Multiversal Polymorphic Algebraic Theories
— Syntax, Semantics, Translations, and Equational Logic —

Makoto Hamana Marcelo Fiore
Dept. of Computer Science, Gunma University Computer Laboratory, University of Cambridge

Abstract—We formalise and study the notion gfolymorphic To give necessary background for the present work, we first

algebraic theory as understood in the mathematical vernacular asreview this model and its subsequent developments.
theory presented by equations between polymorphically-typed terms

with both type and term variable binding. . 1. Abstract syntax and variable binding. The aim is to
The prototypical example of a polymorphic algebraic theory is

System F, but our framework applies much more widely. The extFHOdE| syntax involving variable binding. A typical example is
generality stems from a mathematical analysis that has led toll¥ Syntax for untyped-terms:

unified theory of polymorphic algebraic theories with the following T1yee Ty Bt X1, 20 s
ingredients: . o F . - T F 1@
- polymorphic signaturesthat specify arbitrary polymorphic opera- Lrereoin ! Lreeeotm

tors (e.g. as in extendedcalculi and algebraic theories of effects); Tlyeeoy TpyTpg1 H L

- metavariables both for types and terms, that enable the generic
description of meta-theories; o)

- multiple type universesthat allow a notion of translation betweenThis is an abstract syntax generated by three constructors, i.e.
theories that is parametric over possibly different type universeghe variable former, the applicatiod, and the abstraction.

- polymorphic structures that provide a general notion of algebraicThe point is that the variable former is unary afdis a
model (including the PL-category semantics of System F); and pinary function symbol, bud is not merely a unary function

- a Polymorphic Equational Logic that constitutes a sound andsymbol. It also makes the variahtg,,; bound and decreases

(gmzﬁtﬁ(Ii:ggz;l;?ir:;\aoc:ﬁ\jg; i)qelijr?;%rzefizogngrarchical tWthe context. In order to model this phenomenon of variable
levelled algebraic modelling of abstract syntax with variable bindiandmg generally (not only fon-terms), Fiore, Plotkin and

As such, the development requires a sophisticated blend of ma%ﬂr‘-” took the pres_heaf catego@efF t? be the. u.nlverse- of
ematical tools: presheaf categories, the Grothendieck constructifi§course, wherd is the category which has finite cardinals
discrete generalised polynomial functors, and aspects of categorica: {1,...,n} (n is possibly 0) as objects, and all functions
universal algebra. between them as arrows— n’. This is the category of object
variables (regarded as contexts) by the method of de Bruijn
index/level (i.e. natural numbers) and their renamings. A main

The notion of polymorphic types is one of the most rerg it in [10] is that abstract syntax with variable binding
markable inventions in programming language theory. Startifig nrecisely characterised as the initial algebra of suitable

from the polymorphici-calculus of Girard and Reynolds andsnqofunctor modelling a signature (e.g. foterms).
succeeding to Milner’s striking application to functional pro- g, example, the signature endofunctgy on Sef for ab-
gramming [25], the theory of polymorphism has deepened, agflact syntax of-terms is defined by (A) = V+Ax A+5A
the notion of polymorphism has spread everywhere. Not onfjyere each summand corresponds to the arity of constructor.
functional programming languages, but also various systefjgre the functors : Sef — Sef for context extension is
have been extended to cope with polymorphism, such-as (5A4)(n) = A(n+ 1), and the preshe& e Sef of variables
calculus [27] and XML P]. Even for object-oriented program- g v/ n)={1,...,n}.

ming languages (Java, C++, etc.), a notion of polymorphiSm o an endofuncto, a X-algebrais a pair(A, o) consist-
has been incorporated and regarded as a key feature of geqﬁat‘of a presheafl and a mapy : YA — A, called aralgebra
programming. T_hese applications illustrate that polymorphis@.,cture The initial S-algebra(A,in) can be constructed
is not necessarily based on thecalculus. inductively as the presheaf of all A-terms moduloa-

Then,what are polymorphic types? equivalence. The initial algebra explains more directly why

This paper aims to establish an algebraic framework fgtesheaves are suited to model syntax with binding, namely
analysing and reasoning about various polymorphic systems

generally. We formalise and study the notionpzflymorphic a judgmentn ¢ is modelled as ¢ € A(n),

algebraic theory as a theory presented by equations betwegn 4 renaming of free variables : n — ' in a A-term is

polymorphically-typed terms. g _modelled by the presheaf actioX(p) : A(n) — A(n'). This
Our approach is not based on a specific polymorplic 5 5 generic way of modelling abstract syntax with binding

calculus. Itis more general. We aim at capturing various poliih respect to a signature functar. However, the method is
morphic systems including extendedcalculi asparticular |iited to modelling ofobject-levelabstract syntax.
examplesof our polymorphic algebraic theory. Our basis is

the algebraic model of abstract syntax with variable binding
in a presheaf category [10]7]f

ZTiy.eoyTn F A (@ng1.t)

1. INTRODUCTION

Il. Object and meta variables. What is meant by “object- where§ maps the metavariable asf(m) = 1@Q1 (where1
level” is the following. For example, consider theterm is a free variable). The freeness 6l X states that giverd,
there uniquely exists the extensiéhto X-monoid morphism
Ax.My . .
that makes the right diagram commuteX XM
in a certain mathematical context. Here”“and “y” are A- Here, the notion of substitution of metavari-
calculus variables (i.ebject-level variablesbecause now the ables appears. This is syntactically under- lgz
A-calculus is the object system), while at the level of texstood as that is anassignment for meta- 0
“M” is a meta-level variable. When developing a theory afubstitution and 6* is the corresponding MX
A-calculus, we always use both object and meta variableseta-substitution on terms involving metavariablésFor (2),
There is also an important difference between metavariablge put the metavariablet € X (1). X-monoids model the
and object variables in view of substitutions. If we substitutesyntax and semantics algebraically precisely. Therefore, it has
term zx for the object variable in the term above, the resultvarious applications, such as second-order equational logic [8].
is not simply a textual substitution, i.€Az.My)[y := zx] = However, it is limited tountypedand simply-typedsettings.
(A' .My)ly := zx] = X\a’.M(xzx) wherex # 2/, because of
the capture-avoiding substitution in thecalculus. But if we [V. Polymorphic abstract syntax. A previous work [20]
substitute a term:z for the metavariablel/, we have tackled its extension to the case of polymorphic typed abstract
O My){M — 2} = Aa.(z2)y @ syntax. A _crucial departure from the caseS#t is the need _
for a finer index structure on presheaves to model polymorphic
Although the object variables is capturedby the binder, it is terms. Well-typed terms in a polymorphic system (e.g. System
usually allowed at the meta-level. Viewing these phenomenafgtare formulated using judgments of the following form.
the extra meta-level viewpoint, these two classes of variables
are classified by the distinction of substitutions: capture-

avoiding and possibly capturing. n | ' +=¢t 71 (4)

; ; Wiext omext tem tr%‘élt
lll. Free X-monoids. Not only object-level abstract syntax,
how can metavariables and the distinction of substitutions fbhe arrows indicate that a type variable sin= {1,...,n}
object and meta variables be incorporated with the algebr&®n appear in all other parts. Clearly, this dependence is more
model of syntax with binding? This problem was explored ifomplicated than the untyped casel- ¢ (where onlyn is

[16], [5] and a clear answer has been obtained. a required index; thereforset’ suffices). To model this, the
A X-monoid [10] is a X-algebra(A,«) with a monoid Wwork [20] clarified the categorU of contexts and result type
structure defined as
Ve A Ao [FLU(n) x U(n) N
that is compatible with the algebra structure (ue.(aeid) = (n] T F 7)eGU

ao(X'p)ostrength) in the monoidal categorQSeF, e, V). The
unit » models the variable former, and the multiplicatipn and a new presheaf categoBef” is suitable to model
modelssubstitution for object variablesvhere the monoidal Polymorphic typedobject-levelsyntax. HereU is a “type
producte gives precisely the arity of substitution. Monoids irtniverse”, i.e.,U(n) is the set of all types, antl | U(n) is
the monoidal category are knownageradsthat play a crucial the category of term contexts, both under a type contexts
role in various mathematical structures (such as topology ad@d element inGU shown above indicates, the Grothendieck
weak w-categories 7]). construction " is the key to capture the dependende).(

For our purpose, we uséee X'-monoids generated by
arbitrary presheafX, where generator is regarded as the V. This paper. We further proceed to develop polymorphic
presheaf of metavariabletmportantly, a freex’-monoid over algebraic theory founded on these earlier works. We incorpo-
X e Sef', denoted byM X, is constructednductivelyas an rate the notions of metavariables ahdmonoids reviewed in
initial (V + ¥ + X e —)-algebra, which gives the language1-ll and 1-1l to the polymorphic setting reviewed fi-IV.
involving binding and metavariables This characterisation We allow metavariables in both types and terms. We explain
shows thatV + ¥ models syntax with binding (as if1- Why it is necessary.
) and the functorX e — models the syntactic construct of For example, consider the-axiom of typedA-calculus:
metavariables represer,;t[e;d as att]erm T+ M\’ M)N = N[z:=N]: 7

1y:-+95ln

Is this asingleaxiom? We usually think so, but this is actually
a schemeof axioms becaus@/ and N are metavariables, and
o and 7 are metavariables for typesTherefore, this should

wherem € X (n) is ametavariableand the index, called also
arity, which denotes possible free variables. . , n appearing

|r} r;lhterm fobSVt't:Jiti? fou ﬁT?rir:Sttlr’]ﬁ' -ti7|§|n are replacements be regarded as a representation damily of axioms of the

ot these free variables after instantiatiig . iject system, indexed by all possible object terifs N
For example, we can write the above example (1) using the . . .

lanauage of freeo-monoid as and object typesr, 7. This process reflects the formulation
guag of a signature. If one follows this line, then theabstraction

0*(A(z. M[z] @y)) = A(z. (zQz) Q1) (2) should also be regarded asfamily {\, : (o)1 — o =

7 | object typess, 7} of symbols. But we usually keepand The type structure of our theory will be extended to allow
7 meta-level types (which we catheta-typedn this paper), polymorphic kinds. Preliminary results [20] indicate that this
and consider a singlg, , to develop a theory. direction will be a natural extension of the present framework.
Although this distinction between meta and object usually Polymorphic algebraic theory of effects, which is only
receives little attention when developing a theory, this vievexemplified in this paper, should be worked out in more detail.
point is seriously needed when we develop a meta-theory ofAn algebraic theory for ther-calculus has been given
a theory or a mechanised formalisation (such as in Coq [2[$1], [?]. Along this line, to seek an algebraic theory for
In such a case, we must formalise all ingredients of a thediye polymorphicr-calculus [27] using polymorphic algebraic
including the meta-level treatment. theory is a challenging problem.
We precisely formulate the meta and object variable dis- 2. PRELIMINARIES
tinction. In polymorphic algebraic theory, theabstraction is

formalised as aingle function symbol specified by Generalised polynomial functors on presheaves.One of

the central technical tools in our development is generalised
polynomial functors on presheaves [6] developed as a further
generalisation of dependent polynomial functors [12].

where s and T are metavariables for types, and where Letf:C — I be a functor between small categories. For
separates a metavariable context and the arity information og functorf* = — o f there are adjunctions [22], [15]

function symbol usingneta-typege.g.s=-T is a meta-type). fi 4 f A f. : Set — sef

This leads to an important clarification. L&tbe the set of all

metavariables for types. Up to this point, we have encounterdgere forfi and f. are left and right Kan extensions alorfg
two type universes for formalising a theory: respectively. Apolynomialis a diagram# in Cat
S a t

(i) The universe of all meta-types (denoted by.S). A < I > J - B.
(i) The universe of all object types (denoted 1¥0). , . _ .
) The generalised polynomial functanduced byP is

Clearly, the universe of meta-types must have almost the same def
structure as that of object types. What is an “almost the same Fp € tya, s* : Set* — Sef’. 3)
structure” precisely? Moreover, when we consider a semantj& olynomial diagram isdiscretewhen a is given as a sum
of a theory, the semantics of the type universe must also h he codiagonaW; = [id];cy. : L - C — C for finite L.
such an “almost the same structure”. This ultimately becomesWhy this is useful is that arFp-algebraA can specify
the question posed at the beginning of the Introductievhat an operation on a preshedf having complex form of arity

are polymorphic types?0ur answer is and indices at the source and the target. By adjointness,

a universe of polymorphic types should be Yamonoid ~ there exists the bijective corre- FpA ——» A
spondences shown at the right, ; 1 2
where Y is a signature of type constructors. Note thatS is \where the final form is the reason —+~%** ’

a free andM0 is an initial £-monoid. Therefore, the theory of the label names of the functors __ &5 A4 —= t"A
naturally requires to deal with such multiple universes. In thig the above polynomial diagram. @+A(s —) — A(t—)

sense, we call our theomywultiversal Namely, s is used for computing thesource index,a is
used for computing thearity, and ¢ is for the target index.

VI. Organisation. This paper is organised as follows. AfterAnother crucial fact on polynomials for our purpose is that any

providing preliminaries in next section, we define a polymogeneralised discrete polynomial functbl admitsinductive

phic signature in Section 3 and the corresponding signat@enstruction of initial Fp-algebra ([6] Prop. 5.1). Because of

functor in Section 4. We then axiomatise type-in-term substihe expressiveness and constructive nature, we will employ

tution in Section 5. We further define polymorphic structurthis polynomial functor formulation to model a polymorphic

as a general algebraic model in Section 6. In Section 7, Wwignature §4), and a type-in-term substitutiof).

define a Polymorphic Equational Logic and show its soundneis

S:%, T:x > abs:(S)T—S=T

and completeness. Finally, in Section 8, we exemplify ho onvention on a-equivale__nce. In this paper, we use implic-
polymorphic algebraic theory can specify concrete theories ™Y the methqd of dg Bruijn levels [3] for repre_sentlng bound
and free variables in a term (and a type, a judgment, etc.).
) o Any term appearing in this paper hereafter is automatically
VII. Future work. Various directions for further work are ,ormalised to a de Bruijn level-normal form suitably. For ex-

possible. One promising direction is to apply our theory Bmple abs(z.t) to meanabs(1.t). V(. T[a]) to meany(1.7[1])
mechanised formalisation. Because a correspondence exﬁtlsl_u't) to meanf(1.2.). ar,...,an F Yan.i.T to mean

between a generalised polynomial functor and an indug- Y(n +1.7)
tively defined dependent type [12]7][our characterisation

is connected directly to a method to formalise syntax aribtational convention. We use the vector notation” for a
semantics of various polymorphic systems in proof assistansegjuence:;, - - - , a;, and|@ | for its length. We usually write
based on dependent type theory. Actually, the strongly typ#due indexing of a natural transformatignas ¢, or (<), but
representation of System F syntax in Coq [2] can be obtaine@& omit often the indices if they are inferable from contexts.
as an instance of our algebraic characterisation. We may write indices when we want to emphasise them.

3. POLYMORPHIC SIGNATURE Since ¥ is a binding signature [10], it induces the

orresponding signature functa&™ on Sef’ (cf. §1-1, 1-111).

We start with the prototypical example of System F t%) S
. . L Tet MS denote the freeZ™-monoid overS, which is the
illustrate how our notion of polymorphic signature can specify® = . L=

polymorp g P resheaf of all meta-types usirfy We write S > n + 7 for

type and term structures. ,
yp T € MS(n). For a metavariablé > 0 F T, T[] of any stage

ill be abbreviated imply.
Example 3.1 (System B The polymorphic signaturé’y = n Wil be abbrevialed as simply

(Z;ﬂ)?;m) is given as follows: the signaturE}Iy for types
is{b:% =% —x% V:(x)* — x}, which specifies
type constructors. The signatufgl™ for terms is

Definition 3.4 A type universé/ = (U, o, Y,) is a X ™-
monoid. Throughout the paper, we denotelbg X Y-monoid.

A typical example ofU is MO0 (all object types) otMT

S, T: > ab (9T S=T . .
* abs (8) - (all meta-types using metavariabl@y. For example, M05
S, T:x > app :S=T,S — T . - . :
) _ (all existential types) will be used in Example 8.2. A non-
T (%) > tabs :{(a)T[a] — V(a.T[d]) syntactic type univers& appears in the PL-category semantics
S:ix, T:(x)x > tapp :VY(a.Tla]) — T (Example 8.3).
Let us see how this signature faithfully encodes the ordinary
typing rules. Definition 3.5 Let S be a set of metavariables abda X' ™-
monoid. An assignmerf : S ~»; U for meta-substitution is
ElTz:obt:T Hal|Tkt:r

anN-indexed functiord : S — |§*U|, wherek is “the number
ElTF ot io=T E|TFAat:Va.r of additional possible free variables” in the results. It maps as

The arity of abs, (S)T, represents that the upper judgmenf(n) > s 4 €Ut k).

of the abstraction rule (the above left) has a term contextThe meta-substitution of a typ®> n - = by an assignment

extended with an extra: o and the result type. The informal ¢ . g .., U/, denoted by’ (), is defined by

metavariables andr are formalised as formal metavariables

s, T : « for types in the signature. The target alfs, s=71, 0n(@) = v (); Oh(c(@ity, ..., aih)) = e (0 = (T1),)

represents the target type of the lower judgment. 0% (SI7)) = pul (Om(S); v (1), ..., v (K), 0% (1), ..., 0% (Tm))

The arity oftabs, (a)T[a], represents that the upper judg- N
ment of the type abstraction rule has a type context extend&¢herez € S(m). This ¢ defines a natural transformation
with an extrac and the result type, wherer may usea S — &"U, which induces the uniqu&™-monoid morphism
(hence written as'[«]). The declaratiorm : (x)x represents 0" : MS — §*U that extend® by freeness ofMS (cf. §1-
this possible containment. A function symbol declaration i#). We will also write 70 for 6% (7).
intended to be instantiated to concrete cases. For example,
abs : (S)T — s=T is instantiated taabsy : (nat)bool — Using a meta-substitutiofl, a function symbol is instanti-
nat=bool, where § = {s — nat,T — bool}. Formal ated tofy: (k1)(@10)710,.. ., (ki)(G70) 710 — 7.
definitions are as follows.

Example 3.6 (Polymorphic FPC [23]) The signatureX™
Definition 3.2 A metavariable for typegs, T,...) of arityn fOr types is Xy Plus {+, > : %, % = gz (k)x — x}. An
is declared as : (+") % . In the casen = 0, (+°) is omitted. €Xcerpt of the signature for terms is
A set S of metavariables forms alN-indexed setS by s €
S(n) < (s:(x")*) € S. Given a setS of metavariables,
we defineS € Set’ asS(n) = [[,y S(k) x F(k,n).

Ty, To, T > case : Ty +To, (T)T,(T2)T — T
T (%)% > intro : T[p(a.T[a])] — pla.T[a])
T (%)% > elim : p(a.T[a]) — T[p(a.T[a])]

Definition 3.3 A polymorphic signatureX = (X7, x™) An important point is that the arities and targets are written
consists of the following data. in the language of frees™-monoid [16], [5] (cf.§1-11), not

- A signaturex™ for types is a set of type constructors giveri® &" informal meta-language.

by the forme: (x™1)x, .- (x™)x — = meaning that it has
[arguments bindingy; type variables in the-th argument
(1<i<l).

Example 3.7 (Existential A-calculus [11) We excerpt key
two rules.

E|lTksio{a=7} E|TFs:Iao) Ea|zokt:T
- A signatureX ™™ for terms is a set of function symbols givenz | T (r,s) : 3(a.0) E | T Funpack sas (a,z)int:7
by the form

S > f : <k1>(a)717~-~7<kl>(a})7—l — T

In the unpack ruleq ¢ FV(T', 7). The signature for types is

Lo, —ix—k, Aixok— ok, Ji(x)k— %

where S > ki boi, S b ki Fomi (1 <<, An excerpt of the signature for terms is
S > 0 F 7 (this judgment notation is defined below), P 9
meaning thatf has! arguments and binds, in theth S: (x)*, T:* > pack :9[T] — F(a.S[a])

argument(1 < i < 1), k; type variables andb;| variables. S: (¥)%, T:% > unpack : 3(a.sa]), (a)(s[a])T — T

Note that the second argumentwfpack is specified under a (n|A) = (n+m | ('), (A)), where forup(k) : 0 — k
contextT : x thereby enforcing the side condition of the rulgn g, + </ g L6*®y . FlU — F | §*U. We define the
that o does not appear in. context extension "1 A € A(—4n | =,A F =),

As these examples show, our notion of (meta)types can ’
specify not only universally quantified types, but also recursives - signature functor
and existential types. In this paper, we formalise polymor-
phic types in a broader sense, i.e., amrfable type% as
Girard called [14], for which we mean that types involv
(meta)variables and variable binding.

We define the signature functor corresponding to a polymor-
Pphic signatureX’ using a discrete polynomial. We start with
analysing concrete cases. Consider the function symbol for the
abstraction of System F (Example 3.1):

Example 3.8 (Global state) A non A-calculus example. The
signature for an algebraic theory of global state [28] is given as

follows. The type signature consists of the types for locatiorhe corresponding operation on an algedrahould be
L, expression€ and value types asy'™ = {L, E, Nat, Bool :

S:x, T:k > abs: (ST — s=T

+}. The term signature consists of two operations abs® i A(n | T,o F7) = A(n | T Fo=7)
V:x > lookup :L,(V)E — E whereo, 7 € U(n). A type contextn may also be changed as
V:% > update :V,LLE — E in the case of type abstraction:

A point is that these operations are parameterised by the taps?: A(n+1 | T F7) > A(n | T F V(a.7))
metavariablev for types. In the original treatment [28], this

parameterisation is only informal-level, but here we can givEp obtain these types of algebra operations from the specifi-
a formal signature in our polymorphic algebraic theory. An atation of the arities of function symbols, we need

QEbraiC theory constructed by this Signature is first-order Wlthto formulate the instantiation of meta-types in arities by
variable binding, and no higher-order types and\acalculus types inU by meta-substitutions as= {sS+— o0, T T},

are needed, but polymorphic. This style of formalisation mayto give the indices (e.gqn + 1 | T’ + 7)) for A from arities.
be useful for finer and more flexible algebraic characterisati

of effects along the line of [28]1. Yhis requires to use maps from the Grothendieck construction

J(FLU x [S = U]), which consists of contexts and meta-

4. SGNATURE FUNCTOR substitutions under arbitrary type contextHere, we regard an

exponential presheé = U] € Sef as an indexed category in

Cat" giving a discrete categorls = U](n) = Set (3, 6"U),

andd € [S=-U](n) gives a meta-substitution.

4.1. Polymorphic contexts First we define the denotation of a meta-type. An element
For a sefl’, we denote by | T a comma category consisting” € MS(n) bijective corresponds to a map: V" — MS

of objectsT" : n — T (for contexts) and arrows : T — I [5]- Lete = id¥, : MU — U be a map defined by freeness of

(for renaming), which are functions : n — n’ such that MU, andst a strength. Define

r=I"o p- s n 1dx7T Mevost €
A X™-monoid morphismis a morphism ofSef that is [7] : [S=UIxV - [S=U]x MS MU —U

both X ™-algebra homomorphism and monoid morphism. t s 778 k /
categoryXY-Mon consists of2Y-monoids and~ ™Y-monoid e define]S > k 7] : U= — 6°U by the transpose dfr]
morphisms.

Given a functorF : C — Cat, the Grothendieck con- 5 N 4
struction [15] of F is a category[““® Fc (or simply [F) [from € : C — Catto D : D — Cat, which is a pair

with objects(I, A) wherel € C and A € F(I), and arrows (F,¢) consisting of a functort” : C — D and a natural
(u,7) : (I,A) — (J,B) whereu : I — J in C and transformationy : C — DF. A map of indexed categories

. F(u)(A Bin F(J). yields a functor at the_level of the Grothendieck constructions
v F)d) -) J(F,9): [C— [Dgivenby(ceC, z€Cc) — (Fce

Definition 4.1The functorG : X™-Mon — Cat is defined by 2> ¢c(2) € DFc).

Given a polymorphic signaturé’, we associate a corre-
sponding signature functor for algebra of functor.

Here we use the notion of a map of indexed categories

nekF
G(X) def / F| X (n) x X(n). Definition 4.2 Suppose meta-types> k - o, S > k 7.
A context extension
The categoryGU for contexts and result typdsf. §1-1V) has

. tk|o F71): FLU S=U] — F|UXxU
- objects(n | T' 1), wheren e F, T € F|Un, 7 € U(n), ext(k| o Fr): FIU x [S=U] U

-arrows(p,m):(m ['F7) = (n | A o), is a map of indexed category @at” defined by
wherep : m — n in F such thatU(p)(7) = o, and FLU X S U
71 (FlUp)(T) — A in F | (U(n)). LU x[$=U]

The category [F | U for contextsconsists of objects denoted lbk X({[S > kFolL[S > k7]

by (n|T") and arrowsp, 7). It has coproducts given biyn|T')+ s*(F| U x U7 x U) SM@xidy) S (FLU x U) GEY pluxU

where @&(n)(T, (61,...,0m)) =T+ {o1) +---+ (o). following discrete polynomialP (since this is unary, the part
This yields a functor a = id is omitted)

[ext(k| @ F7): [(FIU x [S=U]) — [FIUxU U~ [(F16U x 6U x U) — v GU

—_—

(n.T.0) —= (n+k | F(D), ﬁk(") = ei(T)) where using a strengtt : 6U x U — §(U x U),

This is certainly a context extension, that is, it extends a , _ [((+1:F =F,m)): (n,T,7,0) — (n+1,T,7)
context (n|T") with k for type context, and instantiated types ’ T Y

9}1(0) —obe U (n+k) for term context using an instantiation
map 6 : S — ¢6"U, and moreover the instantiated result type
o e = (M FL(={=) x (~{=})) 0 (1d,5t))
is set to76.

:(n,T,7,0) — (n,T'{o},7{0})
Definition 4.3 Given a specification of a function symb®l>
[(k) (@)1, (ke)(To)Te — T) € XT™, we associate
the following discrete polynomial diagrat,

The polynomial functop : Sef? — SefV generated by
determines the arity of type-in-term substitution. For later use,

we name it asrdéf Fp. Now an Fp-algebrag® : 1A — A

(- JFLU X [S=U]) =+ [(FLU x [S=U)) exactly gives the type of (4) |
Only specifying the arity is not enough. A type-in-term sub-
[fext(ki | bri)licie lf (idx[S > 0F7]) stitution also must satisfy the properties of substitution, which
we axiomatise using the axioms of one variable substitution
J(ELU xU) J(ELU xU) (analogous axioms were given for substitution algebra [10]).

Given a polymorphic signatur& = (X7, 2T™), we define o _
the correspondingignature functorX : SefV — sefV Definition 5.1 Let (U,vY, uV) be aX™-monoid andA

by the polynomial functor construction SefV. Let newV : 1 — U (a generic new variable) be the
def transpose o’V : V — U. A type-in-term substitutions a

o= H Fp, = natural transformatiog“ : 1 A — A subject to the following

fexm™ axioms
H(f(id x [S > 0F7T)) 0 (V)0 ([[ext(k |0 }—Ti)]ie[g])* acAn | T F71),0eU, - <Xupta, o) =a
8> filk) (@)1, (k) (FE) T =T €STM (i)a€ Aln+1 | T k1) F et i (a,newY) = contr a

Since polynomial functors are closed under sum, this idiig @ ef(z+2 | T '_,T)’ UAE UZ+17 UIAE Un; / ,

discrete polynomial functor. Simplifying it, we finally obtain Sn(shqi(a,0), ') = ¢ (Shyi(swy a,upy, o), o{o’'})
TA(n | T 1) An arrow p : m — n in [gives rise to natural transforma-

. def
N =2 tions pV = 67 : 6™ — 6" : Sef — Sef for U e Sef
= T=10) x An+k; | F(D), 0,0 7,0 P . X '
I) 1£I<l ([HI)) and ph gt sl 5l gefU , sef
S5 fi(k1)(F1) e (ki) (T Ti—7 €XTM for A € SefV. Hence swappingw : 2 — 2, weakening
oe[S=U](n) up : 0 — 1, and contractiorcontr : 2 — 1 maps inF give

- : U
This more clearly exhibits the functor as a “polynomial’, i.e. &S€ corresponding maps et and Sef™”. .
sum of products functor. We can construct an inifialgebra Al the free variables appearing before™ are universally

inductively(cf. §2), and the resulting algebra is an object—levél“antiﬁEd- This_ha_ve the intuitive re_ading, e.g. the fir_st axiom
polymorphic abstract syntax. says that substituting for a type variable that is not in a term

does not affect the term, etc.
The presheaV of variables has the type-in-term substitution
sV : 1V — V defined bysV : Vin+1|T F7) —
A type variable in a type is instantiated by a (concretey(n | T'{o} - 7{0o}); z — z (just changing types).
type by a X ™-monoid multiplication. A type variable in a
term must also be instantiated with a (concrete) type. In this 6. POLYMORPHIC STRUCTURES
section, we axiomatise type-in-term substitution. We define polymorphic structures that provide a general
LetU = (U,vY, uY) be aXx™-monoid, € U(n+k), @ € notion of syntax and algebraic model of polymorphic algebraic
U(n),| 7| = k. Hereafter we use the abbreviatiofio'} </ theories.
u(rvV(1),...,vY (n), 7). T{7} is defined similarly. For ~ Following [24], [20], given A, B € Sef, we define
a presheafd € Sef®, our aim is to define a function of typethgeﬁ{]e(s?eaf(A eB) e SefV by (AeB)(n |I'F7) =
A . J YA | AFT) x TlicgaB | T FA®3),
Su(0): A+ 1| T 7)) = Al [Mo} Frio}) (4) where [denotes a coend. The preshléfaln’e SefV of object
which replaces a type variable + 1 in an element ofA variables is defined by (n | I' 7) =F | U(n) ((r),I') =
with a typeo. We invoke again the polynomial formulation.{z | (z : 7) € T'}. Then (Sef, e, V) forms a monoidal
To specify the source and target indices of (4), we use thategory.

5. TYPE IN TERM SUBSTITUTION

(Fun) (MVar)

(S > f: (kﬁ(?{)ﬁ,...,(/ﬂﬁ(ﬁ)n—>T)62Tm o € U(n) 0| =1
(Var) 0:5~, U ki = || zeX(n+l | x:71, s T T B T)
AU —_— . AU — .
(CI'T)EF tzENEX(7L+kZ|F x; 0,0 I_ng) (ISZSZ) tleNEX(n‘F}_TZ{J}) (lgzgm)
re NIX(n | T k) fol@r zitr,..., @ zi.t) € NVX(n | T F 70) z[T 5t tm] € NVX(n | T F 7{7'})
Note: fo(. 7.t) may be denoted byy(,,)... os,.)(@.2.t) for S = {s1,...,5,}, or simply f(t) when the omissions are
inferable from context. Fig. 1. Construction rules of an indexed siﬁgX
6.1. (U, X)-Polymorphic Structures is called anassignmentThe extensiony? : NY X — A is a
Definition 6.1 Let ¥ = (X', XT) be a signature, antl (U, Z')-polymorphic translation defined by
a X'™-monoid. A (U, X)-polymorphic structured = (A,¢*) o (x) = v (x)
consists of Boe — — A, 4
O (flag.z1t1, ..., a0.2.t) = f2(¢; = — (f1),
(i) a-monoid A = (A, a, v, 1) in SefV el b
(i) a type-in-term substitutiog” :7 A — A such that 0 Pt || | T a0 Fr) (1))
t 2¢A ¢V L2150) = A (A ANt
124 214 .- TA v \ Pzl t]) = p (s (p(2), @); ¥H(1))
Tai la Tyl ly We will also writet ¢ for #(t).
A A
TA c . A 14— A As explained in§1-1ll, ¢* is the uniqueextensionof ¢ to
, Aech a (U, XJ)-polymorphic translation. Thig* gives the meaning
T(AeA) 2 TAeTA Ae A of a meta-term in a polymorphic structureusing an assign-
T”l l“ ment . The proof of the next theorem essentially uses this
A extension.
TA - A
U U ; _
commute, wherey, 15 are inclusions that are definable by theTheorem 6.'4 Let X € Sef’. Ng X is a free (U, 2)
above data polymorphic structure oveX . Hence the functor that forgets
: . A h X)-pol hi has the | joidtl :
A morphism of (U, £)-polymorphic 1A S 1 tseeF(UU,_) I):)(E)Io(yUm;r)p ic structure has the left adjointy;
structuresp : A — A’, called (U, X)- 1o} L N, &)

: T g ®
polymorphic translationis a ~’-monoid 1A y 6.2 Free (U, X)-Polymorphic Structure as
morphism that makes the right diagram A Polymorphic Abstract Syntax with Metavariables

commute. This defines the categdtply(U,). We want to give a free structu¥y X syntactically to use

it as apolymorphic abstract syntax with metavariabl€iven

X € Sef’V, we can inductively construct the underlying set

NYX using Fig. 1, hence in this sense, it is syntactic. However,

there is one issue. To givepmesheaf X syntactically is hard,

because to give a functak : GU — Set requires (1) the

arrow partX (p,) for all (p,) in GU, and (2) functoriality.
2[T5 tats e teag] = X(d,m)(2) [Tty tiar] (5) Instead, we consider a simpler ing?x structure for contexts.

DefineD : ¥¥-Mon — Cat; D(X) = 3, yN| X(n) x
where 7 = A — A,z € X(n+l|AFT). The x() (D for “discrete”, due toN). To give X € SePV is to

Next we seek a freqU, X)-polymorphic structure. Let
X e SefV. We define an indexed séng by the rules in
Fig. 1. For every contextn | ' - 7{7'}) where s € U(n)
with |o’| = I, we define an equivalence relaticA on
NYX(n | T +7{7}) generated by context closure of

presheafNY X € Sef® is defined byNY X (n | T +7) o give just an indexed seX (n | T - 7) indexed by contexts
NX(n|Tk7)/= (n|TF7) € DU. We regardz € X(n | 1) as a

Let 7* (X) & T,y 17 (X). We define the algebra structuremetavariable, which may also be denotedy (n)(I')7 in

v, [ngX]fesza mapp] : V+ 5 + ("X e NV X) — NV X later examples. A metavariabteis intended to be replaced by

on NUX by a term involving free type variables from and free variables
from I
v(z) =2; X)) = f(T); mapp(z, 7 ¢) = z[7: ¢). Given a set of metavariable$, regarded as a preshesfe

Sef?, we can construct a preshesife Sef®V by a left Kan
Theorem 6.2 NY X is an initial V+ X + (1*X e —)-algebra. extension along the inclusidd/ — GU. A left Kan extension
is the left adjoint to the restriction functdr— | (see below),

U . . . U . . N . . A .
Ny X is a monoid inSef” and has a syntactic type-in-termang together with Theorem 6.4, there is a series of adjunctions
substitutions™= X, We will write t{c} for ¢™= X (¢, o). (=) NU

X 72 P

Definition 6.3 (Assignmen) Given (U, X)-polymorphic Sef? 1 SefV 1 Poly(U, %)
structure(A4, 4, u#, ¢4), a morphismy : X — A of Sef? = |

This tells us a way to give a free polymorphic structuré.4. Universe shift
syntactically. Starting from a set of metavariablése Se?,
we can freely generate a polymorphic structuv¢’X, for
which we require only a syntactic dafé. We call an element

The categoryPoly(Y) offers a right notion of a trans-
lation between polymorphic structures on possibly different
universes. As an application of it, we transport a meta-term on
t € NYX(n | T Fr1) a unlveTrseW to 'that on apother univergé. Let(—) : W — U

be aX''Y-monoid morphism.

ameta-termbecause it is a term that may involve metavariablesFor a typer € W (n), (—) translates it to a typér) € U(n).
as in (Mvar) of Fig. 1. As in§1-lll, we define a meta-
substitution, i.e. substitution for metavariables in a meta-terfe overload the notatiof—| for other syntactic constructs:
The idea is to employ the notion of assignment in Def. 6.3.

Let X be a set of metavariables. Aassignment?d :
X ~x|a) A for meta-substitution is given by dbU-indexed
function ¥ : X — |5(k|A)A| where (k|A) is “possible free - For a setX of metavariables on a umveréé’ define a set

type and term variables” in the results, and | is the above (X)) of metavariables on a univergeby (X) ¥ Lan, X, (a

-ForT' =xy:71,...,2: 71, (1) —fml (r1), - x: (7).

restriction functor. It maps each metavariablas left Kan extension), wherd = D(—) : DW — DU. Hence
(X)(n | (©) F (o)) =X(n | © ko), and other cases are
X(n|Th7) 3 2890 ¢ cA(k+n | AT 7). €MPY.

v - For a meta-ternt € NV X (n | T + 7), a meta-term
By adjointness, the mag in SeP? bijectively corresponds (th € NY(X)(n | (T) F (7)) is defined by replacing every
to amapd : X — A in SefV. Applying Def. 6.3, we have -
19 : NVX — A, which gives a meta-substitution that replaces
all metavarlables in a meta-term usitig

typer in ¢ with (7). More precisely(t) “ ushift’(t) where
the assignmentushift X — N (X) o G(—) is defined by
ushift(n | z:7 F7)(z) = z[; 7.

6.3. 2-Polymorphic Structures 7. POLYMORPHIC EQUATIONAL LOGIC

We combine all(U, X')-polymorphic structures varying all

possible U together, and then construct a single category In this section, we give a Polymorphic Equational Logic
Poly(X) by the Grothendieck construction: PEL that constitutes a sound and complete logical framework

for equational reasoning about polymorphic algebraic theories.
def First we define the judgment for equation, then define the
Poly(%) = / Poly(U, %) notions of satisfiability and models. L&l" be a universe. A
W-equationis of the form
wherePoly(—, X) : £™-Mon® — CAT is defined by
Xon|Thkws=t:7
U — Poly(U, %)
f:U—=U +— —oGf:Poly(U’,) — Poly(U, X). for meta-termss,t € NYX(n | T 7). A set E of W-
equations is called?V-axioms When W is presented as the
universelV = M .S of meta-types, we write ap S-axiom as
Definition 6.5 A X-polymorphic structurgU, A) consists g | X>n|DFs=t:7(eg. Fig. 3, 4, 5).
of a XV-monoid U and a(U, X)-polymorphic structure.
Let (U’, A’) be anotherX-polymorphic structure. AY-
polymorphic translatiorfrom (U, A) to (U’, A’) denoted by Definition 7.1 A X-polymorphic structurgU, A) satisfiesa
W-equationX > n | T by s=t¢:7 if
(=D) (U, A) — (U, A") - for all X™-monoid morphismg—) : W — U,
consists of a pair of maps - for all contexts(k|A), assignmentsp : X ~;a) AG(—),
- a X¥-monoid morphism(—) : U — U’ w?n T (8) = w’én | (1)
- a (U, X)-polymorphic translationp : A — A’G(—).
holds inA(n + &k | (T, A) F (7). If (U, A) satisfies all equa-
Note that if (U’, A’) is a X-polymorphic structure, so is tions inW-axiomsE, (U, A) is called a(polymorphic) model
(U, A’G(—)). The idea is tha{—) translates types i/ to Of E.
U’ and ¢ translates elements from to A’ that also takes
into account of the universe shift. An important point is thathe idea is to apply(—)), ¢*) : (W, NX) — (U,é(’“‘A)A)
we derived the definition of translation by the Grothendiedlo the W-equation, which is the uniqu&-polymorphic trans-
construction. Actually, the categofjoly(X) consists of>- lation that extends. Note that if A is a (U, X)-polymorphic
polymorphic structures and’-polymorphic translations. structure, so ig*1®) A,

Xpepn|Thrys=t:7)€eFE

M e T re@m=mm Y
(Ref) (Sym) (Tra)
Xon|Thkys=t:r Xeon|Thys=t:r Xon|TDhkyt=u:r
Xon|Thkyt=t:r Xpon|Thyt=s:7 Xeon|Thys=u:r
(Sub) (Fun)
Xon|Thkysi:o; (1<i<m) S filk)(o1)T1,. .., (ki)(o))T — 7€ XTm ki = [y
Xbonl|x:ion..,@miom Fut=t:71 0:8~,U Xon+k |, o000 Fusi=t:m0 (1<i<l)
Xon|T byt =si]=tx, =s;]:7 X o n|T by folarzrsy,...,a.z.s) = folarzity,...,auz.t;) : 70
(MSub) (MEX)
V1 X ~(ga) NEUX/ (z:(n+k)(r1,...,7)T) €X 0| =k
Xpon|Thys=t:T Xon|Thky o Xon|Thys;=t:7{c} (1<i<l)
X' >k+n| AT kFysd=td:7 Xon|{T}Fyz[c;s1,...,8] =2[F;t1,....t)] : 7{T}
(Gn)
pim—n m:p) — A (TSub)
Xeom|Tkys=t:7 Xveon+l|Thkys=t:7 nko
X von|Atbryap(s)=mpt): p(r) X > n|T{o} by s{ct=t{c}:{c}

Fig. 2. Polymorphic Equational Logic PEL

Vernacular notation
(B) ' (A\x. M) = : :
(type) ' (AaM)o = Mla:=o0]) : 17{a:=0}

=
=
S

i
=
\]

Notation in polymorphic equational logic
(8) S, T:x | M:(S)T, N: s > Fapp(abs(z.M[;2]),N) = M[;N] : T
(type B) Sk, T: ()% | M: (a)T[a] > Ftapp(tabs(a.M[e;])) = M[s;]) : T[9

Fig. 3. Example: axioms for System F

Vernacular notation

(Iet/\) F }_ Iet <x1,x2> = <M1,M2> in M = M[.’El = Ml,l‘g = Mg] T
(letn) T Flet (z1,29) = Nin M|z := (x1,22)] = MJ[z:= N] s
(38) I’ F unpack (¢, N) as (a,z) in M = Mo :=1t, z:= N] cr{ai=1}
(3n) I' Funpack N as {(a, z) in M|z := {a,z)] = MJz:= N] i T
Notation in polymorphic equational logic
(let/\) S1,S2, T * | MZ(Sl,SQ)T, Mlisl, MQISQD F'et(pair(Ml,MQL$1.$2.M[;$1,$2]) = M[,Ml,MQ]
(let ’I’}) S1,S2, T * | M : (31/\82)1—7 N: S;ASy > Iet(N, 1‘1.1?2.'\/'[; pair(a:l,xg)]) = M[, N]
(38) Uik, S T: ()| M:{(a)(S)T[a], N: S U] > F unpackS’T[U](packS’U(N), az.Mla;z])= M[U; N] T [U]
(3n) s (¥)x, T:x | M:(3(a.8))T, N:3(a.s) > F unpacks(N, c.z.M[packs ,(2)]) = M[;N]

Fig. 4. Example: axioms for the existentizicalculus\?

Vix | X:E > £:L F lookup(¢, v.update({, v, X)) = X =
Vik | X:(V,V)E > £:L F lookup(¢, w.lookup (¢, v.X[v,w])) = lookup(¢,v.X[v,v]) : E
Vik | X:E > £:L,v,w:Vv F update({,v,update(?, w, X)) = update(¢, w, X) E

Fig. 5. Example: axioms for global state (excerpt)

7.1. Equational logic 8. EXAMPLES

The Polymorphic Equational Logic PEL is given by the&Example 8.1 Continued from the examples 8. Axioms
rules in Fig. 2. The notatioriz := ¢] means to replace aof System F, the existential-calculus, global state [28] can
object variabler with ¢. The notatiorp(s) (resp.7(s)) means be written as PEL's axioms in Fig. 3, 4, 5 respectively.
to replace type variables (resp. variableskihy p (resp.).

To design a sound and complete inference system fekample 8.2 (CPS Translation from F to A5 [11]) Fu-
polymorphic equational reasoning, our approach igligill jita gives a CPS translation from System F to the exis-
syntactic rules from various aspects of the polymorphic strugntial A-calculus A5. The translation consists of the type
ture NYX and required properties for equational reasoning @nslation (-)* from System F types to\s-types, and
follows. the CPS translation]—] from System F terms to\s-
(Ref),(Sym),(Tra): The rules for equivalence relation. terms. (excerpts:(V(a.7))® = —-Ja.—7% [Aa.M] =
(Ax): An axiom becomes a theorem. Also types of the axwa. a (Ak.unpack k as {«,¢) in [M]c)) The CPS translation

iom must be instantiated by X'Y-monoid morphism is sound:

(—) (e.g. from meta-types to object types). R .
(Gr): NUX is a presheaf inSetV. This rule is for a [hsyr s=ti7 = -2 kg [s] =[] : =" (6)

presheaf action (cf. [20§3.2 Meaning of arrows). |nterestingly, this pair of translations is an example of our

(Fun): Z-algebra structure oN,/X. notion of polymorphic translation, i.e. &g-polymorphic
(MEx): (X e —)-algebra structure oNJX. translation ((—)*, [-]) : (Tg,Ar) (Ts,A3™) and
(TSub): Type-in-term substitution oV_'X. moreover(T3, A5”) is a model. We explain what this means.
(Sub): Multiplication of the X-monoid NEX.) Let T3 be the initial 2 1Y-monoid, A5 the freeX5-polymorphic
(MSub): Polymorphic translation* : NyX — NJX'. structure over0, Ty the initial £;Y-monoid, Ap the free

. . de
We list several important derived and admissible rules. 2r-polymorphic structure oved. DefineAZ™(n | T' = 7) <

As(n | =—T' F —=—7). The definition of(—)*® determines an

Structural rules. Weakening, contraction, and permUtatiO'ETy-algebra structure offl5. The definition of [~] deter-
F .

(= injective renaming) on metavariable§ are obtained as mines aXr-algebra structure o2 . It amounts to aCp-

instances of (MSub). Weakening, contraction, and perm“tatiBBIymorphic structuréTs, A3™), which is a model of System
on type contextsn and term contextd’ are obtained as by (6) o

instances of (Gr).

Example 8.3 (Categorical model of F [30) Let C be a
Universe shift. In PEL, a universe can be changed when agategory with finite products, which consists of a distinguished
axiom is instantiated in (Ax). We have also an admissible ru@ject 2 which generates all other objects using the finite

of the following “universe shift” rule using—) : W — U: products. APL-categoryC is a functorC : C® — CCC
(Univshy Xon|Thws—t:r ghgefczétegog o'f: all cartSilantclosed categonzs])c defined by

= —, Q). From a PL-category, we can definelg:-

X o 1 @) o)= () () 9o &

polymorphic structuréU, PL € SetGU) by
This is obtained by the fact thaf{—)), ushiftn) (cf. §6.4) is a

d _
Y-polymorphic translation. U Y |c09),0) e Sef
de n
7.2. Soundness and completeness PL(n | T +r) ¥ c@m,)(1),7)
Let U be an arbitrary universe. Defin€ to be the disjoint \where the notation — | denotes the underlying set, and

union of metavariable contexts in all equationsliraxiomsE' (1) — [T1<i<r (4). Seely’s interpretation of System F's

then applying a~’™-monoid morphismm(—) : W — U, hence types and terms using a PL-category [30] determines algebra

X e seP”. LetU be ax™-monoid. Take the term polymor- stryctures ortJ andPL. For example, fol : (x)x — % € X1,

phic structure(U, Ny/X). It is clear that derivable equationsthe corresponding algebra operatigh : §U — U is defined

from E defines an(n | I' - 7)-indexed equivalence relationpy the right adjoint tar* wherer : Q7+ — Q" etc. The mul-

=g onNYX(n | T Fr). We defineNYX(n | T -7 o tiplications of both monoid$) andPL are given by composi-

P E

NEX(n | T k1)) =xk. tions. The type-in-term substitution of € U(n) is arisen as

(id$, o)., : PL(n+1 | T F7) — PL(n | T{o} F r{o}).

Lemma 7.2 Then(U, N¥ X) is a polymorphic model off. The Xr-polymorphic structurgU, PL) amounts to a model

of System F.
Theorem 7.3 Let E be W-axioms. The polymorphic equa- REFERENCES
tional logic is sound and complete, i.e. the following are[1] N.Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term
equivalent for all universeg/: representations in CogJournal of Automated Reasoning9(2):141—
. . . . 159, 2012.
() (X >n|IFys=t:7)is derivable fromE in PEL [2] N. de Bruijn. Lambda calculus notation with nameless dummies, a
(i) For all polymorphic modelgV, A) of E, tool for automatic formula manipulation, with application to the church-
(V A) satisfies (X I | T hlrs—=t: 7_) rosser theoremindagationes Mathematica®4:381-391, 1972.
’ ve==t-1) [3] M. Fiore. Second-order and dependently-sorted abstract synt&od¢n

of LICS’08 pages 57-68, 2008.

(4]
(5]
(6]
(7]
(8]
(9]
[10]

(11]
[12]

[13]

[14]
[15]
(16]
[17]
(18]
(19]
(20]

[21]

[22]
(23]
(24]
(25]

(26]

M. Fiore. Discrete generalised polynomial functorsl@ALP’12, pages
214-226, 2012.

M. Fiore and C.-K. Hur. Second-order equational logic. Aroc. of
CSL'1Q LNCS 6247, pages 320-335, 2010.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Proc. of LICS'99 pages 193-202, 1999.

K. Fujita. Galois embedding from polymorphic types into existential
types. InProc. of TLCA'05 pages 194-208, 2005.

N. Gambino and M. Hyland. Wellfounded trees and dependent polyno-
mial functors. INTYPES’'03 pages 210-225, 2003.

J.-Y. Girard. The system F of variable types, fifteen years |atkeor.
Comput. Scj.45(2):159-192, 1986.

A. Grothendieck. Ca&gories fibees et descente (ex@3%/I). In
Reetement Etales et Groupe Fondamental (SGAZEcture Notes in
Mathematics 224, pages 145-194. Springer, 1970.

M. Hamana. Fre€’-monoids: A higher-order syntax with metavariables.
In Proc. of APLAS'04LNCS 3302, pages 348-363, 2004.

M. Hamana. Polymorphic abstract syntax via Grothendieck construction.
In Proc. of FoSSaCS’]Jpages 381-395, 2011.

M. Hamana and M. Fiore. A foundation for GADTs and inductive
families: Dependent polynomial functor approach Pic. of WGP’11
pages 59-70, 2011.

M. Hofmann. Semantical analysis of higher-order abstract syntax. In
Proc. of LICS’99 pages 204-213, 1999.

H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for
XML. ACM Trans. Program. Lang. Sys82(1), 2009.

F.W. Lawvere. Adjointness in foundationBialectica, pages 281-296,
1969.

T. Leinster.Higher Operads, Higher Categorietondon Mathematical
Society Lecture Note Series 298. Cambridge University Press, 2004.
R. E. Mggelberg. From parametric polymorphism to models of poly-
morphic FPC.Math. Struct. in Compt. S¢i19(4):639-686, 2009.

M. Miculan and |. Scagnetto. A framework for typed HOAS and
semantics. IrProc. of PPDP’03 pages 184-194. ACM Press, 2003.

R. Milner. A theory of type polymorphism in programming. Comput.
Syst. Scj.17(3):348-375, 1978.

R. Pde and D. Schumacher. Abstract families and the adjoint functor
theorems. Inindexed Categories and their Applicatigrisect. Notes
Math. 661, pages 1-125. Springer, 1978.

B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic
pi-calculus.J. ACM 47(3):531-584, 2000.

G. Plotkin and J. Power. Notions of computation determine monads. In
FoSSaCS’'02pages 342-356, 2002.

R. A. G. Seely. Categorical semantics for higher order polymorphic
lambda calculusJ. Symb. Log.52(4):969-989, 1987.

I. Stark. Free-algebra models for thecalculus. Theor. Comp. Sgi.
390(2-3):248-270, 2008.

S. Staton. Two cotensors in one: Presentations of algebraic theories for
local state and fresh nameBroc. of MFPS 25, ENTG249:471-490,
2009.

