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Abstract  Agarose gels are currently used in separation, purification, and characterization of DNA, RNA, proteins, 
and polysaccharides in gel electrophoresis, gel filtration, affinity chromatography, and ion chromatography 
techniques. Specifically, it is used in PCR (Polymerase Chain Reaction) test. Although, double stranded 
intermolecular hydrogen bonding between OH-2 and 3,6-ring oxygen atoms of 1,4-linked anhydro-α-L-
galactopyranose residues on different molecules take place, triple- or multi-stranded secondary association occur 
with increasing concentration. The multi-stranded gelation mechanism of agarose molecules is the first to report. 
The associated agarose molecules play a dominant role in the centre of tetrahedral cavities that are occupied by ice-
like hydrogen bonded water molecules which are caused thermodynamically by cage and hydrophobic effects. Many 
investigations the gelling properties of the polysaccharides have been undertaken to elucidate the structure-function 
relationship, but no other researchers have established the mechanisms at the molecular level including water 
molecules. There are structural and theoretical consistencies in our investigation. This paper provides important 
information not only academia, but also to industrial fields, such as bio-physicochemical analysis, food, cosmetics, 
agriculture, pharmaceuticals, drug delivery, drug storage, tissue engineering, and biotechnology. 
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1. Introduction 

Agarose isolated from family of red seaweeds has many 
useful characteristics, such as hydrophilicity, biodegradability, 
biocompatibility, and strong thermoreversible gelation 
ability. It is currently used in drug delivery [1,2] and 
tissue engineering [3].  In the course of rheological study 
of industrial useful polysaccharides,  gelation mechanisms 
of κ-carrageena [4,5], ι-carrageenan [6], agarose [7], 
gellan gum [8,9], amylose [10,11], curdlan [12], alginate 
[13,14], and deacetylated rhamsan gum [15] where 
hemiacetal oxygen atom, OH-, CH3-, COOH-, or sulfate 
groups of  sugar residues with hydrogen bonding, van der 
Waals forces of attraction, ionic bonding, or electrostatic 
forces of attraction involving have been reported at 
molecular level. The co-gelation mechanism of xanthan 
[16,17,18] and plant galactomannan [19-24], and 
glucomannan [24,25] have also been reported. The  
tri-saccharide side chains of the former contribute to the 
interaction with the main chains (mannan) of the latter that 
is for the D-mannose-specific. Furthermore, the gelatinization 
and retrogradation mechanisms of rice [26,27], potato [28] 

and wheat [29] starches have been discussed. The short 
side-chains of amylopectin contribute to the interaction 
with the amylose molecules. The molecular origin for 
thermal stability of schizophyllan [30] and rice 
amylopectin [31,32,33] have also been reported. We 
discuss herein the structure-function relationship of 
agarose in comparison with those of carrageenans and 
propose multi-stranded hydrogen bond contributing its 
strong gelling characteristics.  

2. Potassium Induced Gelation 
Mechanism of κ-Carrageenan 

κ-Carrageenan is a cation-selective binding polymer 
[4,5,34], such as 18-crown-6-ether, which gels in the 
presence of the large-site cation, K+, but does not do so in 
the presence of the small cation Na+. An intramolecular 
K+-bridge with electrostatic forces of attraction has been 
found between the 3,6-ring oxygen atom of 4-linked 
anhydro-α-D-galactopyranose and the sulfate oxygen atom 
at C4 of 3-linked β-D-galactopyranose as shown in  
Figure 1 [4]. This was the first report at the molecular 
level. 
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Figure 1. Intramolecular K+-bridge on κ-carrageenan molecule 

 
Figure 2. Potassium induced gelation mechanism of κ-carrageenan 

The intermolecular association between K+ and oxygen 
atoms of sulfate groups on different molecules was thus 
discovered (Figure 2A) [5]. As shown in Figure 2B,  
anti-parallel double helical conformation take place at 
gelling state where potassium cations are involved in 

inside of the helix. The cloudy gel melted above  
the transition temperature (25°C). Specifically, the 
polysaccharide showed synergistic strong gel with plant 
galactomannan [5,35]. The polymer is widely used in food 
industry as gelling, thickening and binding agent.  
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3. Calcium Induced Gelation Mechanism 
of ι-Carrageenan 

ι-Carrageenan [6,36,37] is more highly sulfated 
galactan (30%) and is used in food and cosmetic. We 
concluded that this polymer involves an intramolecular 
association through Ca2+ cation between sulfate oxygens 
substituted at C-4 of β-D-galactopyranose and C-2 of 
anhydro-α-D-galactopyranose with ionic bonding and 
intermolecular Ca2+-bridges on different molecules  
with electrostatic forces of attraction (Figure 3A) [6].  
3D-Model for gelling ι-carrageenan is presented in Figure 3B. 
The model corresponds to anti-parallel double stranded 
helix. The calcium atoms are involved in inside of the helix. 

The intra- and inter-molecular calcium bridges of  
ι-carrageenan differs essentially from that of the  
κ-carrageenan, because the former consists of double ionic 
forces and electrostatic forces, whereas the latter consists 
of single ionic force and triple electrostatic forces. These 
different mechanisms provide an explanation for the 
conformational transition of ι- and κ-carrageenan in 
aqueous solution. Since ionic forces are stronger than 
electrostatic forces of attraction, the molecular chain 
become rigid even at intermediate temperature (45 °C). 
The polysaccharide also showed a cloudy gel. 

4. Hydrogen Bonding in Agarose 
Molecules 

Agarose is the major components of agar [7,38,39,40,41], 
the structure of which is similar to that of the former polymers 
except for the sulfate content and L-configuration. The 
polymer exhibits reversible sol-gel transition upon heating 
and cooling, and gels at a minimum concentration of  
0.08% or 0.13% (W/V) at low (4°C) or room temperature 
[7]. A very large elastic modulus (G’) occurred in 0.08% 
agarose solution with the addition of MgCl2 (13.3 mM), 
which was 4-fold that after the addition of NaCl  
(16.9 mM), KCl (13.3mM), or CaCl2 (9.0 mM) caused by 
the salting-out effect. This result indicates that Mg2+ 
cations more easily form tetrahedral hydrogen-bonded 
water molecules (H2O) like ice than Na+, K+, or Ca2+. The 
gels melted down at high temperatures (>60°C). 
Furthermore, the small elastic modulus was observed with 
addition of urea (4 M). On the basis of the results, gelation 
mechanism for agarose molecules has been reported [7]. 
Intramolecular hydrogen bonding takes place between the 
hemiacetal oxygen atom of 1,4-linked 3,6-anhydo-α-L-
galactopyranose and OH-4 of the adjacent 1,3-linked D-
galactopyranose residue, which involved even at high 
temperatures (>60°C).  

 
Figure 3. Calcium induced gelation mechanism of ι-carrageenan 
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Figure 4. Intra- and intermolecular hydrogen bonding of agarose at low concentration 

Intermolecular hydrogen bonding also takes place 
between the 3,6-ring oxygen atom and OH-2 which are 
oriented in the axial configuration of anhydro-L-
galactopyranose residues on different molecules, as shown 
in Figure 4A and 4B [7]. The optically transparent gel was 
observed in agarose molecules due to the formation of 
intermolecular hydrogen bonds associated in parallel, 
similar to a lattice, along the polymer molecules where no 
absorption of visible light occurred, as shown in  
Figure 4A and 4B. Such structures are observed in daily 
life on the cutting end of agarose (agar) gels where 
involving alternate phases of the associated polymer 
strands and water molecules. The transparent gel was also 
obtained in κ-carrageenan-like agarose which isolated 
from Gracilaria coronopifolia [40], but broke down 20 
min after preparation caused by substitution with sulfate 
group at C-4 of β-D-galactopyranose residue. The intra- 
and intermolecular hydrogen bond have been supported by 
H1- and C13-NMR analysis [42]. Consequently, the gelling 
mechanism of κ-carrageenan, ι-carrageenan and agarose 
molecules are quite different. 

5. Principles of Agarose Gels 

On the basis of this and previous analyses [7,43,44,45], 
the agarose molecules play a dominant role in the centre 
of tetrahedral cavities that are occupied by water 
molecules. This arrangement is similar to a tetrahedral ice-
like structure and should lead to a cooperative effect. This 
effect extends the regions to ice-like hydrogen bonding 
with water molecules and then forms a cluster. The cage 
and hydrophobic effects thermodynamically contribute to 

gel-formation processes where HO- and hemiacetal 
oxygens participate in the hydrogen bonding that occurs 
between the polymer and water, and between water 
molecules caused by a decrease in entropy.  

6. Multi-stranded Hydrogen Bonding in 
Agarose Molecules 

The H2O molecule can participate in four hydrogen 
bonds two of them involving the two hydrogens and the 
lone pairs of electrons of the oxygen with two neighboring 
hydrogens. This tetrahedral directed hydrogen bonding is 
involved in the gelling waters in agarose solution. At a 
minimum concentration of 0.08- 0.13% (W/V) in water 
(99.92-99.87%), the intra- and intermolecular hydrogen 
bonded agarose molecules changed into an ice-like 
structure with the formation of hydrogen bonding between 
the polymer and water, and between water molecules, 
which subsequently resulting in gelation even at room 
temperature (>0.13%). Such dramatic changes from liquid 
into gels have generally been understood at the molecular level.  

Consequently, as the active groups, 3,6-ring oxygen 
atoms and OH-2 of anhydo-α-L-galactopyranose residues 
face the other side (see Fig.4 and 5), the gelling agarose 
molecules adopt double-, triple-, and/or multi-stranded 
(Figure 5) conformation in parallel depending on the 
polymer concentration. It is well understood that the 
strong gels are attributed to the multi-stranded hydrogen 
bonding. Although the multi-stranded gelation mechanism 
has been suggested in previous study [7], the scheme is 
the first to report.  
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Figure 5. Multi-stranded hydrogen bond in agarose molecules at high concentrations 

The multi-stranded gelation mechanism explains that 
agarose gels are currently used in the separation, 
purification, and characterization of biomacromolecules 
(DNA, RNA, proteins and polysaccharides) in gel 
electrophoresis, gel filtration, affinity chromatography, 
and ion chromatography techniques. 

As the OH-2 and OH-6 of the 3-linked β-D-galactopyranose 
residues are free from secondary associations, these 
groups can be substituted with active or functional agents 
(ingredients) or group to make derivatives. Furthermore, the 
cavities of polymer strands are occupied by tetrahedral-
directed hydrogen bonds between water molecules so that 
drug or functional agents (ingredients) are available to 
easily become entrapped into the strands. 

7. Conclusions 

The followings summarize the principles of agarose 
gelling processes: 

1)  The intramolecular hydrogen bonding between  
OH-4 of 1,3-linked β-D-galactopyranose and the 
adjacent hemiacetal oxygen atom of 1,4-linked  
3,6-anhydro-α-L-galactopyranose preferentially takes 
place to rigidify molecules. The boding is stable 
even at high temperatures (>60°C). 

 

2)  The intermolecular hydrogen bonding between  
OH-2 and the 3,6-ring oxygen atoms of the  
α-L-galactopyranose residues is built on different  
molecules in parallel contributing in the transparent gel. 
The number of molecular chains associated increases in 
concentration from double- to multi-stranded. 

3)  Tetrahedral directed hydrogen bonding as that 
observed in ice is thermodynamically built up 
between OH- and the hemiacetal oxygen atoms of 
sugars and water, and between water molecules 
themselves by cage and hydrophobic effects that 
correspond to a cluster. 

4)  Consequently, the agarose gels are the total of the 
cluster. 

There are structural and theoretical consistencies in our 
investigations. This paper provides important information 
not only academia, but also to industrial fields, such as 
bio-physicochemical analysis, food, cosmetics, agriculture, 
pharmaceuticals, drug delivery, tissue engineering, and 
biotechnology. 
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