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California poppy or golden poppy (Eschscholzia californica) is the iconic state

flower of California, with native ranges fromNorthern California to Southwestern

Mexico. It grows well as an ornamental plant in Mediterranean climates, but it

might be invasive in many parts of the world. California poppy was also highly

prized by Native Americans for its medicinal value, mainly due to its various

specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a

member of the Ranunculales, the sister lineage of core eudicots it occupies an

interesting phylogenetic position. California poppy has a short-lived life cycle but

can be maintained as a perennial. It has a comparatively simple floral and

vegetative morphology. Several genetic resources, including options for

genetic manipulation and a draft genome sequence have been established

already with many more to come. Efficient cell and tissue culture protocols are

established to study secondary metabolite biosynthesis and its regulation. Here,

we review the use of California poppy as a model organism for plant genetics,

with particular emphasis on the evolution of development and BIA biosynthesis.

In the future, California poppy may serve as a model organism to combine two

formerly separated lines of research: the regulation of morphogenesis and the

regulation of secondary metabolism. This can provide insights into how these

two integral aspects of plant biology interact with each other.

KEYWORDS

flower development, benzylisoquinoline alkaloid, Ranunculales, evo devo, VIGS (virus-
induced gene silencing)
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1 Phylogeny, biogeography and
growth conditions

Eschscholzia californica is a member of the Papaveraceae family

of the order of Ranunculales, which is sister to the core eudicots

(Figure 1A, Hoot et al., 2015; Lane et al., 2018). Sister to

all Papaveraceae is the enigmatic Pteridophyllum racemosum, with

fern-like leaves and bell-like white flowers in a loose inflorescence.

Eschscholzia californica , with common name California

poppy, Golden poppy, or Cup of Gold, belongs to the subfamily

of Eschscholzioideae, which is the sister group to both, the

Papaveroideae (including Papaver somniferum, opium poppy) and

the Chelidonioideae (Figure 1B).

California poppy is growing as an annual or perennial and is

native to western North America. Its native range covers the

Columbia River in Northern Oregon to Baja California, a

peninsula separating the Gulf of California from the Pacific

Ocean. It is found from the Pacific Coast to the Great Basin,

including the Sierra Nevada and the Mojave Desert (Cook, 1962).

In the past 200 years, California poppy was introduced by man to

Chile, South Africa, Australia including Tasmania, and New

Zealand, where they became naturalized weeds (Cook, 1962;

Leger and Rice, 2007). For the Chilean invasive population, the

population history was documented in astonishing detail: California

poppy was introduced to the Chilean coastal cities as an ornamental

plant during the 1890s and spread from there along railway tracks.

Within less than 100 years, the species spread 240 km south and

520 km north of their original points of introduction, including all
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of the Mediterranean climate region of Chile in its range.

Furthermore, California poppy habitat covers an enormous

altitudinal range between 0 and 2000 m.a.s.l. in Chile (Véliz et al.,

2012) with traits differing between coastal and high altitude plants:

coastal plants were shorter, required more time to flower, and

produced fewer flowers and fewer seeds per fruit, regardless if the

plants were collected from California or Chile. After being

introduced to Chile, California poppy has improved its abilities to

colonize disturbed environments and evolved robust patterns of

local adaptations, all in only 150 years (Leger and Rice, 2007).

Owing to its invasive nature and Mediterranean climate natural

range, California poppy is easy to grow and a commonly grown

ornamental plant. The plants (Becker et al., 2005; Wege et al., 2007),

require little space, 42 plants/m² can be grown comfortably, but up

to 90 plants/m² are possible, and standard greenhouse conditions

(6 cm pots, standard potting mix, 21°C – 25°C day, 15°C-18°C

night, natural light supplemented with fluorescent tubes or mercury

lamps, 16 h light/8 h darkness). California poppy does not require

governmental permits to be raised and does not require CITES

documentation as it is not an endangered plant species.
2 California poppy morphology

Cotyledons of California poppy are deeply lobed, and the shoot

apical meristem (SAM) gives rise to highly dissected, silvery green

leaves forming a rosette. Once the shoot elongates, the SAM

converts into an inflorescence meristem, which continues to
FIGURE 1

Simplified angiosperm phylogenies focusing on the phylogenetic position and morphology of California poppy. (A) Phylogeny of the Ranunculales
[according to Lane et al. (2018) and Hoot et al. (2015)], (B) phylogeny of the Papaveraceae s.l. on subfamily level based on Hoot et al. (2015). Fotos
next to the branches show subfamily representatives, from top to bottom California poppy, Papaver somniferum, Chelidonium majus, Hypecoum
leptocarpum, Capnoides sempervirens, Pteridophyllum racemosum. (C) top view on California poppy in its vegetative phase, (D) side view of a
flowering plant, (E) side view of a California poppy flower (G, gynoecium; P, petal; S, stamens) and (F) floral diagram showing the sepal cap, two
whorls of petals, several whorls of stamens and a bicarpellate gynoecium (photos are from Dominik Lotz and Doudou Kong, Gießen, Germany, and
Natalia Pabon-Mora, Medellin, Colombia). The size bar in C and D correspond to 3 cm, the size bar in E is 1 cm.
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release leaves. When the uppermost two leaves are formed, the

inflorescence meristem converts into a terminal flower meristem. In

the leaf axils of the uppermost cauline leaves, new secondary

meristems may form. California poppy leaf size and shape

depends on the position and age of the leaves: length and degree

of dissections increases with age during the vegetative phase, but

decreases after transitioning to flowering (Becker et al., 2005).

California poppy has large flowers with four brightly colored

petals. The flowers across natural populations are diverse, with petal

color in the northern and coastal habitats of its native range being

more yellow and the central and southern populations show a larger

portion of orange petal color. Stamen numbers range between 16

and 39 with the southern population developing fewer stamens

normally (Cook, 1962). California poppy flowers are composed of

two sepals fused into a cap-like structure that dehisces when the

petals fully elongate. Four petals are 1-3 cm in length and width and

are arranged in two concentric whorls (Becker et al., 2005). The

petals are not only intensely colored by carotenoids but also have a

silky appearance. This effect is caused by a thick, prism-like ridge

that runs along enormously elongated petal cells and focuses light to

the pigments at the abaxial epidermis cell side (Wilts et al., 2018).

Further inside the flower, the stamens form, with four stamens

in the first stamen whorl and all other consecutive whorls forming

six stamens. The stamens are composed of a short filament and

long, bilobed anthers. The basal part of the anthers is often dark

brown with all other parts colored bright yellow. In the center of the

flower, the gynoecium is composed of two fused carpels forming a

long, superior ovary topped by a short style. Four stigmatic

protrusions are covered with papillae that often bend down

towards the floral base. A floral tube forms that surrounds the

ovary, which is adorned with a torus rim to which the sepals and

petals are attached. In the ovary, two rows of ovules are attached to

the two placentae (Becker et al., 2005).

After fertilization, the gynoecium develops into a slender

capsule of around 5 cm in length at maturity. The capsule dries

out and the valves separate from bottom to top from each other

releasing the seeds explosively, scattering them up to 1.5 m (Cook,

1962; Becker et al., 2005).
2.1 Molecular regulation of vegetative and
reproductive development, examples from
functional studies in California poppy

Several studies examining the role of California poppy

orthologs of Arabidopsis thaliana developmental regulators in

recent years contributed to our understanding of gene function

conservation. The focus of these studies was on floral development,

with an emphasis on carpel development. The advantage of

California poppy in these studies is its comparatively simple floral

and fruit morphology allowing direct comparisons with long

established model species like Arabidopsis.

Highly conserved developmental regulators, such as MADS-box

transcription factors from California poppy show partially similar

functions to Arabidopsis, such as specification offloral organ identity.

However, their regulation differs from that of Arabidopsis and a
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higher number of genes in the poppy allows for sub- and possibly

neofunctionalization. For example, the AGAMOUS (AG) orthologs of

California poppy are required for stamen and carpel organ identity,

and the APETALA3 (AP3) and PISTILLATA (PI) orthologs for petal

and stamen organ identity (Yellina et al., 2010; Lange et al., 2013).

The two AG orthologs and three AP3 orthologs are differentially

expressed in the flower. EScaAG1 shows a stronger expression,

especially in carpels and fruits. EScaAG2 is expressed mainly in

stamens and only very little in other floral tissues. This divergence in

expression suggests that EScaAG1 is more important for carpel

identify and possibly also for the regulation of floral meristem

termination, and EScaAG2 is more important for stamen

formation. Expression of the three DEF/AP3-like genes shows

organ-level differences, such that EScaDEF3 is most strongly

expressed in petals, as is EScaDEF2, but the latter to a lesser extent,

and EScaDEF1 is hardly expressed in petals and stamens (Yellina

et al., 2010; Lange et al., 2013). In terms of trimeric protein

interactions, EScaAG1 participates in complexes of floral homeotic

proteins including BBC and BCE class proteins, but EScaAG2 does

not, suggesting that the floral homeotic C function may be carried out

by EScaAG1. Further, EScaAG2 can form homodimers, while

EScaAG1 cannot, suggesting novel, yet unknown functions for

EScaAG2. It is also notable that EScaDEF1, the E-function protein

Ec-SEP3 and EScaAG1 complexes form, as well as EScaDEF2/Ec-

SEP3/EScaAG1, but not EScaDEF3/Ec-SEP3/EScaAG1 (Lange et al.,

2013), suggesting subfunctionalization on the level of protein

interactions for these floral homeotic proteins.

The regulation of California poppy floral homeotic B andC genes

differs from that of A. thaliana: theAG orthologs are activated by the

AP3 and PI orthologs while the AG orthologs repress AP3 and PI

activity in the carpels, as shown using VIGS experiments and by

analysis of the B mutant sei-1 (Yellina et al., 2010; Lange et al., 2013).

California poppy also served to show that the function of

INAPERTURATE POLLEN (INP1), a gene required for aperture

formation in pollen grains to allow pollen grain germination, is

conserved throughout monocots and dicots, even though sequence

divergence of orthologs is comparatively high (Mazuecos-Aguilera

et al., 2021).

Like in Arabidopsis, the SHOOT MERISTEMLESS (STM)

homologs of California poppy are required for floral meristem

activity (Scofield et al., 2007) and are, in combination with

California poppy CRABS CLAW (CRC) orthologs required for

floral meristem maintenance and timely termination. As the

carpels are the last organs to be formed in the flower, their

presence and number critically depends on floral meristem

activity, and when the poppy STM genes are silenced, the floral

meristem terminates prematurely leading to failure of carpel

formation, as observed in A. thaliana (Scofield et al., 2007;

Stammler et al., 2013). Conversely, more carpels are produced

when the California poppy CRC ortholog transcription is

silenced. This suggests antagonistic functions in floral meristem

maintenance for the poppy STM and CRC genes (Orashakova et al.,

2009; Stammler et al., 2013). A. thaliana crc mutants show only

rarely more carpels, but the gynoecia often fail to fuse at the apex

and lack nectaries. Recent work has shown that CRC acts as a

repressing transcription factor in floral meristem termination and
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as a transcriptional activator in carpel fusion and nectary

development (Bowman and Smyth, 1999; Groß et al., 2018). Also,

in the Phalaenopsis equestris orchid, CRC homologs regulate

reproductive development, specifically in the gynostemium, an

organ consisting of stamens fused to the gynoecium, suggesting

that the regulation of gynoecium development by CRC homologs is

conserved between monocots and dicots (Chen et al., 2021).

FRUITFUL (FUL) and NGATHA (NGA) orthologs of poppy

were shown to be involved in carpel and fruit development,

indicative of deeply conserved gene functions between California

poppy genes and their orthologs from Arabidopsis. EcFUL1,

EcFUL2 down regulated by VIGS results in shorter fruits that

open prematurely and occurrence of leaf-like sepals, suggesting

that sepal organ identity is compromised and the lignin deposition

pattern in fruits is disturbed (Pabón-Mora et al., 2012). Lignin

deposition is also disturbed in the A. thaliana ful mutant, resulting

in a failure to form a dehiscence zone leading to fruits that rupture

at random positions (Ferrandiz et al., 2000). Outside the eudicots,

FUL-like genes are not involved in fruit dehiscence, for example,

WAP1 from wheat is required for vernalization and phase transition

(Murai et al., 2003), suggesting that the involvement of FUL-like

genes in regulation of lignification pattern for dehiscence zone

formation is restricted to eudicots.

For NGA-like genes, California poppy VIGS-treated plants

provide the only functional data outside the core eudicots, as

information on mutants in grasses is lacking so far. Within

eudicots, the NGA orthologs of A. thaliana, tobacco and

California poppy all share that they are required for style and

stigma tissue specification (Fourquin and Ferrándiz, 2014).

CYCLOIDEA/TEOSINTE BRANCHED1-like (CYL/TB1) genes

of California poppy regulate plant stature, such that down

regulation by VIGS enhances axillary branching, a function

conserved throughout dicots and monocots. Further, the CYL/

TB1-like genes in California poppy regulate stamen number and

petal size. However, the link between stamen number regulation

and CYL/TB1-like genes does not seem to be special to

Papaveraceae, but floral organ size regulation of CYL/TB1-like

genes is in line with a conserved function of these genes in the

repeated establishment of zygomorphy within the pentapetalae. In

the Papaveraceae, CYL/TB1-like genes do not establish zygomorphy

but may regulate the extent of morphological differences between

the floral organs by controlling growth (Zhao et al., 2018).

These studies show that knowledge about the conservation of

developmental regulator’s gene functions across dicots can be

garnered by studying California poppy as genetically tractable

representative of the sister lineage to the core eudicots, and the

conservation of function between monocots and dicots can be

inferred by incorporating California poppy mutants or VIGS-

treated plants.
2.2 Floral pigments

California poppy flowers contain unique carotenoids, such as

eschscholtzxanthin and retro-carotene-triol (Maoka et al., 2000),

which show intense yellow to orange petal pigmentation of this
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ornamental flower. Whereas orange flowers are more popular, color

variations from white to yellow and orange are known. Barrell et al.

(2010) analyzed flower color inheritance in diverse variants and

showed that all white and yellow variants showed the multiple

effects and total of five complementation groups were identified as

single recessive loci. Interestingly, all mutations influence both petal

and pollen color, suggesting that the same gene controls petal and

pollen color.

Zhou et al. (2018) further investigated the carotenoid

biosynthetic pathway using a Tobacco Rattle Virus-based virus-

induced-gene-silencing (VIGS) approach. VIGS of early (PDS and

ZDS) and late (bOH and ZEP) biosynthetic enzymes in carotenoid

pathway reduced the transcripts of the target genes in the petals

without the effect on other carotenoid biosynthesis gene

expressions. Silencing of PDS, ZDS, bOH and ZEP genes reduced

total pigment concentration by 75-90% and altered petal color.

HPLC and LC-MS measurements suggested that petal color

changes were caused by substantially altered pigment profiles and

quantity. More recently, Pollack et al. (2019) discovered a single

deletion leading to altered splicing and C-terminal truncation of

phytoene synthase (PSY), a key enzyme in carotenoid biosynthesis

mutated in multiple white petal varieties.

Whereas the key enzyme genes for retro-carotene-triol

biosynthesis are still not identified yet, some candidate genes are

predicted based on the draft genome sequence and transcriptome

analysis for future breeding (Sato et al. unpublished data).
3 Medicinal use

California poppy was highly prized by Native Americans for its

medicinal value based on its specialized metabolite biosynthesis,

with the most prominent class being the benzylisoquinoline

alkaloids (BIAs). Phytochemical analysis revealed that aerial parts

and roots accumulate alkaloids, with roots showing a higher

concentration of up to 1.6% alkaloids of the dry weight. These

alkaloids are mainly BIAs and include benzophenanthridine

alkaloids (such as sanguinarine, chelirubine, macarpine,

chelerythrine, chelilutine), protopines (protopine, allocryptopine),

aporphine alkaloids (magnoflorine, corydine, isoboldine, N-

methyllaurotetanine), simple benzylisoquinolines (reticuline),

pavine alkaloids (californidine, caryachine, escholtzine), as well as

the dihydro-intermediates (Figure 2). Roots contain mainly

benzophenanthridine alkaloids and protopines, whereas aerial

parts are especially rich in pavine and some aporphine alkaloids

(Liscombe et al., 2009; Fedurco et al., 2015; Hori et al., 2018).

Pharmacological studies of these BIAs revealed their antifungal,

analgesic, anxiolytic, sedative activities (Al-Snafi, 2017). For

example, extracts prepared from aerial parts of California poppy

as herbal supplement show analgesic, anxiolytic and sedative effects.

Rolland et al. (1991) reported that the aqueous extract reduced the

behavioral performance in mice with regard to novelty preference,

locomotion and rearing in two compartments parameters measured

(in a familiar environment test). Further, the California poppy

extract treated mice underperformed in the staircase test (non-

familiar environment tests). These findings support the traditional
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FIGURE 2

Benzylisoquinoline alkaloid biosynthetic pathway in California poppy. California poppy produces diverse array of benzylisoquinoline type alkaloids
(BIAs), which include benzophenanthridine alkaloids (such as sanguinarine, chelirubine, macarpine, chelerythrine, chelilutine), protopines (protopine,
allocryptopine), aporphine alkaloids (magnoflorine, corydine, isoboldine), simple benzylisoquinolines (reticuline), pavine alkaloids (californidine,
escholtzine), as well as the dihydro-intermediates. The broken lines indicate that the biosynthetic enzyme-encoding genes have not been identified.
TAT, tyrosine aminotransferase; HPDC, p-hydroxyphenylpyruvate decarboxylase; PO, phenol oxidase; TDC, tyrosine/DOPA decarboxylase; NCS, (S)-
norcoclaurine synthase; 6OMT, (S)-norcoclaurine 6-O-methyltransferase; CNMT, (S)-coclaurine N-methyltransferase; MCH, (S)-N-methylcoclaurine
3’-hydroxylase; 4’OMT, (S)-3’-hydroxy-N-methylcoclaurine 4’-O-methyltransferase; COS, (S)-corytuberine synthase; RNMT, (S)-reticuline N-
methyltransferase; BBE, berberine bridge enzyme; SOMT, (S)-scoulerine 9-O-methyltransferase; CHS, (S)-cheilanthifoline synthase; STS, (S)-stylopine
synthase; CAS, (S)-canadine synthase; TNMT, (S)-tetrahydroprotoberberine N-methyltransferase; MSH, (S)-N-methylstylopine 14-hydroxylase; P6H,
protopine 6-hydroxylase; DBOX, dihydrobenzophenanthridine alkaloid oxidase; SR, sanguinarine reductase; DB10H, dihydrobenzophenanthridine
alkaloid 10-hydroxylase; DB12H, dihydrobenzophenanthridine alkaloid 12-hydroxylase. Large arrows in red denote compounds synthesized in root
and cultured cells, yellow indicates starting products of BIA synthesis, and green indicates alkaloids found in aerial part.
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use of California poppy herbal extract to induce sleep due to

sedative properties. Fedurco et al. (2015) further assigned the

depressant properties of aerial California poppy parts to chloride-

current modulation at the alpha(3)beta(2)gamma(2) and alpha(5)

beta(2)gamma(2) GABA(A) receptors by (S)-reticuline, a minor

alkaloid in the herbal extract,

The biological activities of sanguinarine, the main alkaloid in

California poppy root and cell cultures, have been investigated

in depth and were recently reviewed by Laines-Hidalgo et al. (2022).

In brief, sanguinarine shows herbivore deterrent activity as well as

antimicrobial effects (Schmeller et al., 1997). These effects may be

related to its cytotoxic activity, such as intercalation in nucleic acids,

and inhibition of DNA and RNA synthesis. Moreover, sanguinarine

can bind to negatively charged membrane surfaces and proteins as

heteroaromatic iminium cation (Han et al., 2016) and it inhibits

choline acetyltransferase activity in arthropods and vertebrates.

Sanguinarine, chelerythrine, and other BIAs also show

antibacterial and antifungal activities (Zhao et al., 2019), whereas

their direct effects on these pathogens was not analyzed in planta.

Interestingly, antiplaque mouth washes and toothpaste containing

sanguinarine were once commercially available, but were later

removed from supermarket shelves due to their dramatic side effect:

leukoplakia, a pre-malignant condition, of the maxillary vestibule had

occurred in some consumers (Laines-Hidalgo et al., 2022).

It is further important to notice that some plant-derived

alkaloids, such as protopine and (+)-N-methyllaurotetanine

reduced the human cardiac ether-a-go-go-related gene (hERG)

expression and poses a potential risk for human hERG toxicity

(Schramm et al., 2014).
3.1 Alkaloids

The BIA pathway in California poppy provides a convenient

system to study the regulation of biosynthesis and the physiological

roles of BIAs (Figure 2). And while Coptis japonica (https://

www.sciencedirect.com/topics/biochemistry-genetics-and-

molecular-biology/coptis), Thalictrum thalictroides (https://

www.sciencedirect.com/topics/pharmacology-toxicology-and-

pharmaceutical-science/thalictrum), and Papaver somniferum

(https://www.sciencedirect.com/topics/biochemistry-genetics-and-

molecular-biology/papaver-somniferum) are also used to study

BIAs, California poppy provides practical advantages. The plants

are easy and permit-free to cultivate, efficient methods for cell

cultures and genetic transformations are available as discussed

below (Hagel and Facchini, 2013; Sato, 2013; Lotz et al., 2022).

HPLC or LC-MS analyses easily reveal alkaloid composition of

California poppy (Liscombe et al., 2009; Hori et al., 2018), whereas

the more traditional TLC method is also still in use (Balažová et al.,

2020). Kukula-Koch (2017) reported an optimized method for the

LC-ESI-Q-TOF-MS analysis for the extracts of Papaveraceae and

Berberidaceae families (genera: Papaver, Argemone, Eschscholzia,

Chelidonium, Glaucium, and Berberis), providing even more

sensitive and precise method for BIA characterization. Based on

the identification of alkaloid chemical structures and tracer

experiments, the major alkaloid biosynthesis pathways and
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biosynthetic enzymes of BIAs have been characterized at the

molecular level (Hagel and Facchini, 2013; Sato, 2013; Sato, 2020)

BIA biosynthesis commences with the conversion of tyrosine to

both dopamine and 4-hydroxyphenylacetaldehyde (4HPAA) by

tyrosine/dopa decarboxylase (TDC), or 4-hydroxyphenylpyruvate

decarboxylase (HPDC), phenol oxidase (PO), and tyrosine amino

transferase (TAT) (Figure 2, brown pathway). Dopamine and

4HPAA are condensed by norcoclaurine synthase (NCS) and

yield (S)-norcoclaurine (Samanani and Facchini, 2001). (S)-

Norcoclaurine is sequentially converted to (S)-reticuline by

norcoclaurine 6-O-methyltransferase (6OMT) (Inui et al., 2007),

coclaurine N-methyltransferase (CNMT), N-methylcoclaurine

hydroxylase (CYP80B1; MCH) (Pauli and Kutchan, 1998), and 3’-

hydroxy N-methylcoclaurine 4’-O-methyltransferase (4’OMT)

(Inui et al., 2007).

(S)-Reticuline is converted to (S)-scoulerine by berberine bridge

enzyme (BBE), then benzophenanthridine alkaloids (e.g.,

sanguinarine and macarpine) (Figure 2, red pathway in root and

cultured cells) (Dittrich and Kutchan, 1991; Fujii et al., 2007;

Ikezawa et al., 2007, 2009; Liscombe et al., 2009; Hagel et al.,

2012; Beaudoin and Facchini, 2013; Takemura et al., 2013;

Purwanto et al., 2017). Two enzymes unique to California poppy

and identified based on draft genome sequence mining are

dihydrobenzophenathridine hydroxylase (DB10H) and OMT

required for dihydrochelirubine biosynthesis (Hori et al., 2018).

Importantly, California poppy cell cultures can self-detoxify

exogenously added benzophenanthridines by sanguinarine

reductase (SR; Vogel et al., 2010). As shown in Figure 2, the

biosynthetic pathway of sanguinarine and related chelerythrine

and chelirubine in underground parts and cultured cells of

California poppy has been almost completely elucidated.

The characterization of BIA biosynthetic enzymes was the

prerequisite to elucidate the mechanisms of their transcriptional

regulation (Yamada and Sato, 2021). Firstly, CjWRKY1 and

CjbHLH1 were identified as comprehensive transcriptional

activators of biosynthetic enzyme genes in BIA biosynthesis of C.

japonica cells (Kato et al., 2007; Yamada et al., 2011a). Later, their

homologs were isolated from California poppy (EcWRKY and

EcbHLH1-1/1-2) allowing for the characterization of the

regulation of BIA biosynthesis in California poppy (Yamada

et al., 2015; Yamada et al., 2021b). Interestingly, CjbHLH1 and

EcbHLH1-1/1-2 are non-MYC2-type bHLH transcription factors

and their homologs are only found in BIA-producing plant species

(Yamada et al., 2011b). Whereas WRKYs were also identified in

California poppy genome, the heterologous expression of

CjWRKY1 in California poppy showed limited activation of BIA

biosynthetic enzyme genes and only partial increase in BIA

production, suggesting that their function is not fully

interchangeable (Yamada et al., 2017). Detailed genome-wide

analysis of the California poppy WRKY transcription factor

family combined with transcriptome analysis suggested that this

gene family is involved in the regulation of BIA biosynthesis and is

possibly also associated with the accumulation and translocation of

BIAs in California poppy (Yamada et al., 2021b).

Further transcriptome analysis and genome mining revealed

several transcription factor genes that are strongly upregulated in
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response to methyl jasmonate (MeJA), such as EcAP2/ERF2, EcAP2/

ERF3 and EcAP2/ERF4 (Yamada et al., 2020). MeJA also

sequentially induced the expression of bHLH and WRKY genes as

well as of BIA biosynthetic enzyme and transporter genes (Yamada

and Sato, 2021). This information on additional BIA regulatory

transcription factors and MeJA as inducing phytohormone, all

obtained in California poppy, can be highly useful to dissect the

regulation of BIA biosynthesis in diverse plant species.

Unfortunately, molecular information of the genes encoding the

biosynthetic enzymes for pavine-type BIAs in the aerial parts of

California poppy, such as californidine and escholtzine (Figure 2,

green pathway) is still missing (Hori et al., 2018). Moreover,

while pavine-type alkaloids are most prominent in leaves,

their physiological role is unknown. And, the important question

on why pavine-type alkaloids are found in leaves and

benzophenanthridine alkaloids accumulate in roots and how this

relates to the defense against different pathogens would be

interesting to study in California poppy.

We also note that California poppy has limitations, due to the

lack of some commercially important BIAs, such as noscapine and

morphinan alkaloids (Hagel and Facchini, 2013; Sato, 2020). The

biosynthesis of morphinan alkaloids in opium poppy requires cell-

type-specific localization of the biosynthetic enzymes. In situ

localization of their transcripts indicated that seven biosynthetic

enzymes (6OMT, CNMT, CYP80B, 4’OMT and BBE involved in

reticuline biosynthesis, and SAT and COR in the morphine

pathway) were localized in sieve elements, whereas proteins were

localized in the supporting companion cells, demonstrating a

complex spatial organization of morphinan alkaloids (Lee et al.,

2013; Ozber et al., 2022). California poppy could serve as preferred

host system to reconstruct the morphinan pathway including genes

encoding for the biosynthetic enzymes, translocators, and

transcription factors genes involved in cell differentiation. This

would be a prime example for synthetic biology to recreate a

highly complex biosynthetic pathway of a commercially extremely

valuable pharmaceutical.

Undoubtedly, the California poppy draft genome provides a

useful platform to study the evolution of BIA biosynthesis and its

regulation. Phylogenomic approaches using whole genome

sequences of five benzylisoquinoline alkaloid (BIA)-producing

species from the Ranunculales and Proteales orders including

California poppy revealed the sequence and timing of

evolutionary events leading to the diversification of BIA alkaloids

(Li et al., 2020). 1-Benzylisoquinoline is a pivotal intermediate in the

synthesis of many BIAs and phylogenomic analyses revealed

parallel evolution in the orders of Ranunculales and Proteales,

which diverged -122 million years ago (MYA), with the

Ranunculales producing (S)-reticuline and the Proteales the

related (R/S)-norcoclaurine. Berberine is present in species across

the Ranunculales but lacking in Proteales, and homologs of genes

essential for the protoberberine class production were found

throughout the Ranunculales. However, benzophenanthridine

class is specific to the Papaveraceae family within Ranunculales

(Figure 1), and its biosynthetic genes emerged after the

Papaveraceae separated from the other Ranunculales, around 110

MYA. Their origin also predates the split of the three Papaveraceae
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species (opium poppy, California poppy, and Macleaya cordata) at

approximately 77 MYA. The phthalideisoquinoline noscapine and

morphinan classes of BIAs are exclusive to the opium poppy lineage

(Li et al., 2020). In addition, predicted protein-encoding genes and

comparative analysis using genome sequences of BIA-producing

plants, opium poppy and Aquilegia coerulea, showed many

additional candidate genes encoding for biosynthetic enzymes,

transcription factors, and transporter genes involved in the BIA

pathway (Yamada et al., 2021a).
4 Genetic resources

The species California poppy shows a stunning variation in

floral and vegetative traits observed in natural populations and its

adaptability suggests high genetic variation. Cytological

observations and classical genetic experiments by Ernst and Cook

(Ernst, 1958; Cook, 1962) revealed that California poppy has 6

chromosomes, and is self-incompatible to the largest extent, even in

the naturalized populations, and genetic barriers to outcrossing

were not identified so far. The powdery nature of the pollen allows

also for wind pollination, but the flowers are mainly pollinated by

insects. While the large flowers do not exudate nectar, they

abundantly provide pollen. Beetles, bees and bumblebees

contribute significantly to California poppy pollination, but also

thrips and hover flies were observed to visit the flowers (Cook,

1962). The open breeding system of this species allows novel

adaptive trait combinations and permits differentially adapted

population existing close to each other (Cook, 1962) and may be

a prerequisite of its invasiveness.
4.1 Sequence resources

Several genetic resources have been developed to facilitate

California poppy research with the advantages of relatively small

genome size (503.8 Mb): 14 microsatellite markers are available for

population genetic analysis that have been utilized to characterize

the highly invasive populations in Chile (Véliz et al., 2012). And

EST database has been established to facilitate gene discovery

(Carlson et al., 2006), and the sequence information garnered

from the ESTs was used to generate microarrays for differential

gene expression studies (Zahn et al., 2010). In addition to these

transcriptomes, RNAseq data for different stages of carpel

development obtained by laser microdissection are available from

California poppy (Kivivirta et al., 2019).

Meanwhile, a draft genome sequence was published (Hori et al.,

2018; Eschscholzia Genome DataBase, http://eschscholzia.kazusa.or.jp)

and a reference-quality genome sequencing effort in combination with

a transcriptome atlas is about to be completed by the Open Green

Genome initiative with the data being deposited in the phytozome

database (OGG, https://phytozome-next.jgi.doe.gov/ogg/) for easy

access. Further, we are generating a large number of high quality

transcriptome data for diverse tissues and these will be available for the

research community via a web-based multi-omics platform. This will

allow in silico analysis of the genome and digital gene expression
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analysis along the entire transcriptome and be useful for gene

network constructions.
4.2 Resources for genetic manipulation

In addition to sequence information, questions regarding the

conservation of gene functions can be addressed by knocking down

gene expression of target genes by Virus-Induced Gene Silencing

(VIGS). This method allows gene function analysis in a simple and

time efficient way by manipulating the plant’s immune reaction

towards RNA viruses such that the expression of endogenous genes

is reduced (Wege et al., 2007; Rössner et al., 2022). This method was

employed several times to elucidate the function of transcription

factors involved in vegetative and reproductive development

(Orashakova et al., 2009; Yellina et al., 2010; Lange et al., 2013;

Stammler et al., 2013; Zhao et al., 2018). While the effect of VIGS is

transient and cannot be transferred to subsequent generations, a

second, reliable method for stable transformation and regeneration

of mature plants is now available (Park and Facchini, 2000; Lotz

et al., 2022). Here, Agrobacterium tumefaciens-mediated

transformation of cotyledons and subsequent regeneration is

works efficiently but is time-consuming in California poppy,

requiring at least eight months from the transformation event to

mature plants (Park and Facchini, 2000; Lotz et al., 2022).

Whereas prolonged modulation of gene expression with A.

tumefaciens mediated stable transformation, or VIGS/virus-based

expression is useful for the functional characterization of biosynthetic

enzyme or developmental genes, transient assays using protoplasts are

faster to characterize certain gene functions such as transcription factor

genes regulating BIA biosynthesis. Protoplasts are prepared from plant

cells after the digestion of cell walls with cellulase, pectinase and other

cell wall digesting enzymes. Protoplasts take upDNA, RNA, or proteins

easily when treated with polyethylene glycol (PEG), or electric stimulus.

For example, the efficacy of double-stranded (ds) RNAs prepared

against candidate transcription factor encoding genes or over-

expression plasmids for transcription factor encoding genes were

examined in protoplasts of C. japonica, a relevant model for BIA-

producing plants using PEG-mediated transformation. Suppression

effects of TFs on biosynthetic enzyme genes were successfully

monitored by quantitative reverse transcription (RT)-polymerase

chain reaction (PCR) in C. japonica (Dubouzet et al., 2005). Since

mesophyll protoplasts are rather easily isolated from California poppy

leaves (data not shown), similar system will be applicable, for example

to characterize the pavine-biosynthesis in leaf tissue.
4.3 Cell culture systems

California poppy cell cultures have been intensively used to

study BIA pathway, since cell cultures produce the major BIAs and

provides sufficient materials for biochemical and molecular genetics

characterization (Sato, 2013). Cell culture systems are also useful to

modify biosynthetic pathways using genetically transformed

cultures (Sato et al., 2001; Fujii et al., 2007; Inui et al., 2007), and

to test the effect of chemicals such as elicitors from pathogens or
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MeJA as BIA pathway activator (Tanahashi and Zenk, 1990; Färber

et al., 2003; Ikezawa et al., 2009).

In fact, introduction of the C. japonica scoulerine 9-O-

methyltransferase (CjSMT) gene into BIA biosynthesis in a

California poppy cell culture system shifted the metabolic flow

from the sanguinarine type to chelerythrine type (Sato et al., 2001,

Figure 2). Whereas both introduced CjSMT and endogenous

cheilanthifoline synthase (EcCYP719A2/A3) accept scoulerine as

substrate, the highly reactive CjSMT dominated the pathway when

compared to the endogenous EcCYP719A2/A3. Similarly, when the

C. japonica (S)-tetrahydroberberine oxidase (CjTHBO) was

introduced to California poppy cells, CjTHBO hijacked the

intermediates in benzophenanthridine biosynthesis to convert

them into protoberberine type products (Matsushima et al., 2012).

The physiological role of down-regulation using antisense RNA,

co-suppression or gene-knockout with CRISPR/Cas 9 is also

effectively monitored in cell culture systems. For example, the

effects of RNA-interference (RNAi) of berberine bridge enzyme

(BBE) gene in BIA pathway can be detected as the accumulation of

the key intermediate reticuline with substantial production of 7-O-

methylated derivative of reticuline, laudanine, which indicates the

dynamics of metabolism (Fujii et al., 2007).

Sterilized California poppy seedlings grown on 1% agar medium

containing Murashige–Skoog inorganic salts under continuous light

(100 mE/m2/s) at 25°C are preferable materials for cell culture or

transformation with Agrobacterium tumefaciens. Calli generally form

after 2 months (about three successive selection cultures) on culture

medium containing appropriate plant growth factors such as auxin,

cytokinin, and antibiotics for selecting the transgenics. Transformation

efficiency, regeneration/callus formation efficiency, and secondary

metabolite productivity can vary considerably and require seed

variety comparisons as preliminary experiments. For the

establishment of an embryogenic culture, juvenile tissues such as

shoot meristem and immature seed are often preferred materials

(Takemura et al., 2010). Whereas Cauliflower Mosaic Virus 35S is a

commonly used promoter sequence to over-express desired genes

constitutively in host plant cells, gene expression in specific tissues or

developmental stages requires carefully selected promoters and

even enhancers. Thus, for alkaloid engineering, more research on the

regulation ofmetabolic pathway and specific gene expression profiles is

needed. One example for a comprehensive characterization of

biosynthetic enzymes was done with the genes encoding for the two

C. japonica enzymes norcoclaurine 6-O methyltransferase (Cj6OMT)

and 3’-hydroxy-N-methylcoclaurine 4’-O-methyltransferase

(Cj4’OMT). They were over-expressed in California poppy cell

cultures and showed different effects. Over-expression of Cj6OMT

increased the alkaloid content to 7.5 times greater than that of the wild

type, whereas the over-expression of Cj4’OMT had only a marginal

effect (Inui et al., 2007).

Cell culture systems proved also useful to dissect BIA induction

and its role in the molecular mechanism of phytopathogen defense.

Whereas jasmonate treatment is commonly used to activate BIA

biosynthesis (Färber et al., 2003; Ikezawa et al., 2009), Balažová et al.

(2020) examined salicylic acid (SA), and simultaneous or sequential

treatment of SA and L-tyrosine in cell cultures to enhance

production of macarpine, a BIA specific to few Papaveraceae
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species only. Angelova et al. (2010) used root-derived cell cultures

to characterize the elicitation mechanism, initiated by a short

contact to low concentrations of a yeast glycoprotein elicitor,

which led to the transient acidification of the cytoplasm. In

contrast to low concentration treatment, high elicitor

concentration signal increased jasmonate concentration and

triggered hypersensitive cell death, resulting in massive

mRNA decay.

Taken together, transient and stable genetic transformation

methods have been established for California poppy to interrogate

gene functions in different contexts. For metabolic engineering and

the analysis of metabolite biosynthesis regulation, stable genetic

transformation of cell culture systems have been used extensively.

For the analysis of developmental regulators, fully grown plants are

required and VIGS was used efficiently to unravel their function and

regulatory circuits, even though this method is transient. The novel

method for stable transformation and regeneration of California

poppy will provide even more possibilities, especially for targeted,

heritable mutagenesis by CRISPR-Cas.
5 Outlook

California poppy’s high level of genetic diversity comes with the

cost of being an obligate outcrossing plant. This suggests that the

level of heterozygosity is high and the isogenic and even near-

isogenic lines production is very challenging. However,

homozygous mutants can be created by sibling crossing.

Moreover, CRISPR-Cas guided genome editing introduced by

Agrobacterium-mediated transformation and regeneration

provides an efficient means to elucidate gene function in

homozygous knock-out mutants. Further, VIGS can be combined

with CRISPR-Cas such that the guide RNAs may be delivered by

VIGS to a plant carrying a CRISPR-Cas expressing transgene. These

future developments of the California poppy toolkit will enhance

the potential of this already established model organism to study,

for example, BIA biosynthesis and its regulation in fully grown

plants and link this with developmental genetics analyses.

Availability of many high quality transcriptome datasets allows

the calculation of gene networks based on genes’ co-expression to

identify whole modules of putatively interacting genes. This type of

analysis is independent of candidate genes associated to biological

processes in other species, such as Arabidopsis, and is thus bias-free.

Additionally to California poppy genome and transcriptome

datasets being generated, these datasets are becoming available also

for other Ranunculales, allowing comparative analyses. Several

Ranunculales genomes have been published recently, some even

at chromosome-level, includingM. cordata (Liu et al., 2017), Coptis

chinensis (Liu et al., 2021), P. somniferum (Guo et al., 2018),

Papaver rhoeas, Papaver setigerum (Yang et al., 2021), and A.

coerulea (Filiault et al., 2018), Aquilegia oxysepala (Xie et al.,

2020), Thalictrum thalictroides (Arias et al., 2021), Kingdonia

uniflora (Sun et al., 2020), Akebia trifoliata (Huang et al., 2021),

and Corydalis tomentella (Xu et al., 2022).

While genome sequencing requires the extraction of a single

sample of high molecular weight DNA, transcriptome analysis
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stages, and/or treatments, rendering thismethodmore time consuming

and laborious. While for Nigella damascena, A. coerulea, and T.

thalictroides more extensive transcriptomes datasets have already

been published facilitating gene identification in Ranunculales and

gene expression analysis to a limited extent (Meaders et al., 2020; Zhang

et al., 2020; Arias et al., 2021). However, the datasets often comprise

only few tissues and an insufficient number of replicates to allow for

digital gene expression analysis. Furthermore, gene expression

comparison of orthologous genes is challenging at the present state, if

possible at all. Comparable datasets including representatives covering

all Ranunculales subfamilies is desirable for cross-species comparison of

gene expression data. Sufficient expression data for each representative

species is further required for co-expressed gene network calculations

and to compare these networks between species to learn about novel

network nodes that may correspond to morphological or metabolic

novelties in the Ranunculales.

Furthermore, California poppy allows the fusion of two

formerly separated fields in plant biology: developmental genetics

and regulation of metabolism: floral homeotic genes specify floral

organ identity and any anomaly in the structure or expression of

these genes apparently may result in morphological variations of the

flower/capsule and consequently in the alkaloid yield. One such

recessive mutation, aco (androcarpel organ), has been described in

the opium poppy (Prajapati, 2002), in which androcarpels are

formed in place of stamens in the mutant flowers. The

androcarpel walls synthesized and accumulated alkaloids similar

to the main carpel walls and thus provided a means for increasing

the carpel wall husk mass and alkaloid yield. Singh et al. (2017) also

reported the presence of major BIAs in the carpeloid stamens of the

floral homeotic mutant OM, unlike in wild type stamens, indicating

functional similarities between the carpeloid stamen and the capsule

wall in their capacity to synthesize BIAs. Whereas California poppy

does not synthesize morphinan alkaloids, it also accumulates BIAs

in floral organs and thus allows the study of the interplay of

regulatory genes in flower morphogenesis and specialized

metabolism, i.e., carotenoid and BIA biosynthesis for crop

improvement in future breeding programs of Papaveraceae species.
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