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Abstract. The source of hydrogen in the formation
of ¢c- and y-ions produced by intramolecular hydro-
gen transfer in negative-ion CID experiments with
peptides has been examined using Ca-, Cf-, and

0" backbone amide (N,)-deuterated peptides

AAA(d3)AA, AAG(d2)AA, AAAG(d2)A, and
AAAAA-d7, as well as five other peptides. The c-
and y-ions produced by deuterium transfer from the
deuterated residues were detected and identified by
the exact m/zvalues obtained with a high-resolution

orbitrap mass spectrometer. The rate of deuterium transfer obtained indicates that over 50% of the hydrogen was
originated from the backbone amide nitrogen, with the residual hydrogen coming from the backbone Ca. ltis clear that
the hydrogen does not originate from the side chain CB. It is hypothesized that the intramolecular hydrogen transfer to
form negative c- and y-ions takes place via 3-, 4-, 6-, 7-, 8-, and 9-membered ring transition states.
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Introduction

C ollision-induced dissociation (CID) combined with
electrospray ionization (ESI) [1, 2] is a powerful tool for
analyzing biological molecules such as peptides and proteins.
Although there are many studies regarding the mechanistic and
theoretical aspects of positive-ion low-energy (low-E) CID of
peptides [3—6], negative-ion CID studies have been limited to
reports by a small number of groups, namely those of Bowie
[7], Harrison [8—10], Cassady [11-14], and Takayama [15, 16].
It is well-known that in positive-ion low-E CID of peptides, the
formation of b- and y-ions can be explained by a mechanism
involving a mobile proton [4, 5] and residue scrambling [6, 17—
19]. Furthermore, the low-E CID results in residue-specific
enhanced cleavage at the amide bond (C—N) of acidic Asp/
Glu/Cys-Xxx residues and Xxx-Pro residues [5]. However, the
residue-specific cleavage characteristics of negative-ion CID
are quite different from those of positive-ion mode and are as
follows (Table 1):

Correspondence to: Mitsuo Takayama; e-mail: takayama@yokohama—cu.ac.jp

1. Specific cleavage at the N-Co bond of Xxx-Asp/Asn resi-
dues to form a c- and z-ion pair [7, 15]

2. Specific cleavage at the C—N bond of acidic Xxx-Asp/Glu/
Cys residues to form b- and y-ions [16]

3. Specific cleavage at the N-Ca. bond of Xxx-Ser/Thr residues
to form z-ions [20]

4. y1 ion formation due to the acidic carboxyl group at the
carboxyl (C)-terminus [12, 15]

Here, we use the nomenclature of peptide fragments in as per
the Biemann-Roepstorff notation [21, 22], i.e., amino (N)-termi-
nal side a-, b-, and c-ions and C-terminal side x-, y-, and z-ions
(Scheme 1), while the nomenclature with hydrogen addition
(+H), protonation (+H"), and deprotonation (—H") to describe
c- and y-ions such as [y +2H]", [c+2H]", [c] , and [y]  is used
according to the proposed nomenclature of Chu et al. [23].

With respect to the formation of c-ions in negative-ion CID of
peptides, the Cassady group has reported that when using alanine
heptamers (AAAAAAA) with or without an arginine (R) or
lysine (K) residue, a dominant c4 ion is observed in the CID
spectra independent of the position of the R and K residues [12].
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Table 1. The Specific Cleavage Residues, Product Ions, and the Product lons with Intramolecular Hydrogen Transfer in Positive- and Negative-lon Low-Energy CID

of Peptides

Positive-ion

Negative-ion

Specific residue
Product ion
Hydrogen transfer

61, [y+2H]"
[y 2H]"

Asp/Glu/Cys-Xxx, Xxx-Pro

Xxx-Asp/Glu/Cys, Xxx-Asp/Asn Xxx-Ser/Thr
6. 1 DT [l [T

DT [

Furthermore, the same group reported that the c-ions can be
produced by cleavage at the N-Ca bond of the backbone region
between the third and fourth residues from the C-terminus, i.e.,
Cins and C,,, 4 residues (m represents number of residues in the
peptide), respectively, when C-terminus has a carboxyl group,
while N-Ca bond cleavage between the C,,,, and C,,, 3 residues
(Cm23) preferentially takes place when the C-terminus has an
amide group [13]. The preferential cleavage at the N-Ca bond to
form c-ions may be explained by proton (H") abstraction from the
backbone amide of the C,,»3 and C,, 3 4 residues via 8- and 11-
membered ring transition states, respectively. The formation of
negative c-ions by Cm_3,4-H+ abstraction via an 11-membered
ring transition state is shown in Scheme 2, although Bokatzian-
Johnson et al. have proposed the loss of 9-membered ring neutral
with intramolecular proton transfer based on the DFT calculation
[13]. According to the report of Bokatzian-Johnson et al. [14], it
is likely that intramolecular proton abstraction from central amide
backbone nitrogen (N;,) via 8- or 11-membered ring transition
states excited with collisional activation takes place (Scheme 2).
Another characteristic of the negative-ion CID spectra of peptides
lacking Asp/Asn/Glu/Cys residues is the formation of y-ions [9,
12, 13]. Both c- and y-ions are produced by intramolecular
hydrogen transfer to the backbone amide nitrogen (Ny). It is of
interest to examine the source of hydrogen in the generation of c-
and y-ions from the standpoints of appropriate and flexible
conformations of gas-phase peptide molecules, which enable
hydrogens to move to the amide nitrogen.

Here, we examine the source of hydrogen in the formation of
c- and y-ions in higher energy collisional dissociation (HCD,
corresponding to a conventional low-E CID) experiments with
deprotonated peptides [M—H] generated by ESI MS. To deter-
mine the source of hydrogen, peptides labeled with deuterium
on the a-carbon, B-carbon, and backbone amide moieties were
used. Peaks of c- and y-ions produced with and without intra-
molecular deuterium (D) transfer were detected and confirmed
with a high-resolution mass spectrometer and exact m/z values.

Experimental
Materials

All peptides were purchased from the Peptide Institute (Minoh,
Osaka, Japan). The samples used are an alanine pentamer
(AAAAA), a lysine pentamer (KKKKK), and a phenylalanine
pentamer (FFFFF). The deuterated peptides AAA(d3)AA,
AAG(d2)AA, and AAAG(d2)A were supplied from the Pep-
tide Institute. Acetic acid and acetonitrile (HPLC grade) were
purchased from Wako Pure Chemicals (Osaka, Japan). Water

used in all the experiments was purified with a MilliQ water
purification system from Millipore (Billerica, MA, USA). Deu-
terium oxide (D,0), acetonitrile-d3 (CD3;CN), and
trifluoroacetic acid-d (TFA-d) were purchased from the
Sigma-Aldrich (Steinheim, Germany).

Mass Spectrometry and Sample Preparation

The HCD experiments were performed on a Q Exactive Focus
Orbitrap mass spectrometer (Thermo Fisher Scientific, Bre-
men, Germany) equipped with an ESI source. The mass re-
solving power for precursor ions was 70,000 at m/z 200 in
FWHM. The width for selecting precursor ions was = 0.4 Da.
Target gas and collision energy were nitrogen and 10 eV,
respectively. The sample was introduced into the ion source
with an infusion inlet system at a flow rate of 30 uL/min with
nitrogen being used as both nebulizing and drying gas. The
samples were prepared as 10 pM solutions with a 1:1 (v/v)
mixture of water/methanol with added 0.1% acetic acid. To
obtain a deuterated peptide for alanine pentamer AAAAA, the
peptide was dissolved in a mixture of D,O and CD;CN (1:1,
v/v) and incubated for 24 h at room temperature.

Results and Discussion

Preferential Formation of y1 and c2 lons of Peptide
Pentamers

Negative-ion HCD spectra of deprotonated molecules [M—H]™
of three different pentamers AAAAA, KKKKK, and FFFFF
are shown in Fig. 1. All the HCD spectra showed considerably
intense peaks corresponding to yl and c2 ions. The c2 ions
originate from cleavage at the N—Ca bond between the C,, 3
and C,,4 residues (Cp,34) of the peptides [13], while the y1
ions originate from cleavage at the backbone amide C—N bond
of the C-terminal residue [12, 14]. The CID spectra also

x3 y3 z3
X 10: iXs 0 Xs

ZT

OH

Iz

X4 o

PE s
a2 b2 ¢2

Scheme 1. Simplified Biemann-Roepstorff nomenclature for
peptide fragments
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explained by N-Ca bond cleavage through C,,, 3 4—H " abstrac-
tion via an 11-membered ring transition state [13] (Scheme 2).

showed the common product ions of ¢, (n=1-4), y, (n=1-4),
c¢,—H,0, y,—H,0, and y,—CO,. The intense c2 ions can be
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The formation of the intense y1 ions observed in all the HCD
spectra can be explained by specific cleavage at the C—N bond
of the C-terminal residue due to the influence of the acidic
carboxyl group [12, 15].

Formation of Deuterated c- and y-lons Confirmed
with Deuterated Peptides

In order to examine the possibility of hydrogen transfer from a-
carbon (Ca) and B-carbon (Cp) to form ¢ and y ions, negative-
ion HCD spectra of deuterated glycine containing peptides
AAG(d2)AA and AAAG(d2)A and a deuterated alanine

X4
S
7 ~N
H,oN C
’ \ﬂ/ )
(o] X

intramolecular proton transfer /
[o]

2

pentamer AAA(d3)AA were obtained (Fig. 2). Figure 2a, b
shows preferential c2 and yl ion formation accompanied by
deuterated products c2(d) and y1(d). Furthermore, cl and y2
ions were also accompanied by deuterated products c1(d) and
y2(d), respectively (Figs. 3 and 4). Although Fig. 2c also
showed extraordinarily intense c2 and yl ion peaks and c,
(n=1-4) and y,, (n=1-4) series ions, the cl, c2, yl, and y2
ions observed were not accompanied by any deuterated peaks
of cl(dl), c2(d1), y1(d), and y2(d) due to deuterium transfer
from the CP. This indicates that the hydrogen to form c1, ¢2, y1
and y2 ions does not originate from the Cf of the 3rd Ala(d3)
residue. The results obtained above indicate that the hydrogen
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The formation of c- and y-ions due to intramolecular hydrogen transfer from the backbone Ca and N, sites
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to form c- and y-ions originates from the sites of the a-carbon
(Ca) and/or amide nitrogen (N,) of the peptide backbone
(Scheme 3), and never come from the C sites.

In order to confirm the intramolecular hydrogen transfer from
the sites of the Ca and/or N, of the peptide backbone, the
negative-ion HCD spectrum of the de-deuteronated analyte
[M(d7)-D] at m/z 378.2264 formed from a deuterated alanine
pentamer AAAAA-d7 obtained by the incubation in D,O/
CD;CN solution was obtained as shown in Fig. 5. The AAAAA
having seven active hydrogens was deuterated with the rate of
72.7% (data not shown). The HCD spectrum preferentially
showed y1(d), y1(d2), c2(d3), and y2(d3) ions, as shown in the
insets of Fig. 5. The peaks at m/z 159.0996 and 160.1059 corre-
sponding to c¢2(d1) and ¢2(d2) observed may be due to hydrogen
and/or residue scrambling, although the mechanism is unclear.

Source of Hydrogen for the Formation of
c- and Y-lons

The intramolecular hydrogen transfer to form c- and y-ions in
negative-ion CID spectra of peptides has been studied by

oy —
\:j/z
y1(D) at m/z 76: 74.3%

(a) y1(H) at m/z75: 25.7%

Harrison [8]. From negative-ion CID spectra of tripeptides
AAG and AAG-ds (Fig. 3 in the report of Harrison [8]), the
rate of intramolecular hydrogen (deuterium) transfer to form c1
and y1 ions can be estimated as shown in Scheme 4. The rate of
H (D) transfer estimated from the report of Harrison [8] indi-
cates that 68.2% of deuterium in the cl ion originates from the
backbone amide nitrogen (N;,) between Ala2 and Gly3 or C-
terminal carboxyl group (Scheme 4b), while 31.8% of the
hydrogen originates from the Ca sites of Ala2 and Gly3. On
the other hand, 74.3% of the deuterium in the y1 ion originates
from Ny, between Alal and Ala2 and/or the N-terminal amino
group (Scheme 4a), while 25.7% originates from the Ca sites of
Alal and Ala2. The intramolecular deuterium transfer from Ny,
to another Ny, site to form c1(D) in Scheme 4a may be ex-
plained by a 5- or 8-membered ring transition states (Scheme
4b).

In a similar manner, the rate of intramolecular hydrogen
(deuterium) transfer in the HCD spectra of Figs. 2, 3, and 4 can
be estimated from the peak intensity. The rate of intramolecular
deuterium transfer from the Ca of Gly3(d2) and Gly4(d2)
residue to form c1 and c2 ions is represented in Scheme 5. It

c1(D) at m/z 90: 68.2%
c1(H) at m/z 89: 31.8%

(b)

Scheme 4. (a) The rate of hydrogen (deuterium) transfer for negative c1 and y1 ions in the paper of Harrison [8] and proposed
mechanisms of (b) c1 ion formation via 5- or 8-membered ring transition states
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AAAG(d2)A

Scheme 5. The rate of deuteron transfer from the Ca of Gly3(d2) and Gly4(d2) residues of deuterated peptides AAG(d2)AA and

AAAG(d2)A in the formation of c1 and c2 ions

is hypothesized that the c1 and c2 ions for AAG(d2)AA are
formed by intramolecular deuterium transfer from the Ca via 6-
and 3-membered ring transition states, respectively (Scheme 5
upper). The c1(d) and c2(d) ions for AAAG(d2)A are formed
by deuterium transfer via 9- and 6-membered ring transition
states, respectively (Scheme 5 lower). This indicates that about
39-49% of hydrogens which form cl and c2 ions originate
from the Ca of the Gly residue, while the residual hydrogens

(51-61%) come from the Ca of Ala and the backbone amide
nitrogen (Ny,). Considering the result of Harrison [8] and our
results of Schemes 4 and 5, it may be concluded that the major
source of hydrogen in the formation of c-ions is both the Ny, and
the Ala(Ca) sites of peptides. In contrast, the formation of y1(d)
and y2(d) ions can be explained by intramolecular deuterium
transfer from the Ca of the Gly(d2) residue via 7- and 4-
membered ring transition states with rates of 29-60%

0
H
N
OH
HyC
H
He H /\0\ D D o
F oo F oo
N H \ $ H
OH y N y OH
% %
o HC % b HC %
AAAG(d2)A

Scheme 6. The rate of deuterium transfer from the Ca of Gly3(d2) and Gly4(d2) residues of deuterated peptides AAG(d2)AA and

AAAG(d2)A in the formation of y1 and y2 ions
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Scheme 7. The rate of deuterium transfer from the amide nitrogen (Nb) and N-terminal amino group of deuterated peptides

AAG(d2)AA, AAAG(d2)A in the formation of y1 and y2 ions

(Scheme 6). The major source of hydrogens in the formation of
y-ions may also originate from the backbone amide (Ny), as
shown in Schemes 4a and 6.

In the negative-ion HCD spectrum of [M(d7)-D] showed
in the insets of Fig. 5, the peak intensities of the y1(d) and
y1(d2) indicate that 69.1% of deuterium in the y1(d2) ion
originates from the amide nitrogens (Nj) and/or the N-
terminal amino group (Scheme 7), while 30.9% of the hydro-
gen originates from the Ca sites. The peak intensities of the
c1(d2) and c1(d3) indicate that 41.5% of deuterium in the
c1(d3) ion originates from the N,, sites and/or the C-terminal
carboxyl group, while 58.5% of the hydrogen originates from
the Ca sites. In a similar manner, the rates of intramolecular D
(H) transfer to form y2(d3) and c2(d4) ions can be estimated
from the insets of Fig. 5, as shown in Scheme 7.

The rates of intramolecular deuterium transfer from the Ca
sites of Gly3(d2) for AAG(d2)AA and Gly4(d2) for
AAAG(d2)A and from the Ny sites of AAAAA-d7 residues
to form cl, ¢2, ¢3, y1, and y2 ions in negative-ion HCD spectra
(Figs. 2, 3, 4, and 5) are summarized in Table 2.

Conclusions

The characteristics of residue-specific cleavage and product
ions in negative-ion CID of peptides are quite different from

Table 2. Rate (%) of the Intramolecular Deuterium Transfer from the Ca Sites
of Gly3(d2) for AAG(d2)AA and Gly4(d2) for AAAG(d2)A and from the Ny,
Sites of AAAAA-d7 Residues to Form cl, ¢2, ¢3, yl, and/or y2 Ions in
Negative-lon HCD Spectra

Product ion AAG(d2)AA AAAG(d2)A AAAAA-d7
cl 48.5 48.7 41.5

c2 379 433 14.5

c3 - 46.3 -

yl 29.4 363 69.1

y2 60.1 - 69.0

those of positive-ion CID, as summarized in Table 1.
However, intramolecular hydrogen transfer to the amide
nitrogen (N,) for the formation of c- and y-ions is com-
mon to both positive- and negative-ion CID, and it is of
interest from the standpoints of the conformation and
flexibility of gas-phase peptide ions suitable for hydrogen
transfer. The use of the deuterated peptides AAA(d3)AA,
AAG(d2)AA, AAAG(d2)A and AAAAA-d7 in negative-
ion HCD experiments gave information about the source
of hydrogen in the formation of c- and y-ions. The results
obtained indicated that the major source of hydrogen, over
50% in the rate of intramolecular hydrogen transfer to
form c- and y-ions in the peptides AAG(d2)AA and
AAAG(d2)A, is the backbone amide nitrogen (Ny), while
another source is the backbone Ca sites. The hydrogen
did not originate from the CP sites. In the case of the
peptide AAAAA-d7, the hydrogen to form y-ions comes
from the N, sites with the rate of 69%, while the hydro-
gen to form cl and c2 ions comes from the N, sites with
the rate of 41.5 and 14.4%, respectively. For the intramo-
lecular hydrogen transfer to form negative c- and y-ions,
it is suggested that deprotonated peptides [M-H] tran-
siently form at least 3-, 4-, 6-, 7-, 8-, and 9-membered
ring transition states, indicating the flexibility of gas-
phase peptides.
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