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This paper assesses the projected impacts of climate change on rainfall erosivity (R-factor) in west rapti 

basin (WRB), Nepal. Rainfall is one of the principal drivers of soil erosion. Anticipated changes in rainfall 

intensities, patterns, and amounts greatly affect the erosive power of rainfall. This study evaluates R-factor 

of Revised Universal Soil Loss Equation (RUSLE) for historical time (1970-2005), future time1 (F1: 2020-

2059 or 40’s), and future time2 (F2: 2060-2099 or 80’s). Six selected climate models (CMs) of the fifth 

phase of the Coupled Model Intercomparison Project (CMIP5) under two representative concentration path-

ways (RCP 4.5 and RCP 8.5) were used for projected analysis. This study provides a synopsis of R-factor 

(past and projections) in WRB, Nepal. The magnitude of changes varies, depending on the CMs and warm-

ing scenarios. Based on an average of CMs we found that the annual R-factors are expected to increase by 

10% in the higher region, and 16.7% in the lower region of the study area during 80’s under RCP 8.5 with 

reference to historical time. The study displays pictures of soil erosion in the future based on just the effects 

of the R-factor. 
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1. INTRODUCTION 
 

Intergovernmental Panel on Climate Change 

(IPCC) unequivocally states that climate change is 

occurring. Climate variables such as rainfall, temper-

atures, solar radiation, and others are expected to 

change significantly. Soil erosion will have impacts 

via multiple pathways, one of which is the change in 

the erosive power of rainfall1). The erosive power of 

rainfall has a direct effect on soil erosion. R-factor is 

one of the main factors of soil loss, which quantifies 

kinetic energy of raindrop impact and rate of subse-

quent surface runoff.  

A precise computation of R-factor for RUSLE 

needs a long term higher temporal resolution rainfall 

data (< 15 min interval), which is rarely available. 

Few heavy rainfall events often result in a huge soil 

loss, these events cannot be detected from rainfall 

data with low temporal resolution. In addition, cur-

rent CMs do not provide such sub-hourly rainfall in-

formation under climate change. Many research-

ers2),3) use the relationship between monthly or an-

nual rainfall and the R-factor, or some researchers4),5) 

even use daily rainfall; so that the output of CMs can 

directly be used. These empirical relationships based 
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on rainfall (daily/monthly/annual) are location spe-

cific3) and should be applied with careful attention by 

confirming with locally available rainfall data.  

Even though some studies6),7),8),9) on estimations of 

R-factor and soil erosion at local/regional/country 

level have been conducted for Nepal, future assess-

ment of R-factors in a changing climate has not been 

studied. Therefore, the objective of this paper is to 

estimate R-factor in the future (F1: 2020-2059 or 

40’s, and F2: 2060-2099 or 80’s), discuss the antici-

pated change with respect to (wrt) historical time 

(1970-2005). We used six selected CMIP5 CMs un-

der two greenhouse gas emissions scenarios, RCP 4.5 

and RCP 8.5. Linear scaling (LS) method of bias cor-

rection was used to correct the raw historical rainfall 

CMs data. This study used sub-hourly rainfall data to 

develop the relation of R-factor based on daily rain-

fall and the established relation was used to assess the 

future scenario. The outcomes of this study are ex-

pected to be beneficial for decision-makers while 

planning soil conservation to adapt climate change. 

 

2. STUDY AREA 

 
Geographically west rapti basin (WRB), located in 

the lower mid-west region of Nepal, extends from 

27o56’50’’ to 28o2’30’’ N lat and 81o45’0’’ to 

83o40’0’’ E lon (Fig. 1). The elevation ranges from 

100 m asl (above sea level) to 3600 m asl. The study 

area is divided into 4 elevation bands; EB1 (0 – 500 

m asl), EB2 (500-1000 m asl), EB3 (1000-2000 m 

asl), and EB4 (>2000 m asl). The temperature reaches 

>45oC in summer in the lower part of WRB and falls 

<2oC during winter in the upper part of WRB.  
 

3. DATA AND METHOD 

 
(1) Rainfall data 

Department of Hydrology and Meteorology 

(DHM) operates both manual (24 hr. accumulated 

rainfall, hereinafter termed as daily, at 8:45 AM Ne-

pal local time) and automatic rain gauges (every 5 

min). There are 8 automatic and 24 manual rain 

gauges in the study area (shown in Fig. 1 and 

metadata of automatic rain gauges in Table 1). Man-

ual stations were used for bias correction of CMIP5 

CMs, whereas automatic stations were used for de-

veloping an R-factor estimation model based on daily 

rainfall. Automatic rain gauges were started in WRB 

since 2011. This study used 5 years of automatic rain-

fall data (2011-2015). 5 min interval rainfall data 

were used to compute R-factor. Same rainfall data 

were aggregated to daily at 8:45 Nepal local time.  

R-factor estimation based on daily rainfall was ap-

plied to daily rainfall data of CMs. The selected CMs 

are individual members of the Conformal-Cubic At-

mospheric Model (CCAM), one of the popular Coor-

dinated Regional Climate Downscaling Experiment 

(CORDEX) south Asia regional CMs downscaled us-

ing global CM (GCM) forcings (Table 2) at a hori-

zontal resolution of 0.44o (~50 km). The CMs data 

were downloaded from Center for Climate Change 

Research, Indian Institute of Tropical Meteorology 

(CCCR-IITM, a nodal agency for coordinating 

CORDEX modeling activity in South Asia).  

Biases in CMs can be reduced using correction 

methods by comparing with observation data10). The 

correlation coefficient (R2) and percent bias (PBIAS) 

were computed to check the performance. To employ 

the LS method of bias correction, at first correction 

factor (CF) between monthly observed and historical 

time series of CM were calculated. These monthly 

CFs were then applied to obtain the bias-corrected 

rainfall. 

 

(2) Calculation of R-factor 

Soil erosion is estimated based on RUSLE (eqn 1). 

𝐴 = 𝑅 ×  𝐾 ×  𝐿S ×  𝐶 ×  𝑃 (1) 

where 𝐴 is average soil loss per unit area (tons ha-1 

yr-1), 𝑅 is R-factor (MJ mm ha-1 h-1 yr-1), 𝐾 is soil 

erodibility factor (tons h MJ-1 mm-1), 𝐿𝑆 is combined 

slope length and slope steepness factor, 𝐶  is cover 

management factor, and 𝑃  is conservation support 

practice factor. The methods used to determine the R-

factor are documented in Wischmeier and Smith 

(1978)11), and in the RUSLE user guide12). 

Mathematically, R-factor is the sum of the product 

of the storm total kinetic energy, E (MJ ha-1) and the 

maximum rain intensity recorded within consecutive 

30 mins, 𝐼30 (mm h-1), mean annual R-factor can be 

estimated using eqn. 2. 

𝑅 =  
1

𝑁
∑ [∑ (𝐸𝐼30)𝑘

𝑚𝑗
𝑘=1 ]

𝑗
𝑁
𝑗=1   (2) 

where 𝑁  is number of years of records, and 𝑚𝑗  is 

number of erosive events of a year 𝑗. 

 
Fig. 1  Location of the study area and rainfall stations used in this 

study. The topography of WRB is divided into 4 EBs: EB1 

(0 – 500 m asl), EB2 (500-1000 m asl), EB3 (1000-2000 m 

asl), and EB4 (>2000 m asl).   
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Table 1 Automatic rainfall stations used in this study 

SN Station Name 
lat    

(deg) 

lon    

(deg) 

elevation 

(m asl) 
SN Station Name 

lat    

(deg) 

lon    

(deg) 

elevation 

(m asl) 

1 Kusum 28.01 82.09 199.19 5 Nayagaon 28.08 82.8 520 

2 Bijuwartar 28.1 82.85 808 6 Nepalgunj 28.1 81.67 145.8 

3 Lamahi 27.87 82.54 237.2 7 Sulichour 28.18 82.5 1828 

4 Libang gaon 28.3 82.63 1270 8 Bagasoti 27.88 82.8 321 

 

Table 2 Detail of selected CMIP5 climate models 

CMIP5 Model Institute Country GCM Resolution 

ACCESS1-0 
Commonwealth Scientific and Industrial Research Organiza-

tion (CSIRO) and Bureau of Meteorology (BOM) 
Australia 1.25o x 1.875o 

CCSM4 National Center for Atmospheric Research (NCAR) USA 0.94o x 1.25o 

CNRM-CM5 Centre National de Recherches Me´te´orologiques (CNRM)  France 1.4o x 1.4o 

GFDL-CM3 
National Oceanic and Atmospheric Administration (NOAA), 

Geophysical Fluid Dynamics Laboratory (GFDL) 
USA 2o x 2.5o 

MPI-ESM-LR 
Max-Planck-Institut für Meteorologie /Max Planck Institute for 

Meteorology (MPI-M) 
Germany 1.865o x 1.875o 

NorESM1-M Norwegian Climate Centre (NCC) Norway 1.895o x 2.5o 

𝐼30 can be obtained directly from the rainfall rec-

ord. Brown and Foster (1987)13)’s approach was used 

for calculating storm kinetic energy. The criteria for 

an erosive event are: a) cumulative rainfall > 12.7 

mm, b) at least one peak > 6.35 mm in 15 min and c) 

a rainfall-period < 1.27 mm in 6 h is used to divide a 

longer rainfall period into two storm events12). 

At first, automatic rain gauge data of WRB were 

employed with the above-mentioned approach for es-

timating R-factor. Daily rainfall data are available for 

more stations and even longer time span. Therefore, 

estimating R-factor from daily rainfall is extremely 

demanding. In addition, future CMs lack the sub-

hourly rainfall information needed to compute R-fac-

tor. This study employed Loureiro and Coutinho, 

(2001)14)‘s approach for estimating R-factor based on 

daily rainfall data and the performance was checked 

with R-factor derived using automatic rain gauge 

data on a monthly scale with careful parameteriza-

tion. This model has been applied in many regions. A 

threshold value of daily rainfall (10 mm) has been as-

sumed for determination of erosive event14). 

 

𝑅 =  
1

𝑁
∑ ∑ (𝛾1 ∗ 𝑟10 − 𝛾2 ∗ 𝑑10)𝑖,𝑚

12
𝑚=1

𝑁
𝑖=1   (3) 

 

where 𝑟10 is monthly rainfall for days ≥ 10 mm, 𝑑10 

is monthly number of days with rainfall ≥ 10 mm, and 

𝛾1 = 6.7, and 𝛾2 = 84.2 (calibrated for WRB with per-

formance check). Then onwards, the R-factor estima-

tion model was applied for historical and future sce-

narios using CMs.  This paper highlights the antici-

pated changes in future R-factors wrt historical. 

(3) Assessment of soil erosion 

Though the focus of the paper is R-factor, we at-

tempted to estimate mean annual soil loss by evalu-

ating other factors mentioned in eqn. 1. We used soil 

and terrain database (SOTER) and values of K-factor 

were assigned average values of Koirala et al. 

(2019)8) and Uddin et al. (2018)9). LS-factor was de-

termined using 30 m resolution ASTER GDEM em-

ploying Wischmeier and Smith, (1978)11)’s method. 

The values of C-factor for different landuse/land-

cover (LULC) for the year 2010 prepared by 

ICIMOD were allocated in accordance with Koirala 

et al. (2019)8). The values of P-factor for different 

LULC, slope, and cropping pattern were assigned 

(Refer Ban et al. (2016)8) for detail information). 

 

4. RESULTS AND DISCUSSIONS 

 
(1) Rainfall 

The performance of individual selected CMs and a 

multimodel mean (MMM) of all selected CMs are 

checked with observed data during the historical time 

for both raw and bias-corrected. Fig. 2 a and b show 

the comparisons of MMM with observed data (mean 

monthly and annual). They clearly show bias-cor-

rected data have better agreement with observed data.  

On comparisons of observed with individual CMs 

for raw and bias-corrected, it is found that R2 varying 

from 0.48 to 0.62 improved to R2 = >0.7 after bias 

correction. And for MMM R2 reached to 0.86 after 

bias correction indicating a good correlation with ob-

served and bias-corrected data series. 
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Fig. 2  Comparisons of observed, raw MMM and bias corrected 

MMM for historical time period : a) mean monthly rainfall, 

and b) annual rainfall 

 

The bias-corrected rainfall data were then used for 

further analysis. Hereinafter, simply rainfall means 

bias-corrected rainfall. Fig. 3 shows deviation of 

mean monthly rainfall for different future scenarios 

wrt historical based on MMM. In general, greater 

positive deviations wrt historical are found during 

Feb - May. A mixed pattern of positive and negative 

deviations wrt historical is observed during Jun - Oct. 

Negative deviations wrt historical are found during 

Nov – Dec. Both warming scenarios (RCPs) and both 

future time periods (F1and F2) show an almost simi-

lar tendency of deviations wrt historical at most of the 

months. A slightly different tendency of deviations is 

found in Jan, May, Jul, and Oct. Higher deviations 

are found in F2 compared to F1 and similarly, during 

RCP 8.5 compared to RCP 4.5. 

On annual scale, the MMM shows that annual rain-

fall is expected to decrease by 4.5% during 40’s un-

der RCP 4.5 while is expected to increase by 3.55% 

under RCP 8.5. Similarly, during 80’s it is expected 

to increase by >5.5% under both warming scenarios. 

 

 
Fig. 3  Deviation of mean monthly rainfall (expressed in %) for 

different future scenarios wrt historical. RCPx.x means dif-

ferent RCP scenarios, yy means different future scenarios 

and his represents historical. 

 

 
Fig. 4  Performance check of monthly R-factor estimation model 

based on daily rainfall wrt sub-hourly rainfall (2011 – 2015) 

 

(2) R-factor 

Fig. 4 shows the performance check of R-factor es-

timation model based on daily rainfall wrt sub-hourly 

rainfall on a monthly scale computed for 8 automatic 

stations for the time period of 2011 – 2015. Values of 

R2 = 0.9 (close to 1) and PBIAS = -0.73% (close to 

0) represent the good agreement for the estimation of 

monthly R-factor. Importantly, the model estimation 

is equally good for less erosive months. With this 

agreeability, the daily rainfall of different CMs at dif-

ferent time periods under different warming scenar-

ios are then inputted for further analysis. 

Fig. 5 shows the spatial distributions of annual R-

factors for historical and future scenarios driven by 

different CMs. The spatial patterns are more or less 

similar in all cases with some fluctuations. Lower 

values of annual R-factors are observed in EB1 and 

EB2 (i.e. river valleys and lowlands). Fig. 6 shows 

mean annual R-factors for historical and future sce-

narios of WRB driven by different individual CMs 

and an average of them. The variabilities of CNRM-

CM5 is the lowest compared to others. GFDL-CM3 

shows bigger values under RCP 4.5 whereas CCSM4 

shows bigger values under RCP 8.5. The higher value 

of annual R-factor in historical time is observed for 

CNRM-CM5 (i.e. 3279.11 MJ mm ha-1 h-1 yr-1) fol-

lowed by MPI-ESM-LR (i.e. 3270.79 MJ mm ha-1 h-

1 yr-1). In summary, the magnitude varies, depending 

on the CMs, time periods, and warming scenarios. 

Based on the average, the historical values and de-

viation of mean monthly and annual R-factors wrt to 

historical were determined (shown in Table 3). It 

shows that it is expected to increase the annual R-fac-

tor (historical = 3228.2 MJ mm ha-1 h-1 yr-1) by about 

10% during 40’s and by about 14% during 80’s. Our 

result shows slightly greater increment under RCP 

4.5 than RCP 8.5. The possible reason might be the 

consideration of only rainfall as a driving factor. Our 

future work includes consideration of projected tem-

perature along with rainfall for estimation of soil loss.
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Fig. 5  Spatial distribution of mean annual R-factors for historical and future driven by different CMs and average

 
Fig. 6  Mean annual R-factor for historical time and different fu-

ture scenarios based on individual CMs and average of se-

lected 6 CMs. 

 

Fig. 7 shows a sample of deviations of mean 

monthly R-factors of RCP during 80’s wrt to histori-

cal in different EBs of the study area. It is expected 

to have a higher deviation in lower EBs compared to 

higher EBs (not shown for other scenarios). Higher 

deviations (expressed in %) are found in non-mon-

soon season compared to monsoon season. On an an-

nual scale, the annual R-factors are expected to in-

crease by 10% in the higher region, and 16.7% in the 

lower region under RCP 8.5 during 80’s. 

 
Table 3  Historical values and deviation of R-factors wrt to his-

torical (in %) generated by average of CMs 

Historical   MJ mm /(ha h yr) 3228.2 

C
h
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R
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ac
to
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w
rt

  
  

  
  

 

h
is

to
ri

ca
l 

( 
%

) 

RCP4.5 F1 11.0 

RCP4.5 F2 14.1 

RCP8.5 F1 9.3 

RCP8.5 F2 13.6 

 
Fig. 7  Deviation of mean monthly R-factor (expressed in %) of 

RCP 8.5 F2 wrt to historical in different EBs of WRB 
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Table 4  Mean annual soil erosion for historical, future scenarios and deviation expressed in % wrt to historical for future scenarios in 

different EBs and WRB. The bold values represent the highest deviation in future scenarios wrt to historical.  

    Mean soil erosion (tons/ha/yr) % Deviation wrt to historical 

Elevation 

Band 

Area 

in % 

Histor-

ical 

RCP4

.5 F1 

RCP4.5 

F2 

RCP8.5 

F1 

RCP8.5 

F2 

RCP4.5 

F1 

RCP4.5 

F2 

RCP8.5 

F1 

RCP8.5 

F2 

EB1 31.6 2.94 3.16 3.31 3.12 3.29 7.48 12.59 6.12 11.90 

EB2 20.1 14.30 15.25 15.46 15.09 15.95 6.64 8.11 5.52 11.54 

EB3 35.4 31.57 34.27 33.97 33.89 35.06 8.55 7.60 7.35 11.05 

EB4 12.9 17.52 19.45 19.00 19.09 19.42 11.02 8.45 8.96 10.84 

WRB   8.19 10.02 10.04 9.83 10.24 22.34 22.59 20.02 25.03 

 

(3) Soil erosion 

Table 4 shows the mean annual soil erosion for 

historical, future scenarios in different EBs and 

WRB. In general, the mean soil erosion is higher in 

EB3 followed by EB4. Even though R-factor is ex-

pected to increase in a larger rate in the lower region, 

the multiple effects of rainfall, topography, and 

landuse have slightly different results in overall pro-

jected deviation of mean annual soil erosion under 

different future scenarios. The mean annual soil ero-

sion is estimated to be 8.19 tons ha-1 yr-1, which is 

projected to increase by 25% under RCP 8.5 during 

80’s. Our results are based on just the effects of R-

factor variation under climate change. In reality, 

other factors are also highly dynamic and signifi-

cantly affected by climate change. Therefore, in the 

future, we would conduct an intensive study on each 

factor. Notably, soil erosion is local in both space and 

time. But this paper applies the CMs, which have 

larger spatial scales and daily temporal resolution. 

 

5. CONCLUSION 

 
This study used selected CMIP5 CMs to estimate 

R-factors for the future time period. The variabilities 

of CNRM-CM5 is lower compared to other CMs. A 

MMM shows that during 80’s annual rainfall is ex-

pected to increase by >5.5% under both warming sce-

narios. This study provides an overview of antici-

pated changes in R-factor. It is expected to increase 

annual R-factor (historical = 3228.2 MJ mm ha-1 h-1 

yr-1) by about 10% during 40’s and by about 14% dur-

ing 80’s. Our results show a slightly greater incre-

ment under RCP 4.5 than RCP 8.5. A general pattern 

of higher positive deviations in the lower region is 

found compared to the higher region of the study 

area. This study indicates the scenario of climate 

change will increase soil erosion. 
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