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Abstract: In some instances, existing methods for decomposing a time series
into several components cannot capture cyclical components that contain
long-period cycles. We propose a systematic methodology to overcome this
problem. In the proposed hyper-trend method, we assume that part of the
cyclical variation is included in the estimate of the trend component. We
then capture the remainder of the cyclical variation by re-decomposing the
estimate of the trend component. The average coefficient of determination
is introduced to evaluate the decomposed results. An overall procedure for
applying the proposed approach is developed, and the performance of the
proposed approach is demonstrated by analysing 20 commercial sales time
series and 30 business cycle time series.
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1 Introduction

Generally, an economic time series consists of several components, such as trend,
seasonal, and cyclical components. Specifically, for a monthly (or quarterly) time series,
the trend component expresses the long-term variation, which varies gradually and
smoothly. The seasonal component repeats a similar annual pattern. Moreover, the
seasonal and cyclical components are similar because both have a periodic variation.
Unlike seasonal variation, however, the cyclical component does not necessarily vary
repeatedly in a specific pattern. Additionally, similar to the trend component, the
seasonal component has a non-stationary mean, whereas the cyclical component can
typically be assumed to be stationary. For economic time series, economic growth is
represented by the trend component and the business cycles are measured by the cyclical
component.

Seasonal adjustment is particularly important from a macro-econometric perspective
because, for example, government economic policies are examined using seasonally
adjusted economic indicators. The most widely used method for seasonal adjustment
in current use is Census X-11, which was developed by the United States Census
Bureau. This method uses a set of moving averages to produce seasonally adjusted data
[see Shiskin et al., 1967; see also, e.g., Cleveland and Tiao (1976) for applications
of the X-11 procedure]. Recent improvements to X-11 include X-12-ARIMA (Findley
et al., 1998), TRAMO-SEATS (Gómez and Maravall, 1996), and X-13ARIMA-SEATS
(Monsell, 2007).

However, as argued by Bell and Hillmer (2002), the statistical underpinnings of these
methods are not always clear. Additionally, the complexity of the algorithm renders
statistical processing difficult. In particular, the basic scheme of the X-12-ARIMA
program is an autoregressive integrated moving average (ARIMA) approach (see
Box and Jenkins, 1976), which is based on a differentiated series. As indicated by
Granger and Joyeux (1980) and Sims et al. (1990), the differentiated series typically
leads to some loss of information. Recognising the drawbacks inherent in X-11
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and X-12-ARIMA, Akaike (1980) proposed a seasonal adjustment method based on
Bayesian linear modelling, and developed the BAYSEA program (see Akaike and
Ishiguro, 1980; Ishiguro, 1984).

Conventional seasonal adjustment programs decompose a time series into
trend-cyclical, seasonal, and irregular components. For instance, Kitagawa (1981),
Gersch and Kitagawa (1983), Kitagawa and Gersch (1984) and Kitagawa (2020)
introduced the trend and cyclical parts into the model as separate components. This is
very important for empirical analysis, particularly in economics, because the separate
estimates for these two components are very useful for economic analysis. Based on
Kitagawa’s approach, the DECOMP program was developed (Kitagawa, 1985). In the
DECOMP program, Bayesian smoothness priors are applied to the trend and seasonal
components, and the cyclical component is represented by a stationary autoregressive
(AR) model. A state space model is constructed as a representation of the Bayesian
linear model. Thus, the Kalman filter can be applied to estimate the components,
and a maximum likelihood method based on the Kalman filter is used for parameter
estimation.

Despite this, it is sometimes difficult to capture the cyclical variation completely
using the DECOMP program when the time series contains long-period cycles. In
such a case, part of the cyclical variation may remain in the estimate of the trend
component, so the estimate of the trend component may contain some unnecessary
fluctuations. Thus, when processing the results of conventional seasonal adjustment,
it is necessary to complete a trend-cycle decomposition process, that is, decompose
the trend-cyclical component into trend and cyclical components. There are many
approaches for trend-cycle decomposition, such as the Beveridge-Nelson approach
(Beveridge and Nelson, 1981), unobservable component modelling (Watson, 1986;
Clark, 1987), the Hodrick-Prescott filter (Hodrick and Prescott, 1997), the Baxter-King
approach (Baxter and King, 1999), and the Morley-Nelson-Zivot approach (Morley
et al., 2003). Although these approaches are useful for various applications, in many
existing techniques for trend-cycle decomposition, the trend is expressed by a stochastic
difference model in which the growth rate of the trend is a parameter. Moreover, in most
existing methods, the cyclical component is expressed by a second-order AR model that
lacks generality. Because many economic time series contain long-period cycles, it is
difficult to capture the cyclical variation clearly using an AR model with a small order.

The objective of the present study is to develop an approach for decomposing a
trend-cyclical series into trend and cyclical components. The proposed approach can
be applied to perform trend-cycle decomposition for seasonal adjustment, and can be
also used as a general tool for trend-cycle decomposition. This approach is called the
hyper-trend method because, at its core, the modelling method is related to the concept
of the hyper-trend. The main contribution of the present study is to develop a systematic
program that can be applied to cases in which objective time series contain long-period
cycles. Note that, for a similar purpose, Harvey et al. (2007) proposed a Bayesian
modelling method, although their estimation method is somewhat complicated.

The remainder of this paper is organised as follows: in Section 2, we provide a full
review of the DECOMP program, as this is a basic routine in the proposed method. In
Section 3, we introduce the aim and requirements of the proposed method. Section 4
presents the proposed hyper-trend method, including several modelling techniques
and the overall algorithm. In Section 5, we provide examples that demonstrate the
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performance of the newly proposed approach. Finally, we provide a summary and
discussion in Section 6.

2 DECOMP program: a review

DECOMP is a program for seasonal adjustment that was originally developed by
Kitagawa (1981) and Kitagawa and Gersch (1984). In this section, we provide a full
review of the details of the DECOMP program, as this is used as a basic routine in the
proposed hyper-trend approach.

2.1 Model

Although the DECOMP program contains a wide class of models, for the purpose of
the present study, we focus on the following basic form:

yn = tn + sn + cn + wn (observation model), (1)
tn = 2tn−1 − tn−2 + vn1 (trend component model), (2)

sn = −
p−1∑
j=1

sn−j + vn2 (seasonal component model), (3)

cn =

q∑
j=1

αjcn−j + vn3 (cyclical component model). (4)

We call the above model set the basic seasonal adjustment (BSA) model. In
equations (1)–(4), yn is a monthly (or quarterly) time series that is observed on time
points n = 1, 2, . . . , N , where N is the data span. tn, sn, cn, and wn represent the
trend, seasonal, cyclical, and irregular components, respectively. p represents the period
of seasonal variation; specifically, for monthly data p = 12 and for quarterly data p =
4. q is the order of the AR model for the cyclical component, and α1, α2, . . . , αq

are the AR coefficients. To enable statistical analysis, wn ∼ N(0, σ2), vn1 ∼ N(0, τ21 ),
vn2 ∼ N(0, τ22 ), and vn3 ∼ N(0, τ23 ) are assumed to be white noise sequences that are
independent of each other, where σ2, τ21 , τ22 , and τ23 are the variances. Typically, the
AR coefficients α = {α1, α2, . . . , αq} and the variances σ2, τ21 , τ22 , τ23 are regarded as
unknown parameters.

The BSA model in equations (1)–(4) is essentially a Bayesian model in which the
first equation expresses the structure of observations for the time series yn and the other
equations express the priors for each component to be estimated. To express the BSA
model in a state space form, the following notation is used. First, the vectors xn1, xn2,
and xn3 are defined based on the trend, seasonal, and cyclical components, respectively:

xn1 = (tn, tn−1)
t,

xn2 = (sn, sn−1, . . . , sn−p+2)
t,

xn3 = (cn, cn−1, . . . , cn−q+1)
t,

(5)

and correspondingly,
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F 1 =

[
2 1
1 0

]
, F 2 =


−1 . . . . . . −1
1 0 . . . 0

. . . . . .
...

0 1 0

 , F 3 =


α1 . . . . . . αq

1 0 . . . 0
. . . . . .

...
0 1 0

 ,
G1 =

[
1 0

]t
, G2 =

[
1 0 · · · 0

]t
, G3 =

[
1 0 · · · 0

]t
,

H1 =
[
1 0

]
, H2 =

[
1 0 · · · 0

]
, H3 =

[
1 0 · · · 0

]
.

(6)

Based on the above settings, a state vector xn of dimension p+ q + 1, and a system
noise vector vn of dimension 3 are defined, respectively, as

xn = (xt
n1,x

t
n2,x

t
n3)

t, vn = (vn1, vn2, vn3)
t, (7)

and the matrices

F =

F 1 O O
O F 2 O
O O F 3

 , G =

G1 0 0
0 G2 0
0 0 G3

 , H =
[
H1 H2 H3

]
, (8)

are constructed, where O denotes the zero matrix and 0 denotes the zero vector with
appropriate dimensions. Hence, the BSA model can be expressed in state space form as
follows:

xn = Fxn−1 +Gvn, (9)
yn = Hxn + wn. (10)

Following the assumptions for the BSA model, we have vn ∼ N(0,Q), wn ∼ N(0, R),
where Q = diag(τ21 , τ22 , τ23 ) and R = σ2.

In the state space model given by equations (9) and (10), the components tn, sn, and
cn are involved in the state vector xn; thus, their estimates can be obtained from the
estimate of xn using the Kalman filter algorithm. Moreover, the unknown parameters
α, σ2, τ21 , τ22 , and τ23 can be estimated using the maximum-likelihood method based on
a numerical optimisation routine.

A special case of the BSA model is that in which the time series yn is seasonally
adjusted. In this case, we can set the seasonal component as sn = 0, so the seasonal
component model in equation (3) is not necessary. Thus, the terms xn2, F 2, G2, H2,
vn2, and τ22 , which is related to the seasonal component, can be omitted from the above
settings. We call this model the trend-cycle decomposition (TCD) model.

2.2 Estimating the components

Let x0 ∼ N(x0|0,V 0|0) denote the state xn at time point n = 0, Y1:j = {y1, y2, . . . ,
yj} be a set of observations of yn up to time point n = j, and f(xn|Y1:j) express
the posterior probability density of xn given the data Y1:j . Then, for given values of
x0|0 and V 0|0, the distribution for the state xn conditioned on Y1:k is Gaussian; that
is, f(xn|Y1:j) can be expressed as a Gaussian density with mean xn|j and covariance
matrix V n|j , so it is only necessary to obtain the mean xn|j and the covariance matrix
V n|j .
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Given the values of the parameters α, σ2, τ21 , τ
2
2 , and τ23 , the initial conditions

x0|0, V 0|0, and the observations Y1:N = {y1, y2, . . . , yN}, the means and the covariance
matrices of the state xn for n = 1, 2, . . . , N can be obtained using the following Kalman
filter, which is composed of one-step ahead prediction and a filter (see, e.g., Harvey,
1989; Kitagawa 2020):

• One-step ahead prediction

xn|n−1 = Fxn−1|n−1,

V n|n−1 = FV n−1n−1F
t +GQGt.

• Filter

When yn is observed,

Kn = V n|n−1H
t(HV n|n−1H

t +R)−1,

xn|n = xn|n−1 +Kn(yn −Hxn|n−1),

V n|n = (I −KnH)V n|n−1.

When yn is a missing value, the above filter step is replaced by

xn|n = xn|n−1, V n|n = V n|n−1.

Based on the results of the Kalman filter, as the final estimate of xn, its posterior
distribution conditioned on all observations Y1:N can be obtained using the following
fixed-interval smoothing for n = N − 1, N − 2, . . . , 1:

• Fixed-interval smoothing

An = V n|nF
tV −1

n+1|n,

xn|N = xn|n +An(xn+1|N − xn+1|n),

V n|N = V n|n +An(V n+1|N − V n+1|n)A
t
n.

Note that the result of fixed-interval smoothing for n = N is contained in the results of
the above Kalman filter.

Thus, the estimates for the components tn, sn, cn can be obtained because the state
space model described by equations (9) and (10) incorporates tn, sn, cn in the state
vector xn. The posterior distribution for the state vector xn, which is characterised by
xn|N and V n|N , is Gaussian, so estimates of tn, sn and cn can be determined based on
xn|N , and the estimate of the irregular component is obtained using equation (1) based
on the estimates of tn, sn, and cn. Note that, as shown in the filter step, the Kalman filter
can be implemented without any problems for cases in which the time series contains
missing values, which is a remarkable merit of the Kalman filter algorithm.
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2.3 Parameter estimation

Given the time series data Y1:N , the likelihood function for the parameters θ =
{α, σ2, τ21 , τ

2
2 , τ

2
3 } is given by (see Kitagawa, 2020)

L(θ|Y1:N ) = f(Y1:N |θ) =
N∏

n=1

fn(yn|Y1:(n−1),θ), (11)

where fn(yn|Y1:(n−1),θ) is the conditional density function of yn, that is, a normal
density given by

fn(yn|Y1:(n−1),θ) =
1√

2πη2n|n−1

exp

{
−
(yn − ŷn|n−1)

2

2η2n|n−1

}
, (12)

where ŷn|n−1 is the one-step ahead prediction for yn and η2n|n−1 denotes the variance of
the prediction error. ŷn|n−1 and η2n|n−1 can be obtained as follows based on the results
of the Kalman filter:

ŷn|n−1 = Hxn|n−1,

η2n|n−1 = HV n|n−1H
t +R.

By taking the logarithm of L(θ|Y1:N ) in equation (11), the log-likelihood is obtained as

ℓ(θ|Y1:N ) = logL(θ|Y1:N ) =
N∑

n=1

log fn(yn|Y1:(n−1),θ). (13)

Thus, generally, the estimates θ̂ of the parameters θ can be obtained by maximising the
log-likelihood ℓ(θ|Y1:N ) in equation (13) together with equation (12) using a numerical
method. Correspondingly, Akaike’s information criterion (AIC) for the model can be
calculated based on the definition

AIC(q|Y1:N ) = −2ℓ(θ̂|Y1:N ) + 2d(q),

where d(q) denotes the dimension of θ. For the BSA model case, d(q) = q + 4, which
depends on the value of the AR model order q. The minimum AIC method (see Akaike,
1974) allows the value of q to be determined by minimising the value of AIC(q|Y1:N )
with respect to q.

Note that for the TCD model, the parameter τ22 is removed, and so d(q) = q +
4. Moreover, for the special case of removing the cyclical component cn from the
BSA model (or the TCD model), q can be set to q = 0. In this case, the parameters
θ are composed of {σ2, τ21 , τ

2
2 }, and so the AIC value is given by AIC(0|Y1:N ) =

−2ℓ(θ̂|Y1:N ) + 2× 3. When the value of AIC(0|Y1:N ) is minimised among all values
of AIC(q|Y1:N ) for proper values of q ≥ 0, it can be considered that cn = 0; that is,
the cyclical component cannot be identified from the viewpoint of the minimum AIC
method.
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2.4 Stationarity of the cyclical component

One approach for ensuring the stationarity of the cyclical component is to estimate
the AR coefficients α = {α1, α2, . . . , αq} by controlling the partial autocorrelation
(PARCOR) coefficients. For the AR model in equation (4), let ρ1, ρ2, . . . , ρq denote
the PARCOR coefficients. The relation between the AR coefficients and the PARCOR
coefficients is well known [see, e.g., Kitagawa, (2020), p.96]. Hence, the values of
the AR coefficients can be controlled through the values of the PARCOR coefficients.
Moreover, when the inequality −1 < ρi < 1 holds for i = 1, 2, . . . , q, the AR model is
stationary. Hence, under the setting

ρi = Φ
exp(ξi)− 1

exp(ξi) + 1
(i = 1, 2, . . . .q), (14)

for Φ > 0, −Φ < ρi < Φ is always true for −∞ < ξi <∞. Note that equation (14)
defines a set of one-to-one correspondences between −Φ < ρi < Φ and −∞ < ξi <∞
for i = 1, 2, . . . , q.

Thus, a strategy that ensures the stationarity of the cyclical component is as follows:
For any values of ξi (i = 1, 2, . . . , q), if Φ < 1 is set, then it is possible to ensure that
the AR model is stationary. Therefore, the AR coefficient can be estimated through the
estimation of ξi (i = 1, 2, . . . , q) by setting a value of Φ < 1. Hereafter, this is called
the stationarity threshold.

3 Aim and requirements

3.1 Aim

As mentioned in Section 1, when a time series contains long-period cycles, it is difficult
to capture the cyclical variation clearly using the BSA modelling method; hence, part
of the cyclical variation may remain in the estimate of the trend component, and so the
estimated trend may contain unnecessary fluctuations. Moreover, it is easy to imagine
a scenario in which one wants to decompose a trend-cyclical time series into trend and
cyclical components, but existing methods cannot provide satisfactory results.

Thus, our main aim is to develop an approach that can be applied to decompose
a time series into several components, such as trend and cyclical components, in
cases where the data contain long-period cycles. In the majority of the present work,
we develop a comprehensive tool for decomposing a trend-cyclical component into
hyper-trend and hyper-cyclical components when existing methods do not work well.

Before proceeding, we consider several subtle but important issues. As fundamentals
of the new approach, we provide several requirements for constructing models and
evaluating the decomposed results in the following subsection.

3.2 Requirements

For the present study, we are confronted with the difficulty that there are no established
definitions for trend and cyclical components. However, examples of these components
are ubiquitous in applicative experience in many fields, so we can specify the following
requirements for implementing trend-cycle decomposition.
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3.2.1 Cyclical component

To obtain a unique decomposition, we assume that the cyclical component is stationary
in mean, i.e., its average in a given data span is zero. As mentioned in Subsection 2.4,
when we use an AR model to express the cyclical component, we can ensure stationarity
by controlling the values of the PARCOR coefficients.

We construct a model for observations at equal sampling intervals, and consider the
stationarity of a cyclical component for different sampling intervals. Specifically, for a
time series {c1, c2, . . .} of the cyclical component, we can measure its stationarity using
the PARCOR coefficients for the model:

cn =

q∑
j=1

αjcn−jk + vn3(k), (15)

where k is an integer. To extract long-period cycles from a time series, we focus on the
stationarity for the case in which k > 1.

Besides the stationarity requirement, the following additional requirements ensure
that the cyclical component has several desirable properties:

• Uniformity of dispersion, which means that its variation is almost uniform over
the whole data span.

• Symmetry, which means that it should generally vary symmetrically with respect
to the zero level.

• Conditionally large variation, which means that its variation should be as large as
possible so that a large part of the variation in the time series data can be
absorbed by the cyclical component and the trend component becomes sufficiently
smooth. Note that the word conditionally means that this requirement is predicated
on the uniformity of dispersion and the symmetry requirements being satisfied.

As will be mentioned in the next subsection, the above additional requirements
correspond to the requirements for the trend component.

3.2.2 Trend component

Regarding the properties of the trend component, Wu et al. (2007) provided the
following definite requirements: The trend should reflect the intrinsic property of the
time series. It is an integral part of the data and can be driven by the same mechanisms
or part of the same mechanisms that generate the data. Hence, it requires that the method
used in defining the trend is adaptive so that the trend extracted is derived from and
based on the data.

We essentially agree with the viewpoint of Wu et al. (2007). In particular, we
expect the trend to be smooth over time – if the trend exhibits a jagged variation, this
should be assimilated by the cyclical or irregular components. In terms of smoothness,
we recommend using the smoothness priors in equation (2). Corresponding to the
consideration regarding the stationarity of the cyclical component, for a time series
{t1, t2, . . .} of the trend component, we can also measure its smoothness using the
variance of

vn1(k) = tn − 2tn−k + tn−2k, (16)
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where k is an integer (that is, the variance of vn1(k) expresses the smoothness of
the trend component). When we expect the trend component to be smooth over a
large interval, we can set the value of k to be relatively large. Note that, in our
proposed approach, the correspondence between stationarity and smoothness means that
the integer k in equation (16) is naturally the same as that in equation (15). The integer
k is hereafter called the length of the sampling interval (LSI).

We also expect the trend to be adaptive to the time series, i.e., the trend component
should fit long-term variations in the data. There may be a trade-off between the
properties of smoothness and adaptivity. This trade-off relates to the properties of the
cyclical component, i.e., if the corresponding cyclical component satisfies the uniformity
of dispersion and the symmetry requirements, then the adaptivity of the trend component
will be high, whereas when the large variation requirement is satisfied, the trend
component will be smooth. Thus, the properties of the trend component can be evaluated
in terms of whether they satisfy the requirements for the cyclical component.

3.3 Consideration about use of the requirements

Ideally, all the requirements should be considered in the process of modelling; however,
this may lead to the model structure becoming very complicated and increase the cost
of parameter estimation. In the present paper, we focus on constructing models so as to
achieve a smooth trend component and ensure the stationarity of the cyclical component.
The other requirements can be taken into consideration by evaluating the properties of
the cyclical component after the process of modelling and estimation.

To obtain good estimates, we are required to make as many sets of estimates
as possible so that a good set can be selected and highly satisfactory results can
be obtained. This stimulates us to develop a systematic program based on several
newly proposed modelling methods, and then to establish a criterion for evaluating the
decomposed results.

4 Proposed approach

We develop a systematic program as a general tool for trend-cycle decomposition or for
cases in which the BSA modelling method and other existing techniques do not work
well. In Subsection 4.1, we construct several models for trend-cycle decomposition with
estimation methods. In Subsection 4.2, we propose a criterion for determining the LSI.
In Subsection 4.3, we summarise the overall procedure.

4.1 Models and estimation methods

4.1.1 Interval averaging trend-cycle decomposition model

We denote the estimates of the trend and cyclical components that are obtained based
on the BSA model or the TCD model by t̂Fn and ĉF

n; hereafter, these are referred to as
the first-stage estimates.

For cases in which long-period cycles cannot be captured using the BSA model or
the TCD model, we consider a model based on the smoothness of the trend component
and the stationarity of the cyclical component for a large value of the LSI. Let zn = t̂Fn.
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Then, we denote the set of results for the first-stage estimate of the trend by Z1:N =
{z1, z2, . . . , zN}. Consider the possibility of decomposing the time series zn into a trend
component t̃n, a cyclical component c̃n, and an irregular component w̃n; that is, the
structure of the time series zn can be expressed as

zn = t̃n + c̃n + w̃n. (17)

We call t̃n in equation (17) the hyper-trend component because it expresses a trend
component in the first-stage estimate zn of the trend component. Correspondingly, we
call c̃n the hyper-cyclical component.

Consider the smoothness of the trend t̃n and the stationarity of c̃n for i ∈
{1, 2, . . . , k} with a given value of k ≥ 2. We construct a model for observations at
equal sampling intervals. Specifically, we express the model as

zm = t̃m + c̃m + w̃m, (18)
t̃m = 2t̃m−k − t̃m−2k + ṽm1, (19)

c̃m =

q∑
j=1

αj c̃m−jk + ṽm3, (20)

where m = i, i+ k, i+ 2k, . . ., and the symbols used in equations (18)–(20) correspond
to those used in the BSA model. Note that the integer k is the same as the LSI which
appeared in equations (15) and (16).

Using the averages for every quantity in equations (18)–(20), we have

z̄m = t̄m + c̄m + w̄m, w̄m ∼ N(0, σ̃2), (21)
t̄m = 2t̄m−k − t̄m−2k + v̄m1, v̄m1 ∼ N(0, τ̃21 ), (22)

c̄m =

q∑
j=1

αj c̄m−jk + v̄m3, v̄m3 ∼ N(0, τ̃23 ), (23)

where z̄m is the interval average for zm up to time point m− k + 1, that is,

z̄m =
1

k
(zm + zm−1 + · · ·+ zm−k+1),

and the other quantities are similar interval averages that correspond to z̄m, e.g.,

t̄m =
1

k
(t̃m + t̃m−1 + · · ·+ t̃m−k+1), (24)

and so on. If the LSI (k) is determined appropriately, then it is possible to capture
long-period cycles. We call the model in equations (21)–(23) the interval averaging
trend-cycle decomposition (IATCD) model.

Here, we compare the structure of the IATCD model with that of the TCD model.
For k > 1, the trend model used in the IATCD model [as in equation (22)] controls the
smoothness of the trend component in a wider interval than that used in the TCD model
[as in equation (2)]. Correspondingly, the cyclical component model in the IATCD
model [as in equation (23)] expresses the cyclical variation in a wider interval than
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that used in the TCD model [as in equation (4)]. Thus, using the IATCD model, we
can extract long-term cycles and estimate the trend with a relatively high degree of
smoothness.

However, the IATCD model has the same mathematical form as the TCD model.
Thus, given a value of i = 1, 2, . . . , k with a fixed value of k ≥ 2, the IATCD model
has the same state space form as the TCD model under the following settings.

yℓ = z̄ℓk+i−1, tℓ = t̄ℓk+i−1, cℓ = c̄ℓk+i−1,

wℓ = w̄ℓk+i−1, vℓ = (v̄(ℓk+i−1)1, v̄(ℓk+i−1)3)
t (ℓ = 1, 2, . . . , Ni),

with the relations Q = diag(τ̃21 , τ̃23 ) and R = σ̃2, where Ni denotes the integral part of
N−i+1

k .
We assume that the parameters θ = {α, σ̃2, τ̃21 , τ̃

2
3 } are constants for all values of

i = 1, 2, . . . , k, where α = {α1, α2, . . . , αq}. Let

Z̄
(i)
1:Ni

= {z̄k+i−1, z̄2k+i−1, . . . , z̄Nik+i−1}

be a set of the interval average values (for the first-stage estimate of the trend
component) under a given value of i = 1, 2, . . . , k with a fixed value of k ≥ 2. Then,
we can calculate the likelihood for Z̄(i)

1:Ni
using

L(θ|Z̄(i)
1:Ni

) =

Ni∏
ℓ=1

fℓ(z̄ℓk−i+1|Z̄(i)
1:(ℓ−1),θ),

with Z̄(i)
1:(ℓ−1) = {z̄k+i−1, z̄2k+i−1, . . . , z̄(ℓ−1)k+i−1} and where fℓ(z̄ℓk−i+1|Z̄(i)

1:(ℓ−1),θ)

is the density function, which can be defined similarly to equation (12). Furthermore,
based on the Bayesian model averaging approach (see Hoeting et al., 1999), by
averaging the likelihood L(θ|Z̄(i)

1:Ni
) on i = 1, 2, . . . , k, we calculate

L̄(θ) =
1

k

k∑
i=1

L(θ|Z̄(i)
1:Ni

) (25)

using a uniform prior, and obtain the estimates θ̂ for the parameters θ by maximising
the averaging likelihood L̄(θ) in equation (25). Thus, we define the AIC for the IATCD
model as

AIC(q) = −2 log L̄(θ̂) + 2(q + 3); (26)

hence, we can determine the AR model order q by minimising the value of AIC(q)
defined by equation (26). As mentioned in Subsection 4.1.1, when the inequality
AIC(0) < AIC(q) holds for all possible values of q > 0, we can set c̄ℓk+i−1 = 0 for
ℓ = 1, 2, . . . , Ni, i = 1, 2, . . . , k, which implies that we can omit the long-period cyclical
variation from the model. Note that we execute the strategy for the stationarity of
c̄ℓk+i−1 in cases where q > 0. Finally, we estimate t̄ℓk+i−1 and c̄ℓk+i−1 using the
Kalman filter and fixed-interval smoothing algorithms for ℓ = 1, 2, . . . , Ni under a given
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value of i = 1, 2, . . . , k with a fixed value of k ≥ 2. Let t̂∗ℓk+i−1 denote the estimate of
t̄ℓk+i−1. Then, we can obtain a set of estimates as

T̂
(i)
1:Ni

= {t̂∗k+i−1, t̂
∗
2k+i−1, . . . , t̂

∗
Nik+i−1} (27)

for a given value of i = 1, 2, . . . , k with a fixed value of k.
Note that the AIC values for models with different values of the LSI (k) cannot be

compared with each other because the initial conditions of the state vector for models
with different values of k are very different; hence, it is difficult to determine the value
of k using the minimum AIC method. We introduce a criterion for determining the value
of the LSI (k) later.

4.1.2 Hyper-trend reconstruction model

Continuing the process of estimating the hyper-trend component, we propose a method
for reconstructing the hyper-trend based on the estimates of the interval average (for the
hyper-trend component) expressed by equation (27).

First, to avoid complexity in the expression, let un denote a time series for the
estimate of the interval average t̄n, where n is the time index, which is equivalent with
that in the original time series yn. From equation (24), we have

t̄n =
1

k
(t̃n + t̃n+1 + · · ·+ t̃n+k−1).

Thus, to reconstruct the hyper-trend component, we construct a model as follows:

un = t̄+ ϵn =
1

k
(t̃n + t̃n+1 + · · ·+ t̃n+k−1) + ϵn, (28)

where t̃n is the hyper-trend in equation (17) and ϵn ∼ N(0, ψ2) is the residual. Because
the smoothness with k > 1 expressed by equation (19) has been applied in estimating
the interval averaging trend t̄m, as a prior which expresses the smoothness with k = 1
for t̃n, we use the model

t̃n = 2t̃n−1 − t̃n−2 + ṽn, ṽn ∼ N(0, τ̃2). (29)

We call the model in equations (28) and (29) the hyper-trend reconstruction (HTR)
model.

Now, we define a k-dimensional state vector

xn = (t̃n, t̃n−1, . . . , t̃n−k+1)
t

and correspondingly set the matrices

F =



2 1 0 · · · 0

1 0
...

. . .
...

0
. . . 0 · · · 0

...
. . . . . . . . .

...
0 · · · 0 1 0


, G =


1
0
...
...
0

 , H =



1
k
...
...
...
1
k



t

.
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We estimate the hyper-trend component based on the set T̂ (i)
1:Ni

defined in equation (27)
for a given value of i = 1, 2, . . . , k with a fixed value of k ≥ 2. For a value of n =

1, 2, . . . , N , if there is an element, say t̂∗m, in the set T̂
(i)
1:Ni

such that the equality n = m

holds, then we set yn = un = t̂∗m; otherwise, we regard yn = un as a missing value.
Then, we can express the state space form of the HTR model using equations (9) and
(10) based on the assumption that vn = (ṽn) ∼ N(0,Q), wn = ϵn ∼ N(0, R) under the
settings Q = (τ̃2) and R = ψ2. Moreover, if we set θ = {ψ2, τ̃2}, then we can apply
the Kalman filter and calculate the log-likelihood ℓ(θ|T̂ (i)

1:Ni
) using equations (11)–(13).

Hence, we obtain the estimates for the parameters θ by maximising ℓ(θ|T̂ (i)
1:Ni

).
Finally, for a value of i = 1, 2, . . . , k with a fixed value of k > 1, we obtain

the estimate of the state vector using the Kalman filter and fixed-interval smoothing
algorithms; hence, the estimate t̂Sin for the hyper-trend t̃n can be obtained from the
estimate of the state vector. Thus, we can obtain k sets of estimates for the hyper-trend
component as {t̂Sin;n = 1, 2, . . . , N} for i = 1, 2, . . . , k. Then, by taking the average on
i = 1, 2, . . . , k, we obtain

t̂Sn =
1

k

k∑
i=1

t̂Sin (n = 1, 2 . . . , N),

and take t̂Sn as the second-stage estimate of the trend component. Furthermore, zn − t̂Sn
can be considered as an additional part of the estimate of the cyclical component. Hence,
the second-stage estimates of the cyclical component are obtained as follows:

ĉS
n = ĉF

n + zn − t̂Sn = ĉF
n + t̂Fn − t̂Sn (n = 1, 2, . . . , N). (30)

4.2 Criterion for determining the LSI

The core of the proposed approach is the estimation method based on the IATCD and
HTR models. However, to use these modelling methods, we must determine the value
of the LSI (k). For this, we need to establish a suitable criterion. To illustrate the image
of the criterion which will be constructed below, we present an example in which we
decompose a trend-cycle series into trend and cyclical components with different values
of k.

Figure 1 shows a time series for a set of example data with the data span N = 492.
From this figure, we can see that the time series may be difficult to decompose because
it is too uneven; in particular, the data reach a maximum level early in the series, then
fall sharply to a low level around time point 200.

Figure 2 shows the time series of the second-stage estimates for the trend and
cyclical components with k = 2, 3, 4. We can obtain some immediate conclusions from
these results. For k = 2, a large part of the cyclical fluctuations remains in the estimated
trend. When k = 3, the estimated results agree well with the requirements for the
cyclical and trend components. For k = 4, the estimated trend is hardened, and to fit it
to the data, the estimate of the cyclical component changes sharply at around time point
200.
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Figure 1 Time series for example data
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Figure 2 Second-stage estimates of trend and cyclical components
(a) Trend component (k = 2)
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(d) Cyclical component (k = 3)
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(e) Trend component (k = 4)
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We now introduce a criterion for evaluating a set of decomposed results based on
the additional requirements for the cyclical component mentioned in Subsection 3.2.1.
We consider the time series for the second-stage estimate ĉS

n(n = 1, 2 . . . , N) as the
objective, and simplify the notation by writing ĉn = ĉS

n. We assume that no element
in the set Ĉ1:N = {ĉn;n = 1, 2 . . . , N} is equal to zero, so we can divide Ĉ1:N into
a subset of negative parts, in which all the elements are negative, and a subset of
positive parts, in which all the elements are positive. Let the numbers of elements in
these subsets be N1 and N2, respectively, so that N = N1 +N2. Denote the subset of
negative parts by {ĉ−i ; i = 1, 2 . . . , N1}, and the subset of positive parts by {ĉ+i ; i =
1, 2 . . . , N2}, in which {ĉ−1 , ĉ

−
2 , . . . , ĉ

−
j } are the first j negative elements in Ĉ1:N for

j = 1, 2, . . . , N1, and {ĉ+1 , ĉ
+
2 , . . . , ĉ

+
j } are the first j positive elements in Ĉ1:N for

j = 1, 2, . . . , N2. Then, we generate the cumulative values of the negative part (CVNP)
as

ai = ai−1 + ĉ−i (i = 1, 2, . . . , N1),

and the cumulative values of the positive part (CVPP) as

bi = bi−1 + ĉ+i (i = 1, 2, . . . , N2)
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with a+0 = b−0 = 0.
For an estimate of the cyclical component, when the uniformity of dispersion

requirement is satisfied, the series ai decreases uniformly with i. Hence, the model

ai = −β1i+ ei1 (i = 1, 2, . . . , N1) (31)

can be constructed with a positive parameter β1 and a small variance of the error term
ei1. Similarly, under the same condition, the series bi increases uniformly with i, so the
model

bi = β2i+ ei2 (i = 1, 2, . . . , N2) (32)

can be built with a positive parameter β2 and a small variance of the error term ei2.
Furthermore, if the symmetry requirement is satisfied, then the values of |β1 − β2|
and |N1 −N2| may be small, and so we can set β1 = β2 = β with a large degree of
confidence. Thus, the models in equations (31) and (32) can be expressed in a regression
model as follows:

ai = −βi+ ei1 (i = 1, 2, . . . , N1),

bi = βi+ ei2 (i = 1, 2, . . . , N2). (33)

Moreover, when the conditionally large variation requirement is satisfied, the variances
of ai and bi may be large relative to those of the error terms ei1 and ei2. Thus, the
correlation between the series {aN1 , aN1−1, . . ., a1, b1, b2, . . . , bN2} and the series
{−N1,−(N1 − 1), . . . ,−1, 1, 2, . . . , N2} may be high, resulting in a large coefficient
of determination (R2) in the model of equation (33). That is, R2 can be taken as an
indicator for measuring the degree to which the additional requirements are satisfied.
However, the value of R2 may depend on the order of the elements in the set Ĉ1:N ,
which determines the orders of the elements in the sets {ĉ−i ; i = 1, 2 . . . , N1} and
{ĉ+i ; i = 1, 2 . . . , N2}.

Thus, we reset the order of the elements in Ĉ1:N . For example, initially, we reset
Ĉ1:N as {ĉN , ĉ1, ĉ2, . . . , ĉN−1}, and next, we reset Ĉ1:N as {ĉN−1, ĉN , ĉ1, . . . , ĉN−2},
and so on, so that we obtain N different sequences for the elements in Ĉ1:N including
Ĉ1:N itself. For each resetting of Ĉ1:N , we have a regression model given by
equation (33). Let R2

j (k) be the value of R2 for the j-th resetting with a given LSI
value k. Then, we can define an average coefficient of determination (ACD) as

ACD(k) =
1

N

N∑
j=1

R2
j (k). (34)

Thus, the value of ACD(k) can be regarded as a function of the LSI (k); hence, it can
be applied as a criterion for evaluating the estimation results and used to determine the
value of k — a larger value of ACD(k) indicates better estimation results under the
given value of the LSI (k).

We now demonstrate the performance of the ACD criterion for the example data
in Figure 1. For k = 2, 3, 4, the values of the ACD are 0.9743, 0.9817, and 0.9433,
respectively. Consequently, among these three cases, the ACD is maximised when k =
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3, which is mainly because of the properties of the estimate for the cyclical component.
Incidentally, the variances for the estimates of the cyclical components are 14.31, 39.46,
and 83.80 and the average values of the coefficient β are 0.0258, 0.0436, and 0.0608
for k = 2, 3, 4, respectively.

4.3 Overall procedure

Based on the results obtained using the BSA model or the TCD model (which is a
special case of the BSA model), we have established the IATCD and HTR models. For
the proposed modelling methods, we assume that the objective data are time series that
contain trend and cyclical components, and possibly a seasonal component. We call
data that contain a seasonal component a type-A time series, and refer to data that do
not contain a seasonal component as a type-B time series. Summarising the proposed
modelling methods, we obtain the following overall procedure.

• First stage: original data decomposition

For type-A and type-B time series, we use the BSA and TCD models,
respectively, to obtain estimates of the components. We consider the possibility
that, at this point, the first-stage estimate of the trend component contains part of
the cyclical component. Thus, if the first-stage estimate of the trend component is
monotonic or has only one extremum, we adopt the first-stage estimates and
terminate the procedure; hence, we say that second-stage estimation is not
necessary. Otherwise, we proceed to the second stage.

• Second stage: hyper-trend estimation

We provide an appropriate upper limit K of the global value k. For each value of
k ∈ {2, 3, . . . ,K}, we use the IATCD and HTR modelling methods to estimate
the hyper-trend, and then obtain the second-stage estimates for the trend and
cyclical components.

• Third stage: determining the value of the LSI (k)

Based on the second-stage estimates, we compute the value of ACD(k) defined
by equation (34) for k ∈ {2, 3, . . . ,K}. Additionally, we define k̂ as

ACD(k̂) = Max{ACD(k); k = 2, 3, . . . ,K}.

Furthermore, as a reference, we compute ACD(1) based on the first-stage
estimates. When

ACD(k̂) > ACD(1), (35)

we consider k̂ as an estimate of the LSI for k > 1 and adopt the second-stage
estimates corresponding to the value of k̂ as the final estimates. When
equation (35) holds, we say that second-stage estimation is necessary. Otherwise,
we adopt the first-stage estimates and consider the second-stage estimates to be
unnecessary.
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The proposed approach for seasonal adjustment and trend-cycle decomposition based on
the above procedure is called the hyper-trend method because the hyper-trend estimation
stage is the core of this approach.

5 Examples

5.1 Analysing time series of commercial sales in Japan

First, we applied the proposed approach to the seasonal adjustment of time series
data related to commercial sales in Japan. The data were obtained from the website
of the Ministry of Economy, Trade and Industry of Japan (https://www.meti.go.jp/
statistics/tyo/syoudou/result2/index.html). We consider such data as the objective of the
analysis because these time series may be influenced by business cycles and many other
factors; hence, they may contain rich information about cyclical variation.

The data were publicised as monthly data with a seasonal component (i.e., type-A
time series). To examine the performance of the proposed approach, we analysed all
the series available on the website, except for those that contained missing values. We
consider the 20 series listed in Table 1 as the objective for analysis.

Table 1 Analysed time series of commercial sales in Japan

Number Name of indicator

S1 Total
S2 Wholesale
S3 General merchandise (in wholesale)
S4 Textiles
S5 Apparel and accessories
S6 Farm and aquatic products
S7 Food and beverages (in wholesale)
S8 Building materials
S9 Chemicals
S10 Minerals and metals
S11 Machinery and equipment (in wholesale)
S12 Furniture and house furnishings
S13 Medicines and toiletries
S14 Others in wholesale
S15 Retail
S16 General merchandise (in retail)
S17 Fabrics apparel and accessories
S18 Food and beverages (in retail)
S19 Motor vehicles
S20 Machinery equipment (in retail)

For each series, the data covered the period from January 1980 to December 2019; that
is, the data span was N = 480 months. Note that, prior to analysis, we transformed all
the data by taking the logarithm. We set the value of the stationarity threshold Φ to
0.95, and the upper limit K for the value of the LSI (k) was 12.
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The results indicate that series S1, S6, S7, S8, S9, S10, S12, S13, S14, S17, S18,
S19, and S20 did not require second-stage estimation. For the other seven series, we
adopted the second-stage estimates; that is, for 35% of the time series, we used the
proposed approach. Table 2 summarises the estimations of the series for which we used
the proposed approach. Note that the parameter q represents the AR model order in the
HTR model.

Table 2 Summary of estimations for the commercial sales data in Japan

Number k̂-value ACD(1) ACD(k) q-value

S2 k̂ = 4 0.9797 0.9877 q = 6

S3 k̂ = 11 0.9804 0.9866 q = 4

S4 k̂ = 6 0.9861 0.9864 q = 0

S5 k̂ = 3 0.9837 0.9874 q = 5

S11 k̂ = 6 0.9815 0.9865 q = 4

S15 k̂ = 3 0.9808 0.9909 q = 8

S16 k̂ = 10 0.9898 0.9913 q = 0

We now discuss the estimation results of several typical series among those that required
second-stage estimates. For series S2, S5, S11, S15, and S16, the estimation results are
shown in Figures 3–7. In each figure, Figures 3(a)–7(a) show the logarithm of the data,
Figures 3(b)–7(b) and 3(c)–7(c) are the first-stage estimates of the cyclical and trend
components, respectively, Figures 3(d)–7(d) show the estimate of the hyper-cyclical
component (the most important part), and Figures 3(e)–7(e) and Figures 3(f)–7(f) show
the second-stage estimates of the cyclical and trend components, respectively.

Figure 3 Data and estimation results for series S2
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Figure 4 Data and estimation results for series S5
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Figure 5 Data and estimation results for series S11
(a) Logarithm of data
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From Figures 3–7, we can draw the following conclusions. For almost all results,
the second-stage estimates of the trends vary over time with a very high degree of
smoothness and generally adapt to the long-term variation of the data. That is, the
cyclical variation is clearly captured by the second-stage estimates of the cyclical
component. Thus, the proposed approach performed very well. Note that sudden
decreases appear in almost all estimates of the cyclical components. These reflect the
influence of the Lehman shock from around 2008 to 2010.
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Figure 6 Data and estimation results for series S15
(a) Logarithm of data
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Figure 7 Data and estimation results for series S16
(a) Logarithm of data
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5.2 Analysing the time series of business cycle indicators in Japan

Next, we applied the proposed approach to the decomposition of time series data related
to business cycle indicators in Japan. We obtained the data from the Japanese Cabinet
Office website (https://www.esri.cao.go.jp/jp/stat/di/di.html). We considered these data
because they are typical time series for economic analysis and are organised properly
over a long period.
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Table 3 Leading indicators for business cycle analysis in Japan

Number Name of indicator

L1 Index of producer’s inventory ratio of finished goods (final demand goods)
L2 Index of producer’s inventory ratio of finished goods (producer goods for mining

and manufacturing)
L3 New job offers (excluding new school graduates)
L4 Machinery orders at constant prices (manufacturing)
L5 Total floor area of new housing construction started
L6 Consumer confidence index
L7 Nikkei commodity price index (42 items)
L8 Money stock (M2, change from previous year)
L9 Stock prices (TOPIX)
L10 Index of investment climate (manufacturing)
L11 Sales forecast DI of small businesses

The time series of business cycle indicators were publicised as seasonally adjusted
monthly data (i.e., type-B time series). We analysed all the series that were used for
business cycle analysis in Japan. For each series, the data covered the period from
January 1975 to December 2019; hence, the data span was N = 540 months. As in
the previous subsection, we set the value of the stationarity threshold Φ to 0.95. The
upper limit K for the value of the LSI (k) was set to 10. Moreover, the indicators for
business cycle analysis were classified as either leading indicators, coincident indicators,
or lagging indicators.

In total, there were 11 leading indicators; these are listed in Table 3. We transformed
the data by taking the logarithm, except for series L8, L10, and L11, which contained
some negative values. Based on the properties of the first-stage estimates and the
values of the ACD, we determined that series L3, L4, L5, L8, and L11 did not require
second-stage estimation. Hence, we applied the proposed approach to series L1, L2, L6,
L7, L9, and L10, for which we adopted the second-stage estimates. Table 4 summarises
these second-stage estimations.

Table 4 Summary of estimations for several leading indicators

Number k̂-value ACD(1) ACD(k) q-value

L1 k̂ = 8 0.9740 0.9805 q = 6

L2 k̂ = 10 0.9747 0.9794 q = 7

L6 k̂ = 2 0.9755 0.9762 q = 8

L7 k̂ = 5 0.9872 0.9885 q = 0

L9 k̂ = 5 0.9815 0.9850 q = 7

L10 k̂ = 3 0.9807 0.9845 q = 7

For three typical series among those for which second-stage estimates were required,
the estimation results are shown in Figures 8–10. The results show that, for these series,
the proposed approach worked well.
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Figure 8 Data and estimation results for series L6
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Figure 9 Data and estimation results for series L7
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There were a total of ten coincident indicators; these are listed in Table 5. With the
exception of series C6 and C7, which contained some negative values, we transformed
the data for each series by taking the logarithm. Based on the properties of the first-stage
estimates and the values of the ACD, we determined that series C1, C2, C4, C6, C7,
C9, and C10 did not require second-stage estimation. Hence, we applied the proposed
approach to series C3, C5, and C8, for which we adopted the second-stage estimates.
Table 6 summarises the estimations for the series to which we applied the proposed
approach.
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Figure 10 Data and estimation results for series L9
(a) Logarithm of data
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Table 5 Coincident indicators for business cycle analysis in Japan

Number Name of indicator

C1 Index of industrial production (mining and manufacturing)
C2 Index of producers’ shipments (producer goods for mining and manufacturing)
C3 Index of producers’ shipments of durable consumer goods
C4 Index of labour input (industries covered)
C5 Index of producers’ shipments (investment goods excluding transport equipments)
C6 Retail sales value (change from previous year)
C7 Wholesale sales value (change from previous year)
C8 Operating profits (all industries)
C9 Effective job offer rate (excluding new school graduates)
C10 Exports volume index

Table 6 Summary of estimations for several coincident indicators

Number k̂-value ACD(1) ACD(k) q-value

C3 k̂ = 4 0.9762 0.9785 q = 6

C5 k̂ = 7 0.0000 0.9847 q = 6

C8 k̂ = 10 0.9599 0.9800 q = 2

The estimation results for series C5 and C8 are shown in Figures 11 and 12. From
Figure 11, we can see that for series C5, the first-stage estimate of the cyclical
component remained at the zero level [see Figure 11(b)] because we could not identify
it using the minimum AIC method. Thus, some cyclical variation remained in the
first-stage estimate of the trend component [see Figure 11(c)], and this was clearly
captured using the second-stage estimation.
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Figure 11 Data and estimation results for series C5
(a) Logarithm of data
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Figure 12 Data and estimation results for series C8

(a) Logarithm of data

1980 1990 2000 2010 2020

1
0
.0

1
1
.0

1
2
.0

(b) First−stage estimate of cyclical component

1980 1990 2000 2010 2020

−
1
.5

−
0
.5

(c) First−stage estimate of trend component

1980 1990 2000 2010 2020

1
0
.5

1
1
.5

(d) Estimate of hyper−cyclical component

1980 1990 2000 2010 2020

−
0

.1
0

0
.0

0
0

.1
0

(e) Second−stage estimate of trend component

1980 1990 2000 2010 2020

1
0

.5
1
1

.5

(f) Second−stage estimate of cyclical component

1980 1990 2000 2010 2020

−
1
.5

−
0

.5

There were a total of nine lagging indicators; these are listed in Table 7. With the
exception of series Lg2, Lg4, and Lg8, which contained some negative values, we
transformed the data for each series by taking the logarithm. From the properties of
the first-stage estimates and the values of the ACD, series Lg1, Lg3, Lg5, Lg6, and
Lg8 did not require second-stage estimates. Hence, we applied the proposed approach to
series Lg2, Lg4, Lg7, and Lg9, for which we adopted the second-stage estimates. The
estimations for these series are summarised in Table 8.
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Table 7 Lagging indicators for business cycle analysis in Japan

Number Name of indicator

Lg1 Index of tertiary industry activity (business services)
Lg2 Index of regular workers employment (change from previous year)
Lg3 Business expenditures for new plant and equipment at constant prices (all industries)
Lg4 Living expenditure (change from previous year)
Lg5 Corporation tax revenue
Lg6 Unemployment rate
Lg7 Contractual cash earnings (manufacturing)
Lg8 Consumer price index (all items, less fresh food, change from previous year)
Lg9 Index of producer’s inventory (final demand goods)

Table 8 Summary of estimations for several lagging indicators

Number k̂-value ACD(1) ACD(k) q-value

Lg2 k̂ = 2 0.9881 0.9887 q = 0

Lg4 k̂ = 9 0.9454 0.9754 q = 6

Lg7 k̂ = 2 0.9863 0.9877 q = 0

Lg9 k̂ = 4 0.9861 0.9865 q = 0

As typical examples, we present the estimation results for Lg2 and Lg7 in Figures 13
and 14. The results are generally satisfactory.

Figure 13 Data and estimation results for series Lg2
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Figure 14 Data and estimation results for series Lg7
(a) Logarithm of data
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The results presented in this subsection can be summarised as follows. For the data
related to commercial sales in Japan, we applied the second-stage estimates to seven
of the 20 series (35%). Further, among the 30 series of business cycle indicators, we
required the hyper-trend method for 13 series (about 45%). That is, for about 40% of
the analysed series, we applied the proposed approach.

6 Summary and discussion

For economic analysis, it is very important to decompose a time series into several
components. In the decomposed results, the trend and cyclical components are
particularly important: the trend component indicates the long-period behaviour and the
cyclical component indicates the cyclical variation, such as business cycles. Thus, the
conclusion of any economic analysis may be influenced by the decomposed results.
Sometimes, however, when the analysed time series contains long-period variations,
existing methods cannot capture each component completely; hence, part of the cyclical
variation may remain in the estimate of the trend component.

To overcome this difficulty, we proposed an approach called the hyper-trend method.
In the newly proposed approach, we assume that part of the cyclical variation remains in
the estimate of the trend component obtained using the existing decomposition method.
We decomposed the estimated trend component into hyper-trend and hyper-cyclical
components by introducing the IATCD and HTR modelling methods. In these modelling
methods, we introduced the LSI as a parameter related to the pattern of variation of the
hyper-cyclical component. To determine the value of the LSI, we further introduced the
ACD criterion, which measures the properties of the estimate of the cyclical component.
Finally, based on the proposed modelling methods, we provided an overall procedure
for applying the proposed approach. The proposed approach is called the hyper-trend
method because the procedure for estimating the hyper-trend components is the core
technique.
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To illustrate the performance of the proposed approach, we applied it to two types
of time series data. The first type of time series related to commercial sales in Japan,
and were monthly data containing a seasonal component. The second type of time series
related to business cycle analysis indicators, and was seasonally adjusted monthly time
series. Among the 20 series of the first type, the hyper-trend method was applied to
seven series (35%). Moreover, among the 30 series of the second type, we required the
hyper-trend method for 13 series (about 45%).

The results demonstrate the efficiency of the constructed ACD criterion. In this
paper, to determine the value of the LSI, we used the method of maximising the ACD
so that only one set of estimation results could be adopted. There may be multiple
patterns for different cyclical components that correspond to different values of the
ACD. Thus, the proposed approach can be extended to decompose a time series into
multiple stationary components with different cycle periods by taking the ACD criterion
as an inference.

Another possibility for the proposed approach is the application to the estimation of
long-memory time series (see Granger and Joyeux, 1980). Although many methods for
estimating long-memory time series have been proposed (see Robinson, 2003), it may
be possible to develop a simple and easy method for analysing long-memory time series
by extending the proposed approach.
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