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ABSTRACT 
Ear acoustic authentication is a biometric authentication technology that recognizes the acoustic characteristics of 

the ear canal to authenticate users. However, compared to fingerprints, ear acoustic authentication has not been 

studied sufficiently with regards to the individuality of the acoustic characteristics of the ear canal. Therefore, a 

study on the visualization of ear canal acoustic characteristic differences using t-distributed stochastic neighbor 

embedding (t-SNE) which expresses the similarity in high-dimensional space and estimates the similarity in low-

dimensional space, was conducted. 

1 Introduction 

With the progress of digitization of the world, various 

services, such as shopping on the internet, SNS, net 

trading, etc., can be used without being subjected to 

physical restrictions. However, the number of 

offenses that exploit digital technology, illegal 

trading by impersonating others, and stealing 

confidential and personal information is increasing. 

Personal certification is becoming important to 
protect personal rights and privacy from such crimes, 

and realize a safe and secure society. Biometric 

authentication using different physical features of 

individuals compared to commonly used passwords, 

pins, and card keys has the advantage of a low 

impersonation risk, and no possibility of forgetting or 

losing passwords. Biometric authentication by 

fingerprints and face recognition has already been 

used for immigration review, entrance and exit 

management of important facilities, etc. Recently, it 

is being used for logging in terminals, such as in  

smartphones, and identity verification for online 

settlements [1]-[3]. Many certifications require 

authentication operations such as bringing fingers and 
eyes closer to the sensor while performing 

authentication. As the frequency of biometric 

authentication increases, people get annoyed with the 

authentication operations such as holding the finger 

over the scanner or gazing at the camera. Biometric 

authentication is expected to be required without 

authentication operations. Moreover, in many 

systems, authentication is performed at the start of the 

service, making it is difficult to detect "spoofing" in 

which users are interchanged during the service. 

Hence, solutions to these problems are required. 

Therefore, attention is paid to the ear hole (the ear 
canal) as a new biological information expressing a 

person’s individuality. In the bio metric 

authentication by the ear hole, nonoperative 

authentication without requiring a conscious action 

can be realized by attaching an earphone-type 

authentication device. In ear acoustic authentication, 



Ominato, Yano, Wakui, Takamichi Visualization of differences in ear acoustic characteristics 

AES 148th Convention,Online, 2020 June 2-5 
Page 2 of 6 

biological information can be acquired from both ears. 
Accuracy improvement is expected by combining 

two features, but it has not been studied yet.In this 

research, we confirm that there is a difference in the 

features of both ears by t-distributed stochastic 

neighbour embedding (t-SNE). In addition, frequency 

amplitude characteristics and mel-frequency cepstral 

coefficients (MFCCs) are calculated for time-series 

ustic characteristics. In the experiment, we used 50 

subjects and the binaural features of 30 measurements. 

2 Theory of ear acoustic authentication 

2.1 Ear canal acoustic characteristics 

The shape of the ear canal, which varies for different 

people, appears as an acoustic characteristic. The 

acoustic characteristics of the ear canal can be 

explained by an air column model. Here, the air 
column model explains the resonance of sound waves 

passing between the space filled with a medium (air), 

and the mechanism behind the fact that a musical 

instrument, such as a whistle, generates a specific 

sound. As shown in Fig. 1, an earphone with a built-

in microphone is worn on the ear, and the acoustic 

characteristics of the ear canal are determined. These 

acoustic characteristics include the characteristics of 
reflection, diffraction, interference, and resonance 

depending on the shape of the ear canal and an 

individual’s body. We can apply biometric 

authentication by treating these characteristics with 

individual differences as features. It is considered that 

the characteristic that the acoustic signal passes 

through the ear canal and is propagated to the eardrum 

depends on the shape and volume of the ear canal, and 

the acoustic impedance of the tympanic membrane 

surface and the likes. In this study, the ear canal 
transfer characteristic is defined as the characteristic 

related to the signal transmission between the 

earphone and the microphone installed at the entrance 

of the ear canal. The ear canal transfer characteristic 

becomes an ear canal impulse response (ECIR) in the 

time domain, and it is represented by an ear canal 

transfer function (ECTF) in the complex frequency 

domain. An ECIR can be derived by measuring the 

acoustic characteristics by an impulse response 

measurement method using a time stretched pulse 

signal or maximum length sequence (MLS) signal. 
The ear canal transmission characteristics include the 

acoustic characteristics of the ear canal, 

electroacoustic conversion characteristics of the 

earphone, acoustoelectric conversion characteristics 

of the microphone, and characteristics depending on 

the positional relationship between the microphone 

and earphone. The ear canal transfer characteristics, 

together with the head acoustic transfer 

characteristics, are used for the out-of-head sound 

image localization technique for creating a sound 

image at an arbitrary spatial position. In ear acoustic 

authentication, attention is given to the individuality 
possessed by the ear canal transfer characteristics, 

and biometric authentication is performed by 

applying a feature amount extraction processing to 

the discriminator.  

2.2 ECIR measurement method 

ECIR is measured using the measurement system of 

Fig. 2. The canal-type earphone (BOSE Sound True 

Ultra) is used. As shown in Fig. 3, by installing the 

Fig. 1: Theory of ear acoustic authentication 

Fig. 2: The measurement system 
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small microphone on the earphone and forming it as 

an integral type, the sound collecting portion of the 

small microphone enters the ear canal when the 

earphone is attached, and it is possible to collect the 

sound signal in the ear canal. Using the MLS signal 

(signal length 214-1), the measurement signal is 

reproduced at the ear noise level of about 70 dB (A) 

and the number of synchronous addition is 5 times. 
For ECIR data, a minimum phase transformation 

process using Hilbert transformation is applied.  After 

bandpass filtering (100Hz-22kHz) is performed, 

normalization processing is performed to set the 

power of the whole signal to 1. 

3 Features 

3.1 Frequency amplitude characteristic 

The ECIR is f(t). Frequency amplitude characteristic 

F(ω) is one of the ear canal acoustic characteristics 

obtained by the FFT of time series data f(t). 

   𝐹(𝜔) = 20𝑙𝑜𝑔 ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 (1) 

3.2 Mel-frequency cepstral coefficients 

The MFCCs features F(m) has M number of mel-
filter banks H(ω, m) for the amplitude spectrum X(ω). 

It is one of the ear canal acoustic characteristics, 

which is obtained by applying a discrete cosine 

transformation. 

𝑆(𝑚) = 𝑙𝑜𝑔 ( ∑ |𝑋(𝜔)|

𝑇−1

𝑚=0

𝐻(𝜔, 𝑚))  (2) 

𝐹(𝑚) = ∑ 𝑙𝑜𝑔𝑆(𝑚)

𝑀

𝑚=1

𝑐𝑜𝑠 [
𝜋𝑛

𝑀
(𝑚 −

1

2
)]  (3) 

3.3 Signal length reduction 

f(t) has a signal length of 16,384 for about 0.37ms on 

the time axis. As the signal is very long, a cutting 

process is performed from the beginning, and the 

signal length becomes 4096. After that, bandpass 

filtering (100Hz ~22kHz) is performed. 

4 t-distributed stochastic neighbor embedding 

t-SNE is a kind of dimension reduction and is known

to be effective for nonlinear data. Dimension

reduction generally means that while maintaining the

relationship between data consisting of N high-

dimensional vectors X = (x1, x2, ..., xN), it is possible

to grasp the relationship between data points by

drawing a scatter diagram of data consisting of low-
dimensional vectors Y = (y1, y2, ..., yN). Among these

dimension reduction methods, among these

dimension reduction methods, t-SNE specializes in

visualization because it is an image in which high-

dimensional data is arranged on a two-dimensional

plane while maintaining its relationship. The feature

of t-SNE is that the proximity between two points is

represented by a probability distribution. In t-SNE,

we consider a normal distribution centered on the

reference point xi. First, we define posterior

probabilities pj | i representing the proximityof point xj

to point xi.

𝑝𝑗|𝑖 =

𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎𝑖
2 )

∑ 𝑒𝑥𝑝 (−
‖𝑥𝑖 − 𝑥𝑘‖2

2𝜎𝑖
2 ) − 1𝑁

𝑘=1

 (4) 

σi indicates the standard deviation corresponding to 

the i-th data. Based on this, σi defines the target 

probability pi|j. 

Fig. 3: The special earphone 
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𝑝𝑖𝑗 =
𝑝𝑗|𝑖 − 𝑝𝑖|𝑗

2
 (5) 

Therefore, pij is larger at points closer to xi, and 

smaller at points farther from xi. Next, consider the 

probability qij representing the closeness of the points 

yi and yj after the dimension reduction. This 

corresponds to xi and xj before dimension reduction. 

Proximity after dimension reduction is also expressed 

by probability distribution, but not by normal 

distribution, but byt-distribution with one degree of 

freedom. 

𝑞𝑖𝑗 =

1

1 + ‖𝑦𝑖 − 𝑦𝑗‖
2

∑ ∑ (
1

‖𝑦𝑘 − 𝑦𝑙‖
2) − 𝑛𝑁

𝑙=1
𝑁
𝑘=1

 (6) 

The position of the point yi after the dimension 

reduction is obtained by calculating the Kullback-

Leibler divergence of the probability distribution pij 

before the dimension reduction and the probability 

distribution qij after the dimension reduction and 

minimizing this. Let this Kullback-Leibler 

divergence amount be a loss function C. 

𝐶 = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗

𝑗=1

𝑁

𝑖=1

𝑁

 (7) 

By using the t-distribution, which has a heavier tail 

than the normal distribution, the point yi and the 

pointyj after the dimension reduction can be located 

farther away if the data of the points xi and xj before 

the dimension reduction are some distance apart. In 

other words, by using the t-distribution, the positional 

relationship between data points before and after 

dimensionality reduction is such that close data is 

close and far data is farther. The minimization of the 

loss function C is performed by the gradient descent 

method using the gradient expressed by the following 
equation,which is obtained by partially differentiating 

the loss function C with yi. 

𝜕𝐶

𝜕𝑦𝑖

= 4 ∑
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)

1 + ‖𝑦𝑖 − 𝑦𝑗‖
2

𝑗=1

𝑁

 (8) 

We used scikit-learn, a python machine learning 

library, to implement t-SNE. 

5 Experimental Methods 

We used the ECIR (30 times/person) of both ears for 

50 subjects (male and female in their 10s to 40s), 

visualizing the data for every 5 subjects. We visualize 
the difference between the features of both ears. 

5.1 Visualization of time series data 

The signal length is cut from the beginning to 128 in 

order to get a place with a lot of change. This time 

series data is visualized using t-SNE. 

5.2 Visualization of Frequency amplitude 

characteristic 

The frequency bands were visualized in three 

categories: (a) 250Hz-1.5kHz, (b) 1.5kHz-16 kHz, 
and (c) 16kHz-22kHz. In sound source direction 

perception, frequency band (b) contains information 

important for hearing. (a) and (c) have low response 

levels and are difficult to perceive perceptually, but 

are buried in noise and are difficult to observe. 

However, differences between users that help with 

ear acoustics authentication may also be included in 

frequency bands (a) and (c). 

5.3 Visualization of MFCCs 

20, 30, …,120-dimensional MFCC is visualized by 

t-SNE.

5.4 Count features mixed with other clusters 

As shown in Fig. 4, one graph of the visualization 

results shows a scatter plot of the characteristics of 

the right and left ears of five subjects. User: 1R and 

User: 1L denote User 1's right ear and User 1's left ear, 

respectively. The number of users who have both ears 

in a cluster are counted by looking at the graph of 

features which indicates that visualization is as useful 
as the biometric data. In Fig. 4, one of the features of 
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User: 3L is mixed with User: 3R cluster. Therefore, 
you can see that there is one user with similar 

characteristics of both ears. The percentage of mixed 

clusters was calculated. 

6 Result 

6.1 Visualization result of time series data 

Fig. 5 shows a part of the visualization results of time-

series data. 

The visualization showed that the time-series data 

was valid as biometric data because clusters were 

formed in each ear. 

6.2 Visualization result of Frequency amplitude 

characteristic 

Figures 6, 7, and 8 show the visualization results of 

(a) 250Hz-1.5kHz, (b) 1.5kHz-16kHz, and (c)

16kHz-22kHz.

Fig. 6: Visualization result of (a)250Hz-1.5kHz 

The visualization showed that the (a) was valid as 

biometric data because clusters were formed in each 

ear.  

Fig. 7: Visualization result of (b)1.5kHz-16kHz 

The visualization showed that the (b) was valid as 

biometric data because clusters were formed in each 

ear.  

Fig. 4: Example of visualization result 

Fig. 5: Visualization result of time series data 
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Fig. 8: Visualization result of (c)16kHz-22kHz 

Visualization did not show that (c) was valid 

biometric data because no clusters formed in any ear. 

These results show that the low frequency band is 
valid as biometric data, but the high frequency band 

is not. 

6.3 Visualization result of MFCCs 

Fig. 9 shows a part of the visualization results of 

MFCCs. 

In all dimensions, MFCCs were shown to be useful as 

biometric data. 

6.4 Percentage of clusters mixed. 

The MFCCs showed similar results in all dimensions, 

so we summarized them.  

Table. 1: Percentage of clusters mixed 

Percentage [%] 

time series data 16 

(a)250Hz-1.5kHz 46 

(b)1.5kHz-16kHz 34 

MFCCs 20 

The results in Table. 1 show that the time series data 

and MFCCs have a low rate of mixing of clusters. 

7 Summary 

In this research, we used t-SNE to visualize the 

differences in the characteristics of both ears. The 

percentage of mixed clusters was calculated. 

Visualization revealed that the high frequency side of 

the frequency amplitude characteristics was not 

effective as biometric data. From the calculation 

result of the ratio, it was found that the time series 

data and the MFCC did not have similar features of 
both ears compared to the frequency amplitude 

characteristics. 
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