AC loss computation of single isolated superconducting tapes

Department of Electrical and Computer Engineering, Miyakonojo National College of Technology

Batdalai Sukh, Hideki Noji, Yoji Akaki, Tsugio Hamada

Abstract

In this panel session, we present numerical models for computing the current density, field distribution and AC losses in high-temperature superconducting tapes. The tapes have a rectangle cross section for two-dimensional geometries. The numerical models are tested by comparing the calculation results with the predictions of analytical solutions for simple geometries. We used it successfully for investigating cases of single isolated tape and are going to aim at more complex configurations, where the interaction between adjacent tapes is important.

- Faraday-maxwell's equation :

$$
\mathrm{J}=\nabla \times \mathrm{H} ; \nabla \times E(J)=-\mu \frac{\partial H}{\partial t}
$$

- Non-liner resistivity described by the power law:

$$
E(J)=\frac{E_{c}}{J_{c}}\left(\frac{J}{J_{c}}\right)^{n-1}
$$

- Perpendicular directional magnetic applied field (Brandt's equation) :
$\mathrm{P}=4 \mathrm{f} \mu_{0} a^{2} J_{c} d g(x) ; \mathrm{g}=\left(\frac{2}{x}\right) \ln (\cosh (x))-\tanh (x) ; x=\frac{H_{a}}{H_{c}}$
- Parallel directional magnetic applied field (Slab model): $\mathrm{P}=\frac{2 \mu_{0} H_{a}^{2}}{3} x ; x<1 \quad P=2 d \mu_{0} J_{c} H_{a}\left(1-\frac{2}{3} \frac{1}{x}\right) \quad ; x>1$
- Transport current loss formula of an elliptical superconductor(for ellipse) :
$P=\frac{f I_{c}^{2} \mu_{0}}{\pi} \times(1-i) \ln (1-1)+(2-i) i / 2 ; i=I_{0} / I_{c}$

Method

	Parameter	Original description	value
	E_{c}	Critical Electric-field	$10^{-4}[\mathrm{~V} / \mathrm{m}]$
	n	Number of power low	19
	I_{c}	Critical current	$10[\mathrm{~A}]$
	d	Half of thickness	$10^{-4}[\mathrm{~m}]$
	w	Half of width	$10^{-3}[\mathrm{~m}]$

Table 1. Conditional for HTS tape

The FEM analysis of AC losses of superconducting tapes by COMSOL is almost equal to 3 theories: Norris equation for ellipse, Brandt equation and Slab model.

