
Multiversal Polymorphic Algebraic Theories
— Syntax, Semantics, Translations, and Equational Logic —

Makoto Hamana
Dept. of Computer Science, Gunma University

Marcelo Fiore
Computer Laboratory, University of Cambridge

Abstract—We formalise and study the notion ofpolymorphic
algebraic theory, as understood in the mathematical vernacular as a
theory presented by equations between polymorphically-typed terms
with both type and term variable binding.

The prototypical example of a polymorphic algebraic theory is
System F, but our framework applies much more widely. The extra
generality stems from a mathematical analysis that has led to a
unified theory of polymorphic algebraic theories with the following
ingredients:
- polymorphic signatures that specify arbitrary polymorphic opera-

tors (e.g. as in extendedλ-calculi and algebraic theories of effects);
- metavariables, both for types and terms, that enable the generic

description of meta-theories;
- multiple type universesthat allow a notion of translation between

theories that is parametric over possibly different type universes;
- polymorphic structures that provide a general notion of algebraic

model (including the PL-category semantics of System F); and
- a Polymorphic Equational Logic that constitutes a sound and

complete logical framework for equational reasoning.
Our work is semantically driven, being based on a hierarchical two-

levelled algebraic modelling of abstract syntax with variable binding.
As such, the development requires a sophisticated blend of math-
ematical tools: presheaf categories, the Grothendieck construction,
discrete generalised polynomial functors, and aspects of categorical
universal algebra.

1. INTRODUCTION

The notion of polymorphic types is one of the most re-
markable inventions in programming language theory. Starting
from the polymorphicλ-calculus of Girard and Reynolds and
succeeding to Milner’s striking application to functional pro-
gramming [25], the theory of polymorphism has deepened, and
the notion of polymorphism has spread everywhere. Not only
functional programming languages, but also various systems
have been extended to cope with polymorphism, such asπ-
calculus [27] and XML [?]. Even for object-oriented program-
ming languages (Java, C++, etc.), a notion of polymorphism
has been incorporated and regarded as a key feature of generic
programming. These applications illustrate that polymorphism
is not necessarily based on theλ-calculus.

Then,what are polymorphic types?
This paper aims to establish an algebraic framework for

analysing and reasoning about various polymorphic systems
generally. We formalise and study the notion ofpolymorphic
algebraic theory, as a theory presented by equations between
polymorphically-typed terms.

Our approach is not based on a specific polymorphicλ-
calculus. It is more general. We aim at capturing various poly-
morphic systems including extendedλ-calculi as particular
examplesof our polymorphic algebraic theory. Our basis is
the algebraic model of abstract syntax with variable binding
in a presheaf category [10], [?].

To give necessary background for the present work, we first
review this model and its subsequent developments.

I. Abstract syntax and variable binding. The aim is to
model syntax involving variable binding. A typical example is
the syntax for untypedλ-terms:

x1, . . . , xn ` xi

x1, . . . , xn ` t x1, . . . , xn ` s

x1, . . . , xn ` t@s

x1, . . . , xn, xn+1 ` t

x1, . . . , xn ` λ(xn+1.t)

This is an abstract syntax generated by three constructors, i.e.
the variable former, the application@, and the abstractionλ.
The point is that the variable former is unary and@ is a
binary function symbol, butλ is not merely a unary function
symbol. It also makes the variablexn+1 bound and decreases
the context. In order to model this phenomenon of variable
binding generally (not only forλ-terms), Fiore, Plotkin and
Turi took the presheaf categorySetF to be the universe of
discourse, whereF is the category which has finite cardinals
n = {1, . . . , n} (n is possibly 0) as objects, and all functions
between them as arrowsn → n′. This is the category of object
variables (regarded as contexts) by the method of de Bruijn
index/level (i.e. natural numbers) and their renamings. A main
result in [10] is that abstract syntax with variable binding
is precisely characterised as the initial algebra of suitable
endofunctor modelling a signature (e.g. forλ-terms).

For example, the signature endofunctorΣλ on SetF for ab-
stract syntax ofλ-terms is defined byΣλ(A) = V+A×A+δA
where each summand corresponds to the arity of constructor.
Here the functorδ : SetF → SetF for context extension is
(δA)(n) = A(n + 1), and the presheafV ∈ SetF of variables
is V(n) = {1, . . . , n}.

For an endofunctorΣ, aΣ-algebrais a pair(A,α) consist-
ing of a presheafA and a mapα : ΣA → A, called analgebra
structure. The initial Σλ-algebra(Λ, in) can be constructed
inductively as the presheafΛ of all λ-terms moduloα-
equivalence. The initial algebra explains more directly why
presheaves are suited to model syntax with binding, namely

a judgmentn ` t is modelled as t ∈ Λ(n),

and renaming of free variablesρ : n → n′ in a λ-term is
modelled by the presheaf actionΛ(ρ) : Λ(n) → Λ(n′). This
is a generic way of modelling abstract syntax with binding
with respect to a signature functorΣ. However, the method is
limited to modelling ofobject-levelabstract syntax.

II. Object and meta variables. What is meant by “object-
level” is the following. For example, consider theλ-term

λx.My

in a certain mathematical context. Here “x” and “y” are λ-
calculus variables (i.e.object-level variables, because now the
λ-calculus is the object system), while at the level of text,
“M ” is a meta-level variable. When developing a theory of
λ-calculus, we always use both object and meta variables.
There is also an important difference between metavariables
and object variables in view of substitutions. If we substitute a
termxx for the object variabley in the term above, the result
is not simply a textual substitution, i.e.(λx.My)[y := xx] =
(λx′.My)[y := xx] = λx′.M(xx) wherex 6= x′, because of
the capture-avoiding substitution in theλ-calculus. But if we
substitute a termxx for the metavariableM , we have

(λx.My){M 7→ xx} = λx.(xx)y (1)

Although the object variablesx is capturedby the binder, it is
usually allowed at the meta-level. Viewing these phenomena at
the extra meta-level viewpoint, these two classes of variables
are classified by the distinction of substitutions: capture-
avoiding and possibly capturing.

III. Free Σ-monoids. Not only object-level abstract syntax,
how can metavariables and the distinction of substitutions for
object and meta variables be incorporated with the algebraic
model of syntax with binding? This problem was explored in
[16], [5] and a clear answer has been obtained.

A Σ-monoid [10] is a Σ-algebra(A,α) with a monoid
structure

V
ν- A ¾µ

A •A

that is compatible with the algebra structure (i.e.µ◦(α• id) =
α◦(Σµ)◦strength) in the monoidal category(SetF, •,V). The
unit ν models the variable former, and the multiplicationµ
modelssubstitution for object variables, where the monoidal
product• gives precisely the arity of substitution. Monoids in
the monoidal category are known asoperadsthat play a crucial
role in various mathematical structures (such as topology and
weakω-categories [?]).

For our purpose, we usefree Σ-monoids generated by
arbitrary presheafX, where generatorsX is regarded as the
presheaf of metavariables. Importantly, a freeΣ-monoid over
X ∈ SetF, denoted byMX, is constructedinductivelyas an
initial (V + Σ + X • −)-algebra, which gives the language
involving binding andmetavariables. This characterisation
shows thatV + Σ models syntax with binding (as in§1-
I) and the functorX • − models the syntactic construct of
metavariables represented as a term

M[t1, . . . , tn]

whereM ∈ X(n) is ametavariableand the indexn, called also
arity, which denotes possible free variables1, . . . , n appearing
in a term substituted forM. Termst1, . . . , tn are replacements
of these free variables after instantiatingM.

For example, we can write the above example (1) using the
language of freeΣ-monoid as

θ](λ(x. M[x] @ y)) = λ(x. (x@x) @ y) (2)

whereθ maps the metavariableM as θ(M) = 1@1 (where1
is a free variable). The freeness ofMX states that givenθ,
there uniquely exists the extensionθ] to Σ-monoid morphism

X
ηX- MX

@@@θ R
MX

θ]

?

that makes the right diagram commute.
Here, the notion of substitution of metavari-
ables appears. This is syntactically under-
stood as thatθ is an assignment for meta-
substitution and θ] is the corresponding
meta-substitution on terms involving metavariablesX. For (2),
we put the metavariableM ∈ X(1). Σ-monoids model the
syntax and semantics algebraically precisely. Therefore, it has
various applications, such as second-order equational logic [8].
However, it is limited tountypedandsimply-typedsettings.

IV. Polymorphic abstract syntax. A previous work [20]
tackled its extension to the case of polymorphic typed abstract
syntax. A crucial departure from the case ofSetF is the need
for a finer index structure on presheaves to model polymorphic
terms. Well-typed terms in a polymorphic system (e.g. System
F) are formulated using judgments of the following form.

type
context

result
typetermterm

context

(¨)

The arrows indicate that a type variable inn = {1, . . . , n}
can appear in all other parts. Clearly, this dependence is more
complicated than the untyped casen ` t (where onlyn is
a required index; thereforeSetF suffices). To model this, the
work [20] clarified the categoryGU of contexts and result type
defined as

and a new presheaf categorySetGU is suitable to model
polymorphic typedobject-level syntax. HereU is a “type
universe”, i.e.,U(n) is the set of all types, andF↓U(n) is
the category of term contexts, both under a type contextn. As
an element inGU shown above indicates, the Grothendieck
construction “

∫
” is the key to capture the dependence (¨).

V. This paper. We further proceed to develop polymorphic
algebraic theory founded on these earlier works. We incorpo-
rate the notions of metavariables andΣ-monoids reviewed in
§1-II and 1-III to the polymorphic setting reviewed in§1-IV.
We allow metavariables in both types and terms. We explain
why it is necessary.

For example, consider theβ-axiom of typedλ-calculus:

Γ ` (λxσ.M)N = N [x := N] : τ

Is this asingleaxiom? We usually think so, but this is actually
a schemaof axioms becauseM andN are metavariables, and
σ and τ are metavariables for types. Therefore, this should
be regarded as a representation of afamily of axioms of the
object system, indexed by all possible object termsM, N
and object typesσ, τ . This process reflects the formulation
of a signature. If one follows this line, then theλ-abstraction
should also be regarded asa family {λσ,τ : (σ)τ → σ ⇒

τ | object typesσ, τ} of symbols. But we usually keepσ and
τ meta-level types (which we callmeta-typesin this paper),
and consider a singleλσ,τ to develop a theory.

Although this distinction between meta and object usually
receives little attention when developing a theory, this view-
point is seriously needed when we develop a meta-theory of
a theory or a mechanised formalisation (such as in Coq [2]).
In such a case, we must formalise all ingredients of a theory
including the meta-level treatment.

We precisely formulate the meta and object variable dis-
tinction. In polymorphic algebraic theory, theλ-abstraction is
formalised as asingle function symbol specified by

S : ∗, T : ∗ . abs : (S)T → S⇒T

where S and T are metavariables for types, and where.
separates a metavariable context and the arity information of a
function symbol usingmeta-types(e.g. S⇒T is a meta-type).
This leads to an important clarification. LetS be the set of all
metavariables for types. Up to this point, we have encountered
two type universes for formalising a theory:

(i) The universe of all meta-types (denoted byMS).
(ii) The universe of all object types (denoted byM0).

Clearly, the universe of meta-types must have almost the same
structure as that of object types. What is an “almost the same
structure” precisely? Moreover, when we consider a semantics
of a theory, the semantics of the type universe must also have
such an “almost the same structure”. This ultimately becomes
the question posed at the beginning of the Introduction: “what
are polymorphic types?” Our answer is

a universe of polymorphic types should be aΣ-monoid,

whereΣ is a signature of type constructors. Note thatMS is
a free andM0 is an initial Σ-monoid. Therefore, the theory
naturally requires to deal with such multiple universes. In this
sense, we call our theorymultiversal.

VI. Organisation. This paper is organised as follows. After
providing preliminaries in next section, we define a polymor-
phic signature in Section 3 and the corresponding signature
functor in Section 4. We then axiomatise type-in-term substi-
tution in Section 5. We further define polymorphic structure
as a general algebraic model in Section 6. In Section 7, we
define a Polymorphic Equational Logic and show its soundness
and completeness. Finally, in Section 8, we exemplify how
polymorphic algebraic theory can specify concrete theories.

VII. Future work. Various directions for further work are
possible. One promising direction is to apply our theory to
mechanised formalisation. Because a correspondence exists
between a generalised polynomial functor and an induc-
tively defined dependent type [12], [?], our characterisation
is connected directly to a method to formalise syntax and
semantics of various polymorphic systems in proof assistances
based on dependent type theory. Actually, the strongly typed
representation of System F syntax in Coq [2] can be obtained
as an instance of our algebraic characterisation.

The type structure of our theory will be extended to allow
polymorphic kinds. Preliminary results [20] indicate that this
direction will be a natural extension of the present framework.

Polymorphic algebraic theory of effects, which is only
exemplified in this paper, should be worked out in more detail.

An algebraic theory for theπ-calculus has been given
[31], [?]. Along this line, to seek an algebraic theory for
the polymorphicπ-calculus [27] using polymorphic algebraic
theory is a challenging problem.

2. PRELIMINARIES

Generalised polynomial functors on presheaves.One of
the central technical tools in our development is generalised
polynomial functors on presheaves [6] developed as a further
generalisation of dependent polynomial functors [12].

Let f : C → D be a functor between small categories. For
the functorf∗ = − ◦ f there are adjunctions [22], [15]

f! a f∗ a f∗ : SetC → SetD

where forf! andf∗ are left and right Kan extensions alongf
respectively. Apolynomial is a diagramP in Cat

A ¾ s
I

a - J
t - B.

The generalised polynomial functorinduced byP is

FP
def
= t! a∗ s∗ : SetA → SetB. (3)

A polynomial diagram isdiscretewhen a is given as a sum
of the codiagonal∇L = [id]l∈L : L · C→ C for finite L.

Why this is useful is that anFP -algebraA can specify
an operation on a presheafA having complex form of arity
and indices at the source and the target. By adjointness,

FP A - A

t! a∗ s∗A - A

a∗ s∗A - t∗A
a∗A(s−) - A(t−)

there exists the bijective corre-
spondences shown at the right,
where the final form is the reason
of the label names of the functors
at the above polynomial diagram.
Namely, s is used for computing thesource index,a is
used for computing thearity, and t is for the target index.
Another crucial fact on polynomials for our purpose is that any
generalised discrete polynomial functorFP admits inductive
construction of initialFP -algebra ([6] Prop. 5.1). Because of
the expressiveness and constructive nature, we will employ
this polynomial functor formulation to model a polymorphic
signature (§4), and a type-in-term substitution (§5).

Convention on α-equivalence. In this paper, we use implic-
itly the method of de Bruijn levels [3] for representing bound
and free variables in a term (and a type, a judgment, etc.).
Any term appearing in this paper hereafter is automatically
normalised to a de Bruijn levelα-normal form suitably. For ex-
ample,abs(x.t) to meanabs(1.t). ∀(α.T[α]) to mean∀(1.T[1])
f(x1.x2.t) to meanf(1.2.t). α1, . . . , αn ` ∀αn+1. τ to mean
n ` ∀(n + 1. τ).

Notational convention. We use the vector notation−→a for a
sequencea1, · · · , al, and|−→a | for its length. We usually write
the indexing of a natural transformationϕ asϕi or ϕ(i), but
we omit often the indices if they are inferable from contexts.
We may write indices when we want to emphasise them.

3. POLYMORPHIC SIGNATURE

We start with the prototypical example of System F to
illustrate how our notion of polymorphic signature can specify
type and term structures.

Example 3.1 (System F) The polymorphic signatureΣF =
(ΣTy

F , ΣTm
F) is given as follows: the signatureΣTy

F for types
is {b : ∗, ⇒: ∗, ∗ → ∗, ∀ : 〈∗〉∗ → ∗}, which specifies
type constructors. The signatureΣTm

F for terms is

S, T : ∗ . abs : (S)T → S⇒T

S, T : ∗ . app : S⇒T, S → T

T : 〈∗〉∗ . tabs : 〈α〉T[α] → ∀(α.T[α])
S : ∗, T : 〈∗〉∗ . tapp : ∀(α.T[α]) → T[S]

Let us see how this signature faithfully encodes the ordinary
typing rules.

Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` λx : σ. t : σ⇒τ

Ξ, α | Γ ` t : τ

Ξ | Γ ` Λα. t : ∀α. τ

The arity of abs, (S)T, represents that the upper judgment
of the abstraction rule (the above left) has a term context
extended with an extrax : σ and the result typeτ . The informal
metavariablesσ andτ are formalised as formal metavariables
S, T : ∗ for types in the signature. The target ofabs, S⇒T,
represents the target type of the lower judgment.

The arity of tabs, 〈α〉T[α], represents that the upper judg-
ment of the type abstraction rule has a type context extended
with an extraα and the result typeτ , where τ may useα
(hence written asT[α]). The declarationT : 〈∗〉∗ represents
this possible containment. A function symbol declaration is
intended to be instantiated to concrete cases. For example,
abs : (S)T → S⇒T is instantiated toabsθ : (nat)bool →
nat⇒bool, where θ = {S 7→ nat, T 7→ bool}. Formal
definitions are as follows.

Definition 3.2 A metavariable for types(S, T, . . .) of arity n
is declared asS : 〈∗n〉 ∗ . In the casen = 0, 〈∗0〉 is omitted.
A set S of metavariables forms anN-indexed setS by S ∈
S(n) ⇔ (

S : 〈∗n〉 ∗) ∈ S. Given a setS of metavariables,
we defineS ∈ SetF asS(n) =

∐
k∈N S(k)× F(k, n).

Definition 3.3 A polymorphic signatureΣ = (ΣTy, ΣTm)
consists of the following data.

- A signatureΣTy for types is a set of type constructors given
by the formc : 〈∗n1〉∗, · · · , 〈∗nl〉∗ → ∗ meaning that it has
l arguments bindingni type variables in thei-th argument
(1 ≤ i ≤ l).

- A signatureΣTm for terms is a set of function symbols given
by the form

S . f : 〈k1〉(−→σ1)τ1, . . . , 〈kl〉(−→σl)τ l → τ

where S . ki ` −→σi, S . ki ` τ i (1 ≤ i ≤ l),
S . 0 ` τ (this judgment notation is defined below),
meaning thatf has l arguments and binds, in thei-th
argument(1 ≤ i ≤ l), ki type variables and|−→σi| variables.

Since ΣTy is a binding signature [10], it induces the
corresponding signature functorΣTy on SetF (cf. §1-I, 1-III).
Let MS denote the freeΣTy-monoid overS, which is the
presheaf of all meta-types usingS. We write S . n ` τ for
τ ∈MS(n). For a metavariableS . 0 ` T, T[] of any stage
n will be abbreviated as simplyT.

Definition 3.4 A type universeU = (U,α, νU , µU) is aΣTy-
monoid. Throughout the paper, we denote byU aΣTy-monoid.

A typical example ofU is M0 (all object types) orMT
(all meta-types using metavariablesT). For example,M0∃
(all existential types) will be used in Example 8.2. A non-
syntactic type universeU appears in the PL-category semantics
(Example 8.3).

Definition 3.5 Let S be a set of metavariables andU a ΣTy-
monoid. An assignmentθ : S Ãk U for meta-substitution is
anN-indexed functionθ : S → |δkU |, wherek is “the number
of additional possible free variables” in the results. It maps as
S(n) 3 S

θn- a ∈ U(n + k).

The meta-substitution of a typeS . n ` τ by an assignment
θ : S Ãk U , denoted byθ]

n(τ), is defined by

θ]
n(α) = νU

n (α); θ]
n(c(−→α1.t1, . . . ,

−→αl.tl)) = cU
n (θ]

n+|−→α1|(τ1), . . .)

θ]
n(S[−→τ]) = µU

n (θm(S); νU
n (1), . . . , νU

n (k), θ]
n(τ1), . . . , θ

]
n(τm))

whereZ ∈ S(m). This θ defines a natural transformation̂θ :
S → δkU , which induces the uniqueΣTy-monoid morphism

θ̂
]

: MS → δkU that extendsθ by freeness ofMS (cf. §1-
III). We will also write τθ for θ]

n(τ).

Using a meta-substitutionθ, a function symbol is instanti-
ated tofθ : 〈k1〉(−→σ1θ)τ1θ, . . . , 〈kl〉(−→σlθ)τ lθ → τθ.

Example 3.6 (Polymorphic FPC [23]) The signatureΣTy

for types isΣTy
F plus{+,× : ∗, ∗ → ∗ , µ : 〈∗〉∗ → ∗}. An

excerpt of the signature for terms is

T1, T2, T : ∗ . case : T1 + T2, (T1)T, (T2)T → T

T : 〈∗〉∗ . intro : T[µ(α.T[α])] → µ(α.T[α])
T : 〈∗〉∗ . elim : µ(α.T[α]) → T[µ(α.T[α])]

An important point is that the arities and targets are written
in the language of freeΣTy-monoid [16], [5] (cf.§1-III), not
in an informal meta-language.

Example 3.7 (Existential λ-calculus [11]) We excerpt key
two rules.

Ξ | Γ ` s : σ{α := τ}
Ξ | Γ ` 〈τ , s〉 : ∃(α.σ)

Ξ | Γ ` s : ∃(α.σ) Ξ, α | Γ, x : σ ` t : τ

Ξ | Γ ` unpack s as 〈α, x〉 in t : τ

In the unpack rule,α 6∈ FV(Γ, τ). The signature for types is

⊥ : ∗ , ¬ : ∗ → ∗ , ∧ : ∗, ∗ → ∗ , ∃ : 〈∗〉∗ → ∗
An excerpt of the signature for terms is

S : 〈∗〉∗, T : ∗ . pack : S[T] → ∃(α.S[α])
S : 〈∗〉∗, T : ∗ . unpack : ∃(α.S[α]), 〈α〉(S[α]

)
T → T

Note that the second argument ofunpack is specified under a
contextT : ∗ thereby enforcing the side condition of the rule
that α does not appear inτ .

As these examples show, our notion of (meta)types can
specify not only universally quantified types, but also recursive
and existential types. In this paper, we formalise polymor-
phic types in a broader sense, i.e., as “variable types” as
Girard called [14], for which we mean that types involve
(meta)variables and variable binding.

Example 3.8 (Global state) A non λ-calculus example. The
signature for an algebraic theory of global state [28] is given as
follows. The type signature consists of the types for locations
L, expressionsE and value types asΣTy = {L,E, Nat, Bool :
∗}. The term signature consists of two operations

V : ∗ . lookup : L, (V)E → E

V : ∗ . update : V, L, E → E

A point is that these operations are parameterised by the
metavariableV for types. In the original treatment [28], this
parameterisation is only informal-level, but here we can give
a formal signature in our polymorphic algebraic theory. An al-
gebraic theory constructed by this signature is first-order with
variable binding, and no higher-order types and noλ-calculus
are needed, but polymorphic. This style of formalisation may
be useful for finer and more flexible algebraic characterisation
of effects along the line of [28], [?].

4. SIGNATURE FUNCTOR

Given a polymorphic signatureΣ, we associate a corre-
sponding signature functor for algebra of functor.

4.1. Polymorphic contexts

For a setT , we denote byF↓T a comma category consisting
of objectsΓ : n → T (for contexts) and arrowsρ : Γ → Γ′

(for renaming), which are functionsρ : n → n′ such that
Γ = Γ′ ◦ ρ.

A ΣTy-monoid morphismis a morphism ofSetF that is
both ΣTy-algebra homomorphism and monoid morphism. the
categoryΣTy-Mon consists ofΣTy-monoids andΣTy-monoid
morphisms.

Given a functorF : C → Cat, the Grothendieck con-
struction [15] of F is a category

∫ c∈C Fc (or simply
∫ F)

with objects(I, A) whereI ∈ C and A ∈ F(I), and arrows
(u, γ) : (I, A) → (J,B) where u : I → J in C and
γ : F(u)(A) → B in F(J).

Definition 4.1The functorG : ΣTy-Mon → Cat is defined by

G(X)
def
=

∫ n∈F
F↓X(n)×X(n).

The categoryGU for contexts and result types(cf. §1-IV) has
- objects(n | Γ ` τ), wheren ∈ F, Γ ∈ F↓Un, τ ∈ U(n),
- arrows(ρ, π) : (m | Γ ` τ) → (n | ∆ ` σ),

whereρ : m → n in F such thatU(ρ)(τ) = σ, and
π : (F↓Uρ) (Γ) → ∆ in F↓(U(n)).

The category
∫
F↓U for contextsconsists of objects denoted

by (n|Γ) and arrows(ρ, π). It has coproducts given by(m|Γ)+

(n|∆) = (n + m | ιn(Γ), ιm(∆)), where forup(k) : 0 → k

in F, ιk
def
= F ↓ δup(k)U : F↓U → F ↓ δkU . We define the

context extensionδ(n|∆)A
def
= A

(−+n | =,∆ ` ≡)
.

4.2. Signature functor

We define the signature functor corresponding to a polymor-
phic signatureΣ using a discrete polynomial. We start with
analysing concrete cases. Consider the function symbol for the
abstraction of System F (Example 3.1):

S : ∗, T : ∗ . abs : (S)T → S⇒T

The corresponding operation on an algebraA should be

absA : A(n | Γ, σ ` τ) → A(n | Γ ` σ⇒τ)

whereσ, τ ∈ U(n). A type contextn may also be changed as
in the case of type abstraction:

tabsA : A(n + 1 | Γ ` τ) → A(n | Γ ` ∀(α.τ))

To obtain these types of algebra operations from the specifi-
cation of the arities of function symbols, we need

- to formulate the instantiation of meta-types in arities by
types inU by meta-substitutions asθ = {S 7→ σ, T 7→ τ},

- to give the indices (e.g.(n + 1 | Γ ` τ)) for A from arities.

This requires to use maps from the Grothendieck construction∫ (
F↓U × [S ⇒ U]

)
, which consists of contexts and meta-

substitutions under arbitrary type contextn. Here, we regard an
exponential presheaf[S⇒U] ∈ SetF as an indexed category in
CatF giving a discrete category[S⇒U](n) = SetF(S, δnU),
andθ ∈ [S⇒U](n) gives a meta-substitution.

First we define the denotation of a meta-type. An element
τ ∈ MS(n) bijective corresponds to a map̂τ : Vn → MS
[5]. Let ε = id]

A : MU → U be a map defined by freeness of
MU , andst a strength. Define

[[τ]]′ : [S⇒U]×Vn id×τ̂- [S⇒U]×MS
Mev◦st- MU

ε- U

We define[[S . k ` τ]] : US → δkU by the transpose of[[τ]]′.

Here we use the notion of a map of indexed categories
[?] from C : C → Cat to D : D → Cat, which is a pair
(F,ϕ) consisting of a functorF : C → D and a natural
transformationϕ : C → DF . A map of indexed categories
yields a functor at the level of the Grothendieck constructions∫

(F,ϕ) :
∫ C → ∫ D given by (c ∈ C, z ∈ Cc) - (Fc ∈

D, ϕc(z) ∈ DFc).

Definition 4.2 Suppose meta-typesS . k ` −→σ , S . k ` τ .
A context extension

ext(k | −→σ ` τ) : F↓U × [S⇒U] - F↓U × U

is a map of indexed category inCatF defined by

F↓U × [S⇒U]

δk(F↓U × U |
−→σ | × U)

ιk×〈−−−−−−−→[[S . k `σ]],[[S . k `τ]]〉?
δk(⊕×idU)- δk(F↓U × U)

(+k,id)- F↓U × U

where ⊕(n)(Γ, (σ1, . . . , σm)) = Γ + 〈σ1〉 + · · · + 〈σm〉.
This yields a functor
∫

ext(k | −→σ ` τ) :
∫

(F↓U × [S⇒U]) - ∫
F↓U × U

(n, Γ, θ) - (n + k | ιk(Γ),
−−−→
θ]

k(σ) ` θ]
k(τ))

This is certainly a context extension, that is, it extends a
context(n|Γ) with k for type context, and instantiated types−−−→
θ]

k(σ) =
−→
σ θ ∈ U(n+k) for term context using an instantiation

map θ : S → δnU , and moreover the instantiated result type
is set toτθ.

Definition 4.3 Given a specification of a function symbolS .
f : 〈k1〉(−→σ1)τ1, . . . , 〈k`〉(−→σ`)τ ` → τ) ∈ ΣTm, we associate
the following discrete polynomial diagramPf

` · ∫ (F↓U × [S⇒U])
∇`- ∫

(F↓U × [S⇒U])

∫
(F↓U × U)

[
∫

ext(ki | −→σ i `τ i)]i∈[`]
? ∫

(F↓U × U)

∫
(id×[[S . 0`τ]])

?

Given a polymorphic signatureΣ = (ΣTy, ΣTm), we define
the correspondingsignature functorΣ : SetGU - SetGU

by the polynomial functor construction

Σ
def
=

∐

f∈ΣTm

FPf
=

∐

S . f :〈k1〉(−→σ1)τ1,...,〈k`〉(−→σ`)τ`→τ ′∈ΣTm

(
∫

(id× [[S . 0 `τ ′]]))
!
◦ (∇`)∗◦ ([

∫
ext(ki |−→σ i `τ i)]i∈[`])

∗

Since polynomial functors are closed under sum, this is a
discrete polynomial functor. Simplifying it, we finally obtain

ΣA(n | Γ ` τ)

=
∐

S . f :〈k1〉(−→σ1)τ1,...,〈kl〉(−→σl)τ l→τ ′∈ΣTm

θ∈[S⇒U](n)

(τ ≡ τ ′θ)×
∏

1≤i≤l

A(n + ki | ιki(Γ),
−→
σiθ ` τ iθ)

This more clearly exhibits the functor as a “polynomial”, i.e. a
sum of products functor. We can construct an initialΣ-algebra
inductively(cf. §2), and the resulting algebra is an object-level
polymorphic abstract syntax.

5. TYPE IN TERM SUBSTITUTION

A type variable in a type is instantiated by a (concrete)
type by aΣTy-monoid multiplication. A type variable in a
term must also be instantiated with a (concrete) type. In this
section, we axiomatise type-in-term substitution.

Let U = (U, νU , µU) be aΣTy-monoid,τ ∈ U(n+k),−→σ ∈
U(n), |−→σ | = k. Hereafter we use the abbreviationτ{−→σ } def

=
µU (τ ; νU (1), . . . , νU (n),−→σ). Γ{−→σ } is defined similarly. For
a presheafA ∈ SetGU , our aim is to define a function of type

ςA
n (−, σ) : A(n + 1 | Γ ` τ) → A(n | Γ{σ} ` τ{σ}) (4)

which replaces a type variablen + 1 in an element ofA
with a typeσ. We invoke again the polynomial formulation.
To specify the source and target indices of (4), we use the

following discrete polynomialP (since this is unary, the part
a = id is omitted)

GU ¾s ∫ (
F↓δU × δU × U

) t- GU

where using a strengthst : δU × U → δ(U × U),

s =
∫ (

(+1 : F→ F, π1)
)

: (n, Γ, τ , σ) 7→ (n + 1, Γ, τ)

t =
∫ (

(Id, F↓(−{−})× (−{−})) ◦ (Id, st)
)

: (n,Γ, τ , σ) 7→ (n,Γ{σ}, τ{σ})
The polynomial functorFP : SetGU → SetGU generated byP
determines the arity of type-in-term substitution. For later use,

we name it as↑def= FP . Now an FP -algebraςA : ↑ A → A
exactly gives the type of (4).

Only specifying the arity is not enough. A type-in-term sub-
stitution also must satisfy the properties of substitution, which
we axiomatise using the axioms of one variable substitution
(analogous axioms were given for substitution algebra [10]).

Definition 5.1 Let (U, νU , µU) be aΣTy-monoid andA ∈
SetGU . Let newU : 1 → δU (a generic new variable) be the
transpose ofνU : V → U . A type-in-term substitutionis a
natural transformationςA : ↑A → A subject to the following
axioms

(i) a ∈ A(n | Γ ` τ), σ ∈ Un ` ςA
n (upA

n a, σ) = a

(ii) a ∈ A(n + 1 | Γ ` τ) ` ςA
n+1(a, newU

n) = contrAn a

(iii) a ∈ A(n + 2 | Γ ` τ), σ ∈ Un+1, σ′ ∈ Un `
ςA

n (ςA
n+1(a, σ), σ′) = ςA

n (ςA
n+1(sw

A
n a, upU

n σ′), σ{σ′})
An arrow ρ : m → n in F gives rise to natural transforma-

tions ρU def
= δρ : δm → δn : SetF → SetF for U ∈ SetF,

and ρA def
= δ(ρ,id) : δ(m|·) → δ(n|·) : SetGU → SetGU

for A ∈ SetGU . Hence swappingsw : 2 → 2, weakening
up : 0 → 1, and contractioncontr : 2 → 1 maps inF give
rise corresponding maps inSetF andSetGU .

All the free variables appearing before “`” are universally
quantified. This have the intuitive reading, e.g. the first axiom
says that substituting for a type variable that is not in a term
does not affect the term, etc.

The presheafV of variables has the type-in-term substitution
ςV : ↑ V → V defined by ςV : V(n + 1 | Γ ` τ) →
V(n | Γ{σ} ` τ{σ}); x 7→ x (just changing types).

6. POLYMORPHIC STRUCTURES

We define polymorphic structures that provide a general
notion of syntax and algebraic model of polymorphic algebraic
theories.

Following [24], [20], given A,B ∈ SetGU , we define
the presheaf(A • B) ∈ SetGU by (A • B)(n | Γ ` τ) =∫ ∆∈F↓U(n)

A(n | ∆ ` τ) × ∏
1≤i≤|∆|B(n | Γ ` ∆(i)),

where
∫

denotes a coend. The presheafV ∈ SetGU of object
variables is defined byV(n | Γ ` τ) = F↓U(n)

(〈τ〉, Γ) ∼=
{x | (x : τ) ∈ Γ}. Then (SetGU , •, V) forms a monoidal
category.

(Var)
(x : τ) ∈ Γ

x ∈ N̂U
ΣX(n | Γ ` τ)

(Fun)
(S . f : 〈k1〉(−→σ1)τ1, . . . , 〈kl〉(−→σl)τ l → τ) ∈ ΣTm

θ : S Ãn U ki = |−→αi|
ti ∈ N̂U

ΣX(n + ki | Γ,
−−−−→
xi : σiθ ` τ iθ) (1 ≤ i ≤ l)

fθ(−→α1.
−→x1.t1, . . . ,

−→αl.
−→xl .tl) ∈ N̂U

ΣX(n | Γ ` τθ)

(MVar)
−→σ ∈ U(n) |−→σ | = l

Z ∈ X(n + l | x1 : τ1, . . . , xm : τm ` τ)

ti ∈ N̂U
ΣX(n | Γ ` τ i{−→σ }) (1 ≤ i ≤ m)

Z[−→σ ; t1, . . . , tm] ∈ N̂U
ΣX(n | Γ ` τ{−→σ })

Note: fθ(
−−−−→−→α.−→x. t) may be denoted byfθ(s1),...,θ(sm)(

−−−−→−→α.−→x. t) for S = {s1, . . . , sm}, or simplyf(
−→
t) when the omissions are

inferable from context. Fig. 1. Construction rules of an indexed setbNU
Σ X

6.1. (U,Σ)-Polymorphic Structures

Definition 6.1 Let Σ = (ΣTy, ΣTm) be a signature, andU
a ΣTy-monoid. A (U,Σ)-polymorphic structureA = (A, ςA)
consists of

(i) a Σ-monoidA = (A,α, ν, µ) in SetGU

(ii) a type-in-term substitutionςA :↑A → A such that

↑ΣA
ι1- Σ ↑A

Σ&A

- ΣA

↑A

↑α
? &A

- A

α
?

↑V
&V - V

↑A

↑ν
? &A

- A

ν
?

↑(A •A)
ι2 - ↑A • ↑A

&A • &A

- A •A

↑A

↑µ
? &A

- A

µ
?

commute, whereι1, ι2 are inclusions that are definable by the
above data.

↑A
&A

- A

↑A′
↑ϕ ?

&A′
- A′

ϕ?

A morphism of (U,Σ)-polymorphic
structuresϕ : A → A′, called (U,Σ)-
polymorphic translation, is a Σ-monoid
morphism that makes the right diagram
commute. This defines the categoryPoly(U,Σ).

Next we seek a free(U,Σ)-polymorphic structure. Let
X ∈ SetGU . We define an indexed set̂NU

ΣX by the rules in
Fig. 1. For every context(n | Γ ` τ{−→σ }) where−→σ ∈ U(n)
with |−→σ | = l, we define an equivalence relation

.= on
N̂U

ΣX(n | Γ ` τ{−→σ }) generated by context closure of

Z[−→σ ; tπ1, . . . , tπ|∆|]
.= X(id, π)(Z)

[−→σ ; t1, . . . , t|∆′|
]

(5)

where π : ∆ → ∆′, Z ∈ X(n + l | ∆ ` τ). The

presheafNU
Σ X ∈ SetGU is defined byNU

Σ X(n | Γ ` τ)
def
=

N̂U
ΣX(n | Γ ` τ) /

.=
Let ↑∗ (X)

def
=

∐
i∈N ↑i (X). We define the algebra structure

[ν, [fNU
Σ X]f∈ΣTm ,mapp] : V + Σ + (↑∗X •NU

Σ X) → NU
Σ X

on NU
Σ X by

ν(x) = x; fNU
Σ X(

−→
t) = f(

−→
t); mapp(Z,−→σ ;

−→
t) = Z[−→σ ;

−→
t].

Theorem 6.2 NU
Σ X is an initial V+Σ +(↑∗X •−)-algebra.

NU
Σ X is a monoid inSetGU and has a syntactic type-in-term

substitutionςNU
Σ X . We will write t{σ} for ςNU

Σ X(t, σ).

Definition 6.3 (Assignment) Given (U,Σ)-polymorphic
structure(A, νA, µA, ςA), a morphismϕ : X → A of SetGU

is called anassignment. The extensionϕ] : NU
Σ X → A is a

(U,Σ)-polymorphic translation defined by

ϕ](x) = νA(x)

ϕ](f(−→α1.
−→x1.t1, . . . ,

−→αl.
−→xl .tl)) = fA(ϕ]

(n+|−→α 1| | Γ,−−−→x1:σ1 `τ)
(t1),

. . . , ϕ]
(n+|−→α l| | Γ,−−−→xl:σl `τ)

(tl))

ϕ](Z[−→σ ;
−→
t]) = µA

(
ςA(ϕ(Z),−→σ);

−−−→
ϕ](t)

)

We will also write t ϕ for ϕ](t).

As explained in§1-III, ϕ] is the uniqueextensionof ϕ to
a (U,Σ)-polymorphic translation. Thisϕ] gives the meaning
of a meta-term in a polymorphic structureA using an assign-
ment ϕ. The proof of the next theorem essentially uses this
extension.

Theorem 6.4 Let X ∈ SetGU . NU
Σ X is a free (U,Σ)-

polymorphic structure overX. Hence the functor that forgets
the (U,Σ)-polymorphic structure has the left adjointNU

Σ :
SetGU → Poly(U,Σ).

6.2. Free(U,Σ)-Polymorphic Structure as
Polymorphic Abstract Syntax with Metavariables

We want to give a free structureNU
Σ X syntactically to use

it as apolymorphic abstract syntax with metavariables. Given
X ∈ SetGU , we can inductively construct the underlying set
N̂U

ΣX using Fig. 1, hence in this sense, it is syntactic. However,
there is one issue. To give apresheafX syntactically is hard,
because to give a functorX : GU → Set requires (1) the
arrow partX(ρ, π) for all (ρ, π) in GU , and (2) functoriality.

Instead, we consider a simpler index structure for contexts.

Define D : ΣTy-Mon → Cat; D(X)
def
=

∑
n∈N N ↓X(n) ×

X(n) (D for “discrete”, due toN). To give X ∈ SetDU is to
give just an indexed setX(n | Γ ` τ) indexed by contexts
(n | Γ ` τ) ∈ DU . We regardZ ∈ X(n | Γ ` τ) as a
metavariable, which may also be denoted byZ : 〈n〉(Γ)τ in
later examples. A metavariableZ is intended to be replaced by
a term involving free type variables fromn, and free variables
from Γ.

Given a set of metavariablesX, regarded as a presheafX ∈
SetDU , we can construct a presheafX ∈ SetGU by a left Kan
extension along the inclusionDU → GU . A left Kan extension
is the left adjoint to the restriction functor| − | (see below),
and together with Theorem 6.4, there is a series of adjunctions

SetDU

(−)
-

⊥¾
| − |

SetGU

NU
Σ -
⊥¾ Poly(U,Σ)

This tells us a way to give a free polymorphic structure
syntactically. Starting from a set of metavariablesX ∈ SetDU ,
we can freely generate a polymorphic structureNU

ΣX, for
which we require only a syntactic dataX. We call an element

t ∈ NU
ΣX(n | Γ ` τ)

ameta-termbecause it is a term that may involve metavariables
as in (MVar) of Fig. 1. As in§1-III, we define a meta-
substitution, i.e. substitution for metavariables in a meta-term.
The idea is to employ the notion of assignment in Def. 6.3.

Let X be a set of metavariables. Anassignmentϑ :
X Ã(k|∆) A for meta-substitution is given by anDU -indexed
function ϑ : X → |δ(k|∆)A| where (k|∆) is “possible free
type and term variables” in the results, and| − | is the above
restriction functor. It maps each metavariableZ as

X(n | Γ ` τ) 3 Z
ϑ(n | Γ`τ)- a ∈ A(k + n | ∆,Γ ` τ).

By adjointness, the mapϑ in SetDU bijectively corresponds
to a mapϑ̂ : X → A in SetGU . Applying Def. 6.3, we have

ϑ̂
]
: NU

ΣX → A, which gives a meta-substitution that replaces
all metavariables in a meta-term usingϑ.

6.3. Σ-Polymorphic Structures

We combine all(U,Σ)-polymorphic structures varying all
possible U together, and then construct a single category
Poly(Σ) by the Grothendieck construction:

Poly(Σ)
def
=

∫ U

Poly(U,Σ)

wherePoly(−, Σ) : ΣTy-Mon
op → CAT is defined by

U 7→ Poly(U,Σ)
f : U → U ′ 7→ − ◦ Gf : Poly(U ′, Σ) → Poly(U,Σ).

Definition 6.5 A Σ-polymorphic structure(U,A) consists
of a ΣTy-monoidU and a(U,Σ)-polymorphic structureA.

Let (U ′, A′) be anotherΣ-polymorphic structure. AΣ-
polymorphic translationfrom (U,A) to (U ′, A′) denoted by

(L−M, ϕ) : (U,A) - (U ′, A′)

consists of a pair of maps

- a ΣTy-monoid morphismL−M : U → U ′

- a (U,Σ)-polymorphic translationϕ : A - A′GL−M.

Note that if (U ′, A′) is a Σ-polymorphic structure, so is
(U, A′GL−M). The idea is thatL−M translates types inU to
U ′ and ϕ translates elements fromA to A′ that also takes
into account of the universe shift. An important point is that
we derived the definition of translation by the Grothendieck
construction. Actually, the categoryPoly(Σ) consists ofΣ-
polymorphic structures andΣ-polymorphic translations.

6.4. Universe shift

The categoryPoly(Σ) offers a right notion of a trans-
lation between polymorphic structures on possibly different
universes. As an application of it, we transport a meta-term on
a universeW to that on another universeU . Let L−M : W → U
be aΣTy-monoid morphism.

- For a typeτ ∈ W (n), L−M translates it to a typeLτM ∈ U(n).

We overload the notationL−M for other syntactic constructs:

- For Γ = x1 : τ1, . . . , xl : τ l, LΓM def
= x1 : Lτ1M, . . . , xl : Lτ lM.

- For a setX of metavariables on a universeW , define a set
LXM of metavariables on a universeU by LXM def

= LanJX, (a
left Kan extension), whereJ = DL−M : DW → DU . Hence
LXM(n | LΘM ` LσM) = X(n | Θ ` σ), and other cases are
empty.

- For a meta-termt ∈ NW
Σ X(n | Γ ` τ), a meta-term

LtM ∈ NU
Σ LXM(n | LΓM ` LτM) is defined by replacing every

typeτ in t with LτM. More precisely,LtM def
= ushift](t) where

the assignmentushift : X → NU
Σ LXM ◦ GL−M is defined by

ushift(n | −−−→x : τ ` τ)(Z) = Z[;−→x].

7. POLYMORPHIC EQUATIONAL LOGIC

In this section, we give a Polymorphic Equational Logic
PEL that constitutes a sound and complete logical framework
for equational reasoning about polymorphic algebraic theories.

First we define the judgment for equation, then define the
notions of satisfiability and models. LetW be a universe. A
W -equationis of the form

X . n | Γ `W s = t : τ

for meta-termss, t ∈ NW
Σ X(n | Γ ` τ). A set E of W -

equations is calledW -axioms. When W is presented as the
universeW = MS of meta-types, we write anMS-axiom as
S | X . n | Γ ` s = t : τ (e.g. Fig. 3, 4, 5).

Definition 7.1 A Σ-polymorphic structure(U,A) satisfiesa
W -equationX . n | Γ `W s = t : τ if

- for all ΣTy-monoid morphismsL−M : W → U ,
- for all contexts(k|∆), assignmentsϕ : X Ã(k|∆) AGL−M,

ϕ]
(n | Γ`τ)(s) = ϕ]

(n | Γ`τ)(t)

holds inA(n + k | LΓ, ∆M ` LτM). If (U,A) satisfies all equa-
tions inW -axiomsE, (U,A) is called a(polymorphic) model
of E.

The idea is to apply(L−M, ϕ]) : (W,NU
ΣX) - (U, δ(k|∆)A)

to theW -equation, which is the uniqueΣ-polymorphic trans-
lation that extendsϕ. Note that ifA is a (U,Σ)-polymorphic
structure, so isδ(k|∆)A.

(Ax)
(X . n | Γ `W s = t : τ) ∈ E

LXM . n | LΓM `U LsM = LtM : LτM L−M : W → U

(Ref)

X . n | Γ `U t = t : τ

(Sym)
X . n | Γ `U s = t : τ

X . n | Γ `U t = s : τ

(Tra)
X . n | Γ `U s = t : τ X . n | Γ `U t = u : τ

X . n | Γ `U s = u : τ

(Sub)
X . n | Γ `U si : σi (1 ≤ i ≤ m)
X . n | x1 : σ1, . . . , xm : σm `U t = t′ : τ

X . n | Γ `U t[−−−−−→xi := si] = t′[−−−−−→xi := si] : τ

(Fun)
S . f : 〈k1〉(−→σ1)τ1, . . . , 〈kl〉(−→σl)τ l → τ ∈ ΣTm ki = |−→α i|
θ : S Ãn U X . n + ki | Γ,

−−−−→
xi : σiθ `U si = ti : τ iθ (1 ≤ i ≤ l)

X . n | Γ `U fθ(−→α1.
−→x1.s1, . . . ,

−→αl.
−→xl. sl) = fθ(−→αl.

−→x1.t1, . . . ,
−→αl.
−→xl. tl) : τθ

(MSub)
ϑ : X Ã(k|∆) NU

ΣX
′

X . n | Γ `U s = t : τ

X ′ . k + n | ∆,Γ `U sϑ = tϑ : τ

(MEx)(
Z : 〈n + k〉(τ1, . . . , τ l)τ

) ∈ X |−→σ | = k

X . n | Γ `U
−→σ X . n | Γ `U si = ti : τ i{−→σ } (1 ≤ i ≤ l)

X . n | Γ{−→σ } `U Z[−→σ ; s1, . . . , sl] = Z[−→σ ; t1, . . . , tl] : τ{−→σ }
(Gr)

ρ : m → n π : ρ(Γ) → ∆
X . m | Γ `U s = t : τ

X . n | ∆ `U πρ(s) = πρ(t) : ρ(τ)

(TSub)
X . n + 1 | Γ `U s = t : τ n ` σ

X . n | Γ{σ} `U s{σ} = t{σ} : τ{σ}
Fig. 2. Polymorphic Equational Logic PEL

Vernacular notation
(β) Γ ` (λx.M)N = M [x := N] : τ

(type β) Γ ` (Λα.M)σ = M [α := σ]) : τ{α := σ}

Notation in polymorphic equational logic

(β) S, T : ∗ | M : (S)T, N : S . ` app(abs(x. M[; x]), N) = M[; N] : T

(type β) S: ∗, T : 〈∗〉∗ | M : 〈α〉T[α] . ` tapp(tabs(α. M[α;])) = M[S;]) : T [S]

Fig. 3. Example: axioms for System F

Vernacular notation

(let∧) Γ ` let 〈x1, x2〉 = 〈M1,M2〉 in M = M [x1 := M1, x2 := M2] : τ

(letη) Γ ` let 〈x1, x2〉 = N in M [z := 〈x1, x2〉] = M [z := N] : τ

(∃β) Γ ` unpack 〈ι,N〉 as 〈α, x〉 in M = M [α := ι, x := N] : τ{α := ι}
(∃η) Γ ` unpack N as 〈α, x〉 in M [z := 〈α, x〉] = M [z := N] : τ

Notation in polymorphic equational logic

(let ∧) S1, S2, T : ∗ | M : (S1, S2)T, M1 : S1, M2 : S2 . ` let
(
pair(M1, M2), x1.x2.M[; x1, x2]

)
= M[; M1, M2] : T

(let η) S1, S2, T : ∗ | M : (S1∧S2)T, N : S1∧S2 . ` let
(
N, x1.x2.M[; pair(x1, x2)]

)
= M[; N] : T

(∃β) U : ∗, S, T : 〈∗〉∗ | M : 〈α〉(S)T[α], N : S [U] . ` unpackS,T[U]

(
packS,U(N), α.x.M[α; x]

)
= M[U ; N] : T [U]

(∃η) S: 〈∗〉∗, T : ∗ | M : (∃(α.S)) T, N : ∃(α.S) . ` unpackS,T

(
N, α.x.M[packS,α(x)]

)
= M[; N] : T

Fig. 4. Example: axioms for the existentialλ-calculusλ∃

V : ∗ | X : E . ` : L ` lookup(`, v.update(`, v, X)) = X : E

V : ∗ | X : (V, V)E . ` : L ` lookup(`, w.lookup(`, v.X[v, w])) = lookup(`, v.X[v, v]) : E

V : ∗ | X : E . ` : L, v, w : V ` update(`, v, update(`, w, X)) = update(`, w, X) : E

Fig. 5. Example: axioms for global state (excerpt)

7.1. Equational logic

The Polymorphic Equational Logic PEL is given by the
rules in Fig. 2. The notation[x := t] means to replace a
object variablex with t. The notationρ(s) (resp.π(s)) means
to replace type variables (resp. variables) ins by ρ (resp.π).

To design a sound and complete inference system for
polymorphic equational reasoning, our approach is todistill
syntactic rules from various aspects of the polymorphic struc-
tureNU

ΣX and required properties for equational reasoning as
follows.

(Ref),(Sym),(Tra): The rules for equivalence relation.
(Ax): An axiom becomes a theorem. Also types of the ax-

iom must be instantiated by aΣTy-monoid morphism
L−M (e.g. from meta-types to object types).

(Gr): NU
ΣX is a presheaf inSetGU . This rule is for a

presheaf action (cf. [20]§3.2 Meaning of arrows).
(Fun): Σ-algebra structure ofNU

ΣX.
(MEx): (X • −)-algebra structure ofNU

ΣX.
(TSub): Type-in-term substitution onNU

ΣX.
(Sub): Multiplication of theΣ-monoidNU

ΣX.
(MSub): Polymorphic translationϑ] : NU

ΣX → NU
ΣX

′
.

We list several important derived and admissible rules.

Structural rules. Weakening, contraction, and permutation
(= injective renaming) on metavariablesX are obtained as
instances of (MSub). Weakening, contraction, and permutation
on type contextsn and term contextsΓ are obtained as
instances of (Gr).

Universe shift. In PEL, a universe can be changed when an
axiom is instantiated in (Ax). We have also an admissible rule
of the following “universe shift” rule usingL−M : W → U :

(UnivSh)
X . n | Γ `W s = t : τ

LXM . n | LΓM `U LsM = LtM : LτM
This is obtained by the fact that(L−M, ushift]) (cf. §6.4) is a
Σ-polymorphic translation.

7.2. Soundness and completeness

Let U be an arbitrary universe. DefineX to be the disjoint
union of metavariable contexts in all equations inW -axiomsE
then applying aΣTy-monoid morphismL−M : W → U , hence
X ∈ SetDU . Let U be aΣTy-monoid. Take the term polymor-
phic structure(U,NU

ΣX). It is clear that derivable equations
from E defines an(n | Γ ` τ)-indexed equivalence relation

=E on NU
ΣX(n | Γ ` τ). We defineNU

E X(n | Γ ` τ)
def
=

NU
ΣX(n | Γ ` τ)/ =E .

Lemma 7.2 Then(U,NU
E X) is a polymorphic model ofE.

Theorem 7.3 Let E be W -axioms. The polymorphic equa-
tional logic is sound and complete, i.e. the following are
equivalent for all universesU :

(i) (X . n | Γ `U s = t : τ) is derivable fromE in PEL.
(ii) For all polymorphic models(V, A) of E,

(V, A) satisfies (X . n | Γ `U s = t : τ).

8. EXAMPLES

Example 8.1 Continued from the examples in§3. Axioms
of System F, the existentialλ-calculus, global state [28] can
be written as PEL’s axioms in Fig. 3, 4, 5 respectively.

Example 8.2 (CPS Translation from F to λ∃ [11]) Fu-
jita gives a CPS translation from System F to the exis-
tential λ-calculus λ∃. The translation consists of the type
translation (−)• from System F types toλ∃-types, and
the CPS translation[[−]] from System F terms toλ∃-
terms. (excerpts:(∀(α.τ))• = ¬∃α.¬τ•; [[Λα.M]] =
λa. a (λk.unpack k as 〈α, c〉 in [[M]]c)) The CPS translation
is sound:

Γ `Sys F s = t : τ ⇒ ¬¬Γ• `λ∃ [[s]] = [[t]] : ¬¬τ•. (6)

Interestingly, this pair of translations is an example of our
notion of polymorphic translation, i.e. aΣF-polymorphic
translation ((−)•, [[−]]) : (TF, ΛF) - (T∃,Λ¬¬∃) and
moreover(T∃, Λ¬¬∃) is a model. We explain what this means.
LetT∃ be the initialΣTy

∃ -monoid,Λ∃ the freeΣ∃-polymorphic
structure over0, TF the initial ΣTy

F -monoid, ΛF the free

ΣF-polymorphic structure over0. DefineΛ¬¬∃ (n | Γ ` τ)
def
=

Λ∃(n | ¬¬Γ ` ¬¬τ). The definition of(−)• determines an
ΣTy

F -algebra structure onT∃. The definition of [[−]] deter-
mines aΣF-algebra structure onΛ¬¬∃ . It amounts to aΣF-
polymorphic structure(T∃,Λ¬¬∃), which is a model of System
F by (6).

Example 8.3 (Categorical model of F [30]) Let C be a
category with finite products, which consists of a distinguished
object Ω which generates all other objects using the finite
products. APL-categoryC is a functor C : Cop → CCC
(the category of all cartesian closed categories) defined by

C def
= C(−, Ω). From a PL-category, we can define aΣF-

polymorphic structure(U, PL ∈ SetGU) by

U
def
= |C(Ω(−), Ω)| ∈ SetF

PL(n | Γ ` τ)
def
= C(Ωn, Ω)(〈Γ〉, τ)

where the notation| − | denotes the underlying set, and
〈Γ〉 =

∏
1≤i≤|Γ| Γ(i). Seely’s interpretation of System F’s

types and terms using a PL-category [30] determines algebra
structures onU andPL. For example, for∀ : 〈∗〉∗ → ∗ ∈ ΣTy

F ,
the corresponding algebra operation∀U : δU → U is defined
by the right adjoint toπ∗ whereπ : Ωn+1 → Ωn, etc. The mul-
tiplications of both monoidsU andPL are given by composi-
tions. The type-in-term substitution ofσ ∈ U(n) is arisen as
〈idn

Ω, σ〉∗arr : PL(n + 1 | Γ ` τ) → PL(n | Γ{σ} ` τ{σ}).
The ΣF-polymorphic structure(U, PL) amounts to a model
of System F.

REFERENCES

[1] N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term
representations in Coq.Journal of Automated Reasoning, 49(2):141–
159, 2012.

[2] N. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the church-
rosser theorem.Indagationes Mathematicae, 34:381–391, 1972.

[3] M. Fiore. Second-order and dependently-sorted abstract syntax. InProc.
of LICS’08, pages 57–68, 2008.

[4] M. Fiore. Discrete generalised polynomial functors. InICALP’12, pages
214–226, 2012.

[5] M. Fiore and C.-K. Hur. Second-order equational logic. InProc. of
CSL’10, LNCS 6247, pages 320–335, 2010.

[6] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Proc. of LICS’99, pages 193–202, 1999.

[7] K. Fujita. Galois embedding from polymorphic types into existential
types. InProc. of TLCA’05, pages 194–208, 2005.

[8] N. Gambino and M. Hyland. Wellfounded trees and dependent polyno-
mial functors. InTYPES’03, pages 210–225, 2003.

[9] J.-Y. Girard. The system F of variable types, fifteen years later.Theor.
Comput. Sci., 45(2):159–192, 1986.

[10] A. Grothendieck. Catégories fibŕees et descente (exposé VI). In
Rev̂etement Etales et Groupe Fondamental (SGA1), Lecture Notes in
Mathematics 224, pages 145–194. Springer, 1970.

[11] M. Hamana. FreeΣ-monoids: A higher-order syntax with metavariables.
In Proc. of APLAS’04, LNCS 3302, pages 348–363, 2004.

[12] M. Hamana. Polymorphic abstract syntax via Grothendieck construction.
In Proc. of FoSSaCS’11, pages 381–395, 2011.

[13] M. Hamana and M. Fiore. A foundation for GADTs and inductive
families: Dependent polynomial functor approach. InProc. of WGP’11,
pages 59–70, 2011.

[14] M. Hofmann. Semantical analysis of higher-order abstract syntax. In
Proc. of LICS’99, pages 204–213, 1999.

[15] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for
XML. ACM Trans. Program. Lang. Syst., 32(1), 2009.

[16] F.W. Lawvere. Adjointness in foundations.Dialectica, pages 281–296,
1969.

[17] T. Leinster.Higher Operads, Higher Categories. London Mathematical
Society Lecture Note Series 298. Cambridge University Press, 2004.

[18] R. E. Møgelberg. From parametric polymorphism to models of poly-
morphic FPC.Math. Struct. in Compt. Sci., 19(4):639–686, 2009.

[19] M. Miculan and I. Scagnetto. A framework for typed HOAS and
semantics. InProc. of PPDP’03, pages 184–194. ACM Press, 2003.

[20] R. Milner. A theory of type polymorphism in programming.J. Comput.
Syst. Sci., 17(3):348–375, 1978.

[21] R. Páre and D. Schumacher. Abstract families and the adjoint functor
theorems. InIndexed Categories and their Applications, Lect. Notes
Math. 661, pages 1–125. Springer, 1978.

[22] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic
pi-calculus.J. ACM, 47(3):531–584, 2000.

[23] G. Plotkin and J. Power. Notions of computation determine monads. In
FoSSaCS’02, pages 342–356, 2002.

[24] R. A. G. Seely. Categorical semantics for higher order polymorphic
lambda calculus.J. Symb. Log., 52(4):969–989, 1987.

[25] I. Stark. Free-algebra models for theπ-calculus. Theor. Comp. Sci.,
390(2-3):248–270, 2008.

[26] S. Staton. Two cotensors in one: Presentations of algebraic theories for
local state and fresh names.Proc. of MFPS 25, ENTCS, 249:471–490,
2009.

