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Abstract. Arrows involving a loop operator provide an interesting programming
methodology for looping computation. On the other hand, Haskell can define
cyclic data structures by recursive definitions. This paper shows that there exists
a common principle underlying both cyclic data and cyclic computations of arrow
programs. We examine three concrete examples of constructing looping arrows
from a syntactic structure called cyclic terms. Then we present a general pattern
of constructing correct looping arrows, that is based on categorical semantics of
loops and arrows, i.e. traced and Freyd categories.

1 Introduction

Arrows [6] provide a flexible way to programming with various computational effects
in Haskell. It can be seen as a generalisation of monadic programming. Programming
with arrows was originally given in a point-free style. Later, Paterson [9] proposed a
procedural syntax to simplify arrow programming. He also considered the feature of
loops on arrows, and designed a syntax for it. This paper focuses on arrows with loops.

Consider an example of looping arrows: a circuit [9, 10]. The circuit (below left)
represents a resettable counter, taking a Boolean input and producing an integer output,
which will be the number of clock ticks since the input was last true.

counter :: Automaton Int Int
reset counter = proc reset -> do
rec output <- returnA -<
> if (reset==1)
INC then 0 else next

next <- delay 0 -< output+l
returnA -< output

next DELAY 0O

To achieve this, the output is incremented and fed back, delayed by one clock cycle.
The first output of the pELAY component is its argument, here 0; its second output is its
first input, and so on. This can be implemented as an arrow with a loop. The implemen-
tation (above right) taken from [9] realises the circuit as an arrow of automata using the
arrow syntaxl.

! Note on the syntax: <- is an assignment, f -< x is an application of an arrow to a value x f,
proc is the keyword for procedure, rec is the keyword for recursive binding of assignments,
and returnA is the identity arrow.
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The point is that next is calculated using output, but output depends on next. There-
fore, it is recursively defined and is translated to an arrow with a loop in Haskell.

As this example shows, arrows with loops provide an interesting programming con-
cept. These are about loops on computations. Another notion of loops exists: loops on
data. These give cyclic data structures such as a cyclic list and a cyclic tree

(5] +—6]H

These are definable in Haskell using recursive definitions:

clist =5 : 6 : clist
ctree = let x=(Bin (Bin ctree (Lf 5)) x) in Bin x (Lf 6)

At the level of pictures, the cyclic data above and the previous circuit appear to be
similar, i.e. looping structures. However, at the level of programs, they differ greatly.
Does there exist a common principle underlying both cyclic data and cyclic computa-
tions of arrow programs? Such a principle must be useful to construct and reason correct
looping arrow programs.

This paper is intended to present such a principle. More precisely, our aims are

(i) to demonstrate the usefulness of such a principle through three concrete examples
on looping arrows, and

(i1) to explain the connection between the abstract theory and practice on looping ar-
rows, which enables a technology transfer from semantics to programming lan-

guage.

Organisation. This paper is presented as two
parts. Our strategy to show a principle for loop-
ing arrow programs proceeds from [I] concrete

Cyclic terms

examples to [II] abstract theory. ¥ interpretation
[Part I — Constructing Arrow Programs] Arrows with loops

Section 2-4. Throughout part I, we examine .

three examples step by step in a programming instanci instance

pearl style. We first define a syntactic represen- A A

tation called “cyclic terms” which is suited for com(i)yuctl;:ions Cyclic data

each example. We then give translations sys- e.g. circuits, e.g. cyclic list,

tematically from cyclic terms to looping ar- recursive fun.s cyclic trees

rows. Both cyclic computations and cyclic data
are obtained as particular instances of looping arrows (see the figure above).

[Part II — Categorical Foundations] Section 5. This part assumes the knowledge
of category theory. We explain the theoretical background of this work using category-
theoretic semantics of loops and arrows, i.e. Hasegawa [4], Benton and Hyland [1]’s
traced categorical models and Freyd categories [12, 5].

Section 6 discusses further directions.
The Haskell codes in this paper are available at the author’s home page.
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2 Cyclic Terms

First we define a data structure expressing cyclic data and cyclic computations for loop-
ing arrows. We choose the p-notation for this. The syntax of fixpoint expressions by
p-notation (u-terms) has been widely used in computer science and logic (cf. [13]).
The language of u-terms can express all cyclic structures. For example, a cyclic list

HEERGE

is representable by the term
ux.cons(5, cons(6, x)).
The point is that the variable x refers to the root labeled by a u-binder, hence a cycle is

represented. n

Case I. Cyclic data structure

We implement p-terms as a data structure, using the naive (variable name, term)-pair
representation of u-bindings.

type Var = Char
data Term = V Var | Mu Var Term | Nil | Cons Int Term

We call terms of type Term cyclic terms. The above u-term is represented by

clistTm = Mu ’x’ (Cons 5 (Cons 6 (V ’x’)))
Challenge: Can you generate a truly cyclic list from it? This means to find a program

to generate the cyclic list given by clist = 5:6:clist from the above cyclic term
clistTm without using meta-programming or destructive updates.

Case II. Circuit

Another example of cyclic terms is the counter circuit considered in Introduction. Look-
ing at the circuit carefully, we see that the specification of the counter circuit is simply
represented by a recursive expression

ux.Cond(reset, Const0, DelayO(Inc(x)))

where reset is a free variable. Hence we define the data type for cyclic terms

data Term = V Var | Const® | Delay® Term
| Mu Var Term | Inc Term
| Cond Term Term Term | Add Term Term

and then define the counter circuit by a cyclic term
counterTm = Mu 'x’ (Cond (V ’r’) Const® (Delay® (Inc (V 'x’))))

An important problem is to clarify the connection between this cyclic term and the
arrow program counter in Introduction. Hence we ask:

Challenge: Define a program to generate the arrow counter from the cyclic term
counterTm without meta-programming.
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Case III. Recursive function

The third example is about a recursive function. Consider the usual recursive definition
of factorial function.

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

One can define an arrow version of the factorial using the arrow combinators.

facta :: A Int Int
facta = loop ( arr (\(x, f) > f x) &&&
arr ((\f n -> if (n==0) then 1 else n * £ (pred n)).snd) )

When we define type A = (->), i.e., take the arrow type A as the type of all Haskell
functions, then facta works as a factorial function. The benefit of the arrow version
is its flexibility. By changing the type A to other type of arrows, facta works for any
kinds of arrow type having loop.

The drawback of facta is the difficulty of writing the definition. We have to be
very careful to track the data flow of the computation for a correct program, which is
hard for non-experts. The arrow syntax may improve this situation.

factp :: A Int Int

factp = proc x -> do
rec f <- returnA -< \n-> if (n==0) then 1 else n * f (pred n)
returnA -< f x

However, it is still mysterious for non-experts, and it is not entirely clear why this works
correctly. What is the formal reason of the correctness of this arrow version? Rather
than procedural, remember a declarative way giving a recursively defined function. As
known in the basics of A-calculus, a recursive function can be defined non-recursively
by introducing a fixpoint operator, here denoted by p.

fact = uf.An.if n==0then 1 else n* f (pred n)

Syntactically, this is nothing but a u-term. Hence our idea is to directly represent it as a
cyclic term in Haskell. We define the datatype of cyclic terms for this expression.

data Term = V Var | Mu Var Term | One
| Abs Var Term | Term :@ Term | Mul Term Term
| IfZ Term Term Term | Pred Term

Now, 4-binding is represented by Abs. The cyclic term for factorial is defined by
factTm = Mu £’ (Abs 'n’ (IfZ n One (Mul n (f :@ Pred n))))

where we use the abbreviations

n=V'’'n ; f=VvV'f

Challenge: Define a program to generate the arrow facta from the cyclic term factTm
without meta-programming. Why is it correct?
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3 Interpreting Cyclic Terms as Looping Arrows

In this section, we answer the challenges posed in the previous section about construct-
ing programs to generate a cyclic data structure, a circuit and a recursive arrow from
cyclic terms. First, we tackle each example. Later, we see that all of these are obtained
from a single general pattern.

Case I. Cyclic data structure

First, we consider the problem on cyclic data structures. We want to translate a cyclic
term, e.g.

Mu 'x’ (Cons 5 (Cons 6 (V 'x’)))

to the corresponding real cyclic list in Haskell.

A natural idea to obtain it is to connect the last cell of the variable "x’ and the node
referred by it, i.e. the root headed by Mu directly, then to use the resulting real cyclic
list, where any pointer including cyclic one is a real pointer in the memory.

This can be realised without destructive update by the following translation trans
from cyclic terms to Haskell’s lists.

trans :: Term -> [(Var,[Int])] -> [Int]

trans (V x) ps = lkup x ps
trans (Mu x t) ps = let p = trans t ((x,p):ps) in p
trans Nil ps = []

trans (Cons a t) ps = a : (trans t ps)

The key is the case for Mu. The idea is that the variable ps keeps a newly introduced
pointer p by let. When trans recursively translates a term t, the pointer p is attached
to the bookkeeping list ps. Then, pointer dereference is implemented by just looking
up (by the function 1kup) a pointer in ps.

lkup x ((x’,n):es) | x == x’ =n
lkup x ( _ :es) | otherwise = lkup x es

Execution. With the initial value [] of the bookkeeping list, we have

*Main> trans (Mu 'x’ (Cons 5 (Cons 6 (V 'x’)))) []
5:6:5:6:5:6:5:6:5:6:...

Due to the recursive let and Haskell’s graph reduction mechanism, it actually generates
a cyclic list, which is the same as clist defined by clist=5:6:clist in the memory.

Idea. The translation trans is not a trick. It is a homomorphic interpretation of terms:

Nil is interpreted as [] (Haskell list’s nil).

Cons is interpreted as “:” (Haskell list’s cons).

V x is interpreted as a “pointer” looking up from the environment ps.

Mu is interpreted as a fixpoint operator, because Haskell’s recursive let

(i.e. “let x = t in x”, where x appears in t) provides a fixpoint in Haskell.

“Homomorphic” means that it is defined by structural recursion on terms.
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Arrow version. We use the function dup that duplicates a value
dup :: d > (d,d); dup x = (x,x)

The translation trans can be abstracted to the translation function t1 to arrows using
the arrows combinators (<<<, arr, loop):

tl :: Term -> A [(Var, [Int])] [Int]

tl (V x) = arr (lkup x)
tl (Mu x t) = loop (arr dup <<< tl t <<< arr (\(ps,p)->(x,p):ps))
tl Nil = arr (\ps > [1)

tl (Cons a t) = arr (a:) << tl t

This arrow version works for any arrow type A where loop is definable. When we take
the target type as type A = (->), i.e., the type of all Haskell functions, we can prove
tl = trans, hence t1 clistTm generates the same cyclic list as trans clistTm.

The translation t1 is read as an interpretation function from Term to an arrow type A
[(Var, [Int])] [Int]. This definition is basically obtained as the curried version
of the previous trans, i.e., transporting the environment variable ps from the lhs to the
rhs in each clause. But, it is not only currying. The non-trivial case is Mu (the highlighted
line). We must very carefully define it to get a correct recursive pointer structure using
arrow combinators. Why is the translation t1 correct?

Case II. Circuit

We consider the second problem to obtain a counter circuit arrow from the cyclic term
counterTm = Mu ’x’ (Cond (V ’r’) Const® (Delay® (Inc (V ’x’))))
Executable circuits are implemented using the type Automaton [9]:
newtype Automaton b ¢ = Auto (b -> (c, Automaton b c))

This models an automaton (of type Automaton b c) as a function that maps an input
(in b) to an output (in c) and a new version of itself to be used on the next input. It has
the combinator loop :: Automaton (a,x) (b,x) -> Automaton a b. We want
to define a translation t1 :: Term -> Automaton [(Var,Int)] Int from cyclic
terms to arrows of automata. Since a circuit may have several free variables (e.g. reset)
the input of an automaton arrow is an environment for free variables, i.e. a list of (free
variable,value)-pairs. Then, we can define the translation function as follows.

tl :: Term -> Automaton [(Var,Int)] Int

tl (V x) = arr (lkup x)

tl (Mu x t) = loop (arr dup <<< tl t <<< arr (\(ps,p)->(x,p):ps))
tl (Const®) const® <<< arr (\x->Q))

tl (Inc t) = inc << tl t
tl (Delay® t)= delay® <<< tl t
tl (Add s t) = add <<< (tl s) &&& (tl t)

tl (Cond s t u) = cond <<< tl s &&& (tl t &&& tl uw)
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This definition uses the following auxiliary functions for interpretation of term con-
structors.

delay® :: Automaton Int Int ; delay® = delay 0

const® :: Automaton () Int ; const® = arr (const O)

inc :: Automaton Int Int ; inc = arr (\x-> x+1)

add :: Automaton (Int,Int) Int ; add = arr (\(x,y)-> x+y)
cond :: Automaton (Int, (Int,Int)) Int

cond = arr (\(p,(t,e))-> if (p==1) then t else e)

Execusion. The translation t1 generates an automaton arrow of counter circuit from
the cyclic term counter:

counterArr :: Automaton Int Int
counterArr = tl counterTm <<< arr (\n->[('r’,n)])

The arrow (arr (\n->[(’r’,n)])) expresses to set the automaton’s input n to be
the free variable 'r’ for resetting in counterTm.

To check, we can do simulation of the circuits. The following function drives an
automaton repeatedly by supplying input signals taken from a given list.

partrun :: Automaton Int Int -> [Int] -> Int

partrun au [] =[]

partrun (Auto f) (x:xs) = let (out,f’) = f x in
out : partrun f’ xs

Now test_input is a sequence of signals, which is firstly reset (by the signal 1),
then incremented (by the signal 0), next reset, then incremented, incremented again,
etc. We compare it with the counter circuit counter given by the arrow syntax in In-
troduction.

test_input = [1,0,1,0,0,1,0,1]
runOrig = partrun counter test_input -- Original arrow program
runOurs = partrun counterArr test_input -- Defined by cyclic term

Both runOrig and runOurs produce the same output signals

*Main> runOrig *Main> runOurs
(9,1,9,1,2,0,1,0] [9,1,9,1,2,0,1,0]

We certainly obtain the counter circuit by using cyclic terms. More rigorously, we can
prove the equality counter = counterArr.

Idea. The idea to get the translation t1 is the following. Firstly, we must note that
the translations of variables and Mu are exactly the same as the previous translation for
cyclic data structure. Secondly, this is again a homomorphic interpretation of terms. For
examample, Inc-term is interpreted as

tl (Inc t) = inc << tl t

This actually follows the same pattern used in the interpretation of cyclic terms for
cyclic lists.

tl (Cons a t) = arr (a :) << tl t

So, the interpretaion t1 for each function constructor is routine. The term structure of
cyclic term (counterTm) denoting a circuit is exactly preserved by t1.
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Case III. Recursive function

Finally, we consider the problem to obtain an arrow of factorial function from the cyclic
term

factTm = Mu £’ (Abs 'n’ (IfZ n One (Mul n (f :@ Pred n))))

We want to define the translation function t1 :: Term -> A [(Var,D)] D from
cylic terms to arrows on values D. Now, we take the arrow type of all pure functions
type A = (->) as the target arrow type. The result of the factorial function is an
integer, hence we basically take D = Int. But since now the cyclic term contains a
A-abstraction, D must also contain all functions on D. Hence we define

data D = Num Int unfFun :: D -> A DD
| Fun (A D D) unFun (Fun f) = £

Theoretically, D means the well-known domain of untyped A-calculus with integers:
D = Z+ (D — D), the projection unFun extracts a function from a value, and the arrow
type A D D mean a “hom-set” A(D, D). Then, we can define the translation function as
follows.

tl :: Term -> A [(Var,D)] D

tl (V x) = arr (lkup x)

tl (Mu x t) = loop (arr dup <<< tl t <<< arr (\(ps,p)->(x,p):ps))
tl (Abs x t) = arr (\ps -> Fun (tl t <<< arr (\v -> (x,v):ps)))

tl (s :@ t) = app <<< (arr unFun <<< tl s) &&& (tl t)

tl (One) = one <<< arr (\x->Q0))

tl (Pred t) = ppred <<< tl t

tl (Mul s t) = mul <<< (tl s) &&& (tl t)

tl (IfZ s t u) = ifz << tl s &&& (tl t &&& tl u)

The intepretations of constructors of cyclic terms are expected ones:

one = arr (const (Num 1))

ppred = arr (\(Num x) -> Num (x-1))

mul = arr (\(Num x,Num y) -> Num (x*y))

ifz = arr (\(Num p,(t,e)) -> if (p==0) then t else e)

On abstraction. The interpretation t1 follows the same interpretation pattern for the
cyclic data structures and circuits. The translations of variables V and Mu are exactly the
same as the previous case. The only new cases are the abstraction and application:

tl (Abs x t) = arr (\ps -> Fun (tl t <<< arr (\v -> (x,v):ps)))
tl (s :@ t) app <<< (arr unFun <<< tl s) &&& (tl t)

To interpret an abstraction (Abs x t) is first to interpret its body t with freed x. The
free variable x must be associated with the corresponding Haskell-level bound variable
v of a function, hence the pair (x, V) is attached to the environment. The interpretation
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of application (s :@ t) basically follows the interpretation pattern of the usual con-
structor. Since now s must be a function, it is extracted from the interpreted value by
unFun. The arrow app, of the type A (A x y, X) VY, is the application at the level of
arrows?. It is defined by app (£,x) = f x when A=(->).

Execution. We finally obtain a recursive factorial function from the cyclic term. We
apply the translation t1 to factTm, then extract a function. The arrow factArr works
correctly as the factorial function.

factArr :: ADD *Main> factArr (Num 5)
factArr = (arr unFun <<< tl factTm) [] Num 120

More rigorously, one can prove the equality fact = Ax.factArr (Num x).

3.1 Variation of arrows

The benefit of the arrow version is its flexibility. By changing the arrow type A to the
type of Kleisli arrows of a monad M having mfix>

type Axy = x >My

the examples we have tackled can involve monadic effects. For example, consider the
situation we want to do “printf debug” of the factorial function. In the usual Haskell
setting, it means changing the usual pure code (fact) to the monadic “do” style code,
which is actually drastic code change, hence painful.

In our cyclic term approach, the modification is minimal. Take

type A = Kleisli (Writer String)

meaning the Kleisli arrow type A x y = x — (Writer String) (y) where Writer
String is the writer monad (i.e. side-effecting output monad) with string output. Then
we modify the interpretaion of a constructor as to take a “log” of the result of computa-
tion during recursive computation

tl (Mul s t) = logging <<< mul <<< (tl s) &&& (tl t)

where the arrow logging works as the identity function on values D with “side-
effecting” output, defined by (where tell perfoms output)

logging :: ADD

logging = proc v -> do
O <- Kleisli tell -< show v ++ "; "
returnA -< v

We also modify the interpretaion of I£Z to take care of the order of evaluation in branch
(cf. [6] Sect. 5.1)

tl (IfZ ¢ t u) = tl c &&& returnA
>>> arr (\(x,e)->if x==(Num 0) then Left e else Right e)
>>> (t1 t ||| tl w)

2 An instance of the ArrowApply class in GHC.
3 An instance of the MonadFix class in GHC.
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We do not change factTm at all. Then the Kleisli arrow generated by factTm runs as
expected

factKlArr n = runKleisli (uncur (arr unFun <<< tl factTm)) ([],n)

*Main> factKlArr (Num 5)
Num 120 <Num 1; Num 2; Num 6; Num 24; Num 120; >

This shows the result value 120 and the stored output (the <. ..> part) of the writer
monad, which logs the multiplictions during recursive factorial.

This is seen as a semantic approach to debugging. Changing the semantic of terms,
we can observe and store intermediate values of pure functions. Of course, this tech-
nique is also applicable to other examples as in Case I: cylic data structure, and Case II:
circuit.

4 General Case

In this section, we give the general pattern for interpreting cyclic terms as looping ar-
rows. First, choose

— an arrow type A that admits 1oop combinator*satisfying the laws in [9], and
— adata type D for values

suited for a given problem. Then, define the data type Term for cyclic terms by

data Term = VVar | Mu Var Term | F Term --- Term

where constructor F is basically many, according to the problem. If we want to generate
a recursive function, we also add the constructors Abs and : @ to Term, and define the ar-
row type in the type D as in Sect. 3, Case III. The translation t1 is defined schematically
as follows.

tl : Term -> A [(Var,D)] D

tl (V x) = arr (lkup x)
tl (Mu x t) = loop (arr dup <<< tl t <<< arr (\(ps,p)->(x,p):ps))
tl (F sl .-+ sn) = f <<< arr (\(x1,(2, ¢ (xn-1,xn))) > (x1,---,xn))

<<< tl 51 &&& (tl 52 &&& --- (tl sn-1 &&& tl sn))

For each n-ary constructor F, we need to define the corresponding arrow f on D having
n-inputs (the input type is n-fold product of D) of the type A (D, ..., D) D which spec-
ifies the behavor of F in a cyclic term and for the case generating a recurisve function,
we add the intepretations for Abs and : @ as in Case III. of Sect. 3.

Correctness. Why can we say that this translation gives a correct looping arrow? It is
actually validiated by Theorem 1 below.

4 An instance of the type class ArrowLoop in GHC.
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We call a variable in a cylic term free if it is other than the one used as the binder of
Mu or Abs. We abberviate n-tuple Haskell type (D,...,D) as D". Given a cylic term ¢
under free variables (i.e. a context I' =) x1, ..., xn, we define the shorthand notation

def
[c] = t1 ¢t <<< arr (\U],...,dn)->[(x1,d),...,(xn,dn)])

We may also denote it by [I"  #]] when we emphasis the context of . Now the type is
[« :: A D" D, i.e., the translated arrow has n-inputs. The arrow [[¢] is used as an
executable program with a tuple argument. For example, when we take the arrow type
A=(->) of pure functions, we can compute its value at al,...,an by the expression
[7] (al,...,an), e.g. Case I: [clistTm] ().

To state the theorem, we need the following notion. An arrow f :: A x y is central if

second f’ <<< first f = first f <<< second f’ W
second f <<< first f° = first f’ <<< second f
hold for every arrow f’ :: A x” y’. The arrow combinators first and second (cf. [6])
indicate which component in a pair is computed by an arrow. The above equations state
that the order of computation by f and f” is irrelevant, and f expresses an arrow of a
“value” or having harmless effects, but it does not mean effect-free. Every arrow of the
form (arr f) is central, but there may be more central arrows.

Theorem 1. (Fixpoint theorem on arrows from cyclic terms)
If [#] is central, [Mu x 7] is a fixpoint of [¢]]. Namely,

[T, x + f]] <<< (returnA && [ FMu x7]) = [T rMu x7]

We postpone the proof to the next section, and here we show how this theorem en-
tails the correctness of our approach. Let’s apply the theorem to Case I. We use the ab-
breviationx = V ’'x’. Theorem says [Mu 'x’ (Cons 5 (Cons 6 x))] is afixpoint
of [x rCons 5 (Cons 6 x) ], which is obviously central. The lhs of the equation of
the theorem becomes

lhs() = ([x + Cons 5 (Cons 6 x)]] <<<[[Mu ’x’ (Cons 5 (Cons 6 x))])()
Since <<< performs substitution in this case, we have

rhs() =[[Mu ’x’ (Cons 5 (Cons 6 x))]()
=5:6: [Mu ’x’ (Cons 5 (Cons 6 xX))[[O) = lhs()
5:6:5:6: [[Mu ’x’ (Cons 5 (Cons 6 x))[()

This demonstrates the fixpoint property, namely, x can be infinitely expanded by
[Mu ’x’---]. Hence we can conclude the correctness stating that the translation of
our cyclic term (t1 clistTm) gives a cyclic list. Similarly to Case II and III, namely,
Mu’s bound variables are infinitely expandable, hence it expresses cyclic computation.
To prove this theorem, we need to clarify the underlying theory of looping arrows.
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5 Category-Theoretic Foundations

This section reveals the theoretical background of our development and key ideas based
on the theory. This section assumes the knowledge of category theory and categorical

type theory (e.g. [2]).

5.1. Arrow interpretation as categorical interpretation

A way to understand arrows is to regard an arrow type A x y as the datatype of a hom-
set A(x,y) of some category. Hence, an arrow type A is seen as a category, and a Haskell
arrow £ :: A x yisseen as a morphism f € A(x,y). Therefore, an arrow type admits
categorical interpretation of algebraic theory (cf. [2]). The usual interpretation of an
algebraic term in a cartesian category (where [[—]] is a categorical interpretation)

[r+rf,....0ll = ST oI Fall,.... [T F ol

is the source of our definition: t1 (Mul s t)= mul <<< (tl s) &&& (tl t).
Now t1 corresponds to [—]], mul corresponds to [Mul]], &&& is an analog of the pairing
(=, —) of morphisms (but the order is relevant) and <<< is the composition.

5.2. Semantics of arrows: Freyd categories

Heunen and Jacobs [5] clarified arrow types more precisely categorically. By definition,
an arrow type A is always equipped with the operation

arr: (X - Y) - AX,Y)

which embeds Haskell functions into arrows and satisfies several conditions. More pre-
cisely, an arrow type A can be understood as a Freyd-category [12], which is an identity-
on-object functor

JA:C_’CA

where C is a cartesian category and C, is a symmetric premonoidal category obtained
by the arrow type A, transferring a cartesian product to a premonoidal product. A pre-
monoidal category [11] is a monoidal category without bifunctoriality of the monoidal
product, i.e., (f ®id) o (id ® f’) and (id ® f”) o (f ® id) may not agree. But when they
agree, such a morphism f is called central, see Eq. (1), where first f corresponds to
f®id, and second f corresponds to id ® f. Now C is a cartesian centre of Cy4, hence all
morphisms in C via J, are central in the premonoidal category Cjy.

The arr defines the functor J, : Hask —— Hask, from the cartesian cate-
gory Hask of Haskell types and functions to the symmetric premonoidal category
Hask, whose hom-set is A(X,Y). So an arrow type A constitutes a Freyd-category
. Hence t1 is understood as the interpretation function into the Freyd-category J4 :
Hask —— Hask,, more precisely, into the category Hask, with morphisms coming
from Hask via arr.



148 Makoto Hamana

5.3. Semantics of cyclic structures: traced monoidal categories

For a moment, we digress from the topic on arrows, and briefly review a known general
abstract semantics of cyclic structures based on traced symmetric monoidal categories
[7]. A trace operator on a symmetric monoidal category C is a natural family of func-
tions TrXB :C(A® X, B® X) — C(A, B) subject to several conditions [7].

Traced categories give a reasonable notion of feedback. To take a trace (the rule
at left ) is pictorially seen as to make a loop connecting two edges of X (the figure at

right): 4 ; B
A®X f B®X X X

Try s(f) 8 4 : B

D

Using it, Hasegawa [4] clarified that cartesian-center traced symmetric monoidal
categories are suitable structures to interpret the constructs of cycles and sharing oc-
curring in type theories. A cartesian-center traced symmetric monoidal category is an
identity-on-object strict symmetric monoidal functor

F:C— S

from a cartesian category C to a traced symmetric monoidal category S. This resem-
bles a Freyd-category J4 : C — Cj. A difference is that C4 is premonoidal while
Hasegawa’s S is traced monoidal.

Here, a connection to arrows appears. Benton and Hyland [1] studied trace on a
symmetric premonoidal category for models of cyclic computations with effects. They
pointed out that their premonoidal trace operator is the same as the loop combinator
on arrows [9]. Combining these, now we can formulate that an arrow type A with loop
constitutes a cartesian-center traced premonoidal category

J4 : Hask —— Hask,

which means that a Freyd-category with traced Hask,. This is the first important ob-
servation of our work, which has not been explicitly pointed out elsewhere. This obser-
vation leads us to the second, and the most important idea of our work.

5.4. Key idea: traced categorical interpretation in case of looping arrows

Let and letrec expressions can be interpreted in a cartesian-center traced symmetric
monoidal category [4]. Observing this categorical interpretation carefully, we found
the key idea: the interpretation is also applicable to the case of cartesian-center traced
premonoidal categories, because a premonoidal category is almost a monoidal category,
i.e. without bifunctoriality of the monoidal product. Since a u-term is represented by a
letrec expression by ux.t = (letrec x = ¢ in x), the interpretation of the letrec language
is applicable to our cyclic terms.

Let ¥ : C — 8 be a cartesian-center traced symmetric monoidal category. The
interpretation in [4] (Def. 6.2.5) tell us a way to interpret p-terms as
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[T +x] = F (7
[T + px.t] = T(F(A) o [T, x F 1] .

Rephrasing it in Haskell, we obtain

tl (V x) = arr (lkup x)
tl (Mu x t) = loop (arr dup <<< tl t <<< arr (\(ps,p)->(x,p):ps))

which has been used in our case studies. It is actually the interpretaion in the case of
traced Freyd category ¥ = J4 : Hask —— Hask,. Here 1kup corresponds to the
projection m,, Loop at the highlighted line corresponds to the trace Tr, arr corresponds
to the functor ¥, dup corresponds to the diagonal A, and lists are used to implement a
finite product. This is the underlying idea of the present paper.

5.5. Proof of Theorem 1

Theorem 1 is a Haskell rephrasing of Theorem 3.9 in [1], which is a premonoidal ver-
sion of the Hyland-Hasegawa correspondence of fixpoint and trace [4]. We explicitly
show it.

Theorem 1. If [[7] is central, [[f]] <<< returnA &&& [Mu x¢]] = [[Mu x¢].

Proof. Writing the equation in mathematical notation, it is nothing but a parameterised
fixpoint equation
[z1 o id, [Mu x ¢I) = [Mu x 7] 2)

By definition, [Mu x¢]] = loop (arr dup <<< tl t <<<---) <<<---. Again
writing mathematically, it is Tr(J4A o [#]]) in the traced premonoidal category Hasky.
Theorem 3.9 in [1] tell us that 7r(J4A o —) is a parameterised fixpoint operator. Hence
Eq. (2) holds, where the notation (—, —) is not ambiguous because since [[¢]] is central,
so is [Mu x f]. This central preservation property is one of the requirements of a pa-
rameterised fixpoint operator. O

Remark 2. The theorem requires that [[7] is central, which comes from Benton and Hy-
land’s requirement. In our examples, it is satisfied because our interpretation t1 consists
of arr. The exceptions are delay 0 in Case II, a variation in §3.1, where we used the
Kleisli arrow logging of the writer monad and the modified interpretation of IfZ. The
arrow delay 0 is central, and if we assume outputs are commutative (i.e. considering a
writer monad with a commutative monoid), 1ogging and the interpretation of IfZ are
central, hence the theorem is applicable.

6 Summary and Further Directions

We have examined the generation of three examples of looping arrows from cyclic
terms, and shown its correctness using semantics of arrows and cyclic sharing struc-
tures. One can regard this work in at least three ways:
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(i) Direct practical view: Cyclic terms provide a programming pattern for arrows with
loops to ease arrow programming.

(i) Meta-theoretic view: Cyclic terms are regarded as a prototypical metalanguage (or
sugar) of arrows with loops. Consequently, it can serve as a basis of a new syntax
for arrows, as Paterson’s arrow syntax can.

(iii) Theoretical and educational view: The cyclic term translation provides understand-
ing of the correspondence between arrows and the usual term constructs for pro-
grammers, suggesting the importance of categorical semantics of type theories.

As a related work, a previous work [3] provided a representation of cyclic terms
by nested types. This work ensures well-scopedness of u-binders in cyclic terms and
uniqueness of representation of cyclic structures using a lightweight dependent type
that is mimicked by a nested datatype. Although it gives a precise representation for
binding, programming with nested types causes some cumbersome type resolution is-
sues. Because the present paper focuses on the translation of cyclic terms to arrows and
because it does not emphasize and examination of ensuring well-scopedness, we chose
a naive representation.

The arrow calculus [8], a metalanguage to generate arrows, has a similar aim to
ours cyclic terms. It is formulated as an extension of the simply-typed A-calculus. The
arrow calculus has no fixpoint or loop operators. Therefore, no recursion exists in their
calculus. In this respect, our cyclic terms advance one step further, although our cyclic
terms are mono-sorted. Combining both ideas and term calculi formally may yield a
similar calculus to cyclic sharing theories in [4].
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