies, can theoretically improve target-to-background ratios by up
to �25–5-fold. This helps reduce diet-induced background variability by
� 1/25-fold and variability in individual-unique body odor profiles with
cosmetic or environmental chemical contaminations by � 1/5-fold
against constant target biomarkers in urine samples.6,17 Interestingly,
among our identified ten urinary volatile biomarkers for prostate cancer
(Fig. 1), three (dimethyl succinate, acetophenone and phenol) have been
reported as biomarkers for lung cancer based on their significant increase
in the culture medium of lung carcinoma A549 cells.10 Additionally, two
biomarkers (2-phenyl-2-propanol and 2,6-di(propan-2-yl)phenol, also
known as propofol or Diprivan, an intravenous anesthetic) have been
reported as urinary volatile biomarkers for lung cancer,11 whereas one
biomarker (2,6-xylidine or 2,6-dimethylaniline) has been reported as a
hemoglobin adduct biomarker for bladder cancer.18,19 Given the low
probability of multiple biomarker matches across different types of
cancers, the presence of these six biomarkers in two out of three different
cancers suggests shared biomarker synthesis mechanisms in tumor cells
of various tissue origins.
Fig. 1. Molecular structures, numbers of methyl and isopropyl functional groups, and
prostate (pre- and post-RP) and bladder (pre- and post-TUR) cancers. Most biomarkers
increases from the peak height of the healthy volunteer are highlighted. *Increase (
prostatectomy; TUR, transurethral resection; mimic, a pre-RP urine mixture mimic ¼
et al., Intl. J. Cancer Sci. & Therapy 2021; 3:2–17).
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2. The strategy of the sensory system to overcome information
redundancy

The advantage of urine sample mixtures over high inter-individual
and inter-sample variability is similar to the strategy employed by the
sensory systems. This system allows for the extraction of both slightly
different and common information from overlapping receptor signals in a
robust manner. For example, in human color vision, the discrimination
between a carrot and a mandarin orange is facilitated by the different
relative intensities of red and yellow elemental colors. The yellow (Y)
elemental color, as the common information, is obtained by summing the
signals from L (red, R) and M (green, G) cone photoreceptor cells, which
have sensitivity peaks shifted by approximately 30 nm between the L and
M cone cells with an overlap of approximately 100 nm in their sensitive
wavelength range.20 By subtracting the signal of the Y elemental color,
the L-cone-unique R and M-cone-unique G elemental colors are extracted
from the signals of L and M cone cells, respectively.21 Through the
extraction of these three elemental colors (Y, R, and G) using the two
redundant L- and M-cone signals, the colors of carrot and mandarin or-
ange can be easily and quantitatively distinguished based on their red-
dish and yellowish characteristics, respectively. Thus, the four elemental
colors, comprising two opponent color pairs (R/G and Y/B), are crucial
for humans to accurately discern subtle differences in various colors.
Similarly, the urine sample mixture of pre-radical prostatectomy (pre-RP)
patients or healthy volunteers serves as a means to extract common
biomarkers from urine samples of patients with prostate cancer or
healthy volunteers with different genetic, dietary, and environmental
backgrounds. By comparing paired olfactory cues or SPME-GC-MS peaks,
the subtraction of biomarkers of healthy volunteers reveals in prostate
cancer-specific biomarkers. The peak height/area ratios of these bio-
markers in patients vs. healthy volunteers would prove to be effective in a
manner analogous to the relative intensities of elemental information.

3. Robustness of urinary volatile-mediated biological
information

Similar to the extraction of the Y elemental color, the olfactory system
extracts elemental odor information by summing signals from cognate
olfactory receptors with similar or overlapping tuning. However, there is
increases (fold) of ten biomarkers in urine samples of pre- and post-resection for
are in the methylated or isobutyrated form. >10-fold (red) and 2–10-fold (blue)

fold) of #129 estimated by the ratios of the added #101 amounts.6 RP, radical
post-RP urine mixture þ moderate relative amounts of eight biomarkers. (Sato
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a difference in the weighted elemental information between color vision
and olfaction. Unlike simple addition and subtraction in elemental color
extraction, the signals of key elemental odors, extracted by summing
signals from cognate key olfactory receptors, are significantly enhanced
by the feedforward inhibitory system compared to signals from non-key
olfactory receptors.21–25 This signal-enhancing system for key elemental
odors enables sniffer mice and dogs to detect prostate cancer-specific
olfactory cues of minor but biologically important biomarkers, even at
lower concentrations than the more abundant urine-common com-
pounds. As a validation of urinary biomarkers for prostate cancer, sniffer
mice successfully discriminated a pre-RP urine mixture mimic (post-RP
urine mixture þ moderate relative amounts of eight biomarkers) from a
post-RP urine mixture (Fig. 1).6,21 In mice, the extraction of key
elemental odors requires summations and subtractions of signals from 29
class-I and 410 class-II key olfactory receptors, whereas auxiliary
elemental odors are extracted through signals from 94 class-I and 570
class-II non-key olfactory receptors. This suggests that mice have less
than 220 key elemental odors for precise discrimination of olfactory cues.
These key elemental odors enable sniffer mice to discern fine differences
in the relative intensities of key elemental odors in urinary olfactory cues.

Using an odor discrimination behavior assay with trained sniffer
mice, similar to sniffer dogs, it was found that sniffer mice were unable to
discriminate subthreshold dietary odor variations between a pair of 106-
fold diluted urine mixtures.16 However, in this behavioral assay, the
urinary olfactory cue of bladder cancer could be discriminated in 106- to
1.3� 1011-fold diluted urine mixtures, whereas the urinary olfactory cue
of prostate cancer could be discriminated in 106- to 1.0 � 1016-fold
diluted urine mixtures containing ppq-level biomarkers in accordance
with the Fechner's law that governs semilogarithmic decreases in correct
odor choice rates.6,21 This result highlights the super-sensitivity of sniffer
mice to urinary olfactory cues of prostate and bladder cancers, as well as
the robustness of urinary volatile-mediated biological information.
Furthermore, sniffer mice successfully discriminated the olfactory cues of
antibiotic drug metabolites and occult blood in 106- to 3.1 � 1015-fold
and 106- to 1.0 � 1012-fold diluted urine mixtures, respectively.17 The
robustness of urinary olfactory cues may explain why dogs relay on
urinary odors, rather than sweat odors, to detect traces of
territory-invaded competitors. Urine mixtures serve as more stable and
reliable samples for non-invasive and disease-discriminative diagnostic
tests compared to single urine samples or easily contaminated breath or
sweat samples.

4. .Urinary volatile biomarkers for cancers

As mentioned earlier, the six biomarkers for prostate cancer (aceto-
phenone, piperitone, dimethyl succinate, dimethyl glutarate, 2,6-xyli-
dine, 3,5,5-trimethyl-2-cyclohexenone) are also biomarkers for bladder
or lung cancer, indicating shared synthetic mechanisms among these
biomarkers in different tumor cells. Among the biomarkers for prostate
cancers,6 six biomarkers contain one to three methyl groups, whereas
two (piperitone and 2,6-di(propan-2-yl)phenol) have one or two iso-
propyl groups (Fig. 1). The prevalence of methylated biomarkers suggests
abnormal activation of methionine synthases and/or methyltransferases,
as well as significantly reduced activity of demethylases.

Cancer cells undergo a metabolic shift from energetic to anabolic
metabolism to support uncontrolled cell proliferation.26 This shift is
initiated by oncometabolites, namely succinate or fumarate, which
accumulate in the tricarboxylic cycle within the mitochondrion
matrix.27–33 Mutations in isocitrate dehydrogenase (IDH1 and IDH2), on
the other hand, lead to the accumulation of another oncometabolite
called 2-hydroxyglutarate, through the generation of oxalosuccinate and
NADH and subsequent conversion to α-ketoglutarate.34 The biomarkers
dimethyl succinate and dimethyl glutarate may be associated with the
accumulation of oncometabolites succinate and 2-hydroxyglutarate, as
well as their methylation under increased methylation pressure in tumor
cells. Considering that there are shared biomarkers between prostate and
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bladder cancers, albeit with different profiles of relative increases (fold as
shown in Fig. 1), differences in biomarker profiles would be helpful
identifying the types of cancers, as opposed to relying solely on simple
cut-off values.6,21

Interestingly, the biomarker propofol (2,6-di(propan-2-yl)phenol)
was detected at the lowest concentration in urine samples of healthy
volunteers, approximately 0.01 ppb. This concentration was 1000-fold
and 100-fold lower than those of phenol and other seven biomarkers,
respectively.6,21 In the urine mixture of patients with prostate and
bladder cancers, propofol increased to 3.3 ppb and 0.6 ppb, respec-
tively.6,21 It has been reported that propofol upregulates
tissue-characteristic miRNAs or other regulating factors, resulting in
reduced tumor cell variabilities and invasions in various types of can-
cers.35–40 Although the actual concentration of propofol in tumor cells is
much higher than those of the urine mixtures, it remains unclear to what
extent the biomarker propofol may function as an inhibitor of tumor cell
variabilities and invasions.

5. Future study for multiple complementary tests for the
diagnosis of early-stage cancers

Prostate-specific antigen (PSA) levels in blood serve as the most
widely used biomarkers for prostate cancer. However, elevated PSA
levels can also be caused by prostatitis or benign prostatic hyperplasia,
leading to that PSA is a sensitivity–specificity trade-off and overdiagnosis
of prostate cancer. To improve the diagnostic accuracy for prostate and
other cancers, a combination of complementary biomarkers is recom-
mended.41 Panels of volatile urinary biomarkers have shown enhanced
sensitivity (76%–89%) and specificity (83%–90%).4,5,8 In addition to
these volatile urinary biomarkers, non-volatile biomarkers have been
proposed as complementary indicators for prostate cancer. These include
circulating tumor DNA associated with mutations in tumor suppressor
p53 (TP53),42 androgen receptor,42,43 ataxia telangiectasia-mutated ki-
nases,42 the transcription factor MYC,42 or the E3 ubiquitin ligase
adaptor speckle-type POZ protein.42 Other biomarkers include the
prostate cancer antigen 3 (PCA3) score,43,44 Prostate Health Index
(PHI),43,44 4 K score,44 TMPRSS2:ERG fusion gene,43 PTEN gene,43

SelectMDx (transcription factor homeobox C6 [HOXC6] and distal-less
homeobox 1 [Dlx1] mRNA levels),44 ExoDx Prostate Intelliscore (exo-
somal mRNA of PCA3 and ERG [Vetserythroblastosis virus E26 oncogene
homologs] normalized with a control gene, SAM-pointed domain-con-
taining Ets-like factor [SPDEF]),44 exosomal noncoding RNAs (10 miR-
NAs in plasma or serum, 19 miRNAs in urine, 3 long-noncoding RNAs in
plasma or urine),45 and serum mRNA of caspase-8 (CASP-8).46

Urine samples exhibit stability dependent on physical conditions and
serve as a source of highly sensitive and non-invasive biomarkers for
diagnosing a wide range of diseases. Further information can be found in
a recent review article.47 In the future, we anticipate the development of
urinary biomarker complementary panel tests for early-stage diagnosis of
various diseases.
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