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Abstract
Genome-wide association studies (GWASs) are used to detect quantitative trait loci (QTL) using genomic and phenotypic data
as inputs. While genomic data are obtained with high throughput and low cost, obtaining phenotypic data requires a large
amount of effort and time. In past breeding programs, researchers and breeders have conducted a large number of phenotypic
surveys and accumulated results as legacy data. In this study, we conducted a GWAS using phenotypic data of temperate
japonica rice (Oryza sativa) varieties from a public database. The GWAS using the legacy data detected several known agricul-
turally important genes, indicating reliability of the legacy data for GWAS. By comparing the GWAS using legacy data
(L-GWAS) and a GWAS using phenotypic data that we measured (M-GWAS), we detected reliable QTL for agronomically im-
portant traits. These results suggest that an L-GWAS is a strong alternative to replicate tests to confirm the reproducibility of
QTL detected by an M-GWAS. In addition, because legacy data have often been accumulated for many traits, it is possible to
evaluate the pleiotropic effect of the QTL identified for the specific trait that we focused on with respect to various other traits.
This study demonstrates the effectiveness of using legacy data for GWASs and proposes the use of legacy data to accelerate
genomic breeding.
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Introduction
Crop improvement through genomic breeding is essential to
increase crop productivity and to feed the growing global
population (Hickey et al., 2019). Identification and character-
ization of genes associated with agricultural traits not only
offers an insight into the genetic basis of phenotypic vari-
ation but also contributes to efficient crop improvement.
Genome-wide association studies (GWASs), which analyze
the association between genome-wide nucleotide poly-
morphisms and phenotypic variations, have emerged as a
powerful method in genetics (Myles et al., 2009; Hamblin
et al., 2011; Huang and Han 2014; Lipka et al., 2015).
GWASs require genomic data and phenotypic data as inputs.
Genomic data can be obtained at high throughput with low
cost due to rapid advances in sequencing technology (Huang
et al., 2013; Nguyen et al., 2019). On the other hand, pheno-
typing of large populations usually requires a lot of effort,
and, in many cases, replicate tests over several years are re-
quired to confirm reproducibility. Many landraces and culti-
vars have been characterized by researchers and breeders,
and a large amount of phenotypic data have already been ac-
cumulated, referred to as “legacy data.” We hypothesized
that if the legacy data could serve as phenotypic data for
GWASs to detect useful quantitative trait loci (QTL) for agri-
cultural production, it would greatly reduce the effort of phe-
notyping and accelerate genomic breeding.
To evaluate the validity of legacy data, we performed a

GWAS on various rice phenotypic data retrieved from a pub-
lic database provided by the NARO Genebank in Japan
(https://www.gene.affrc.go.jp/distribution-plant_en.php).
We performed the GWAS with 198 temperate japonica rice
(Oryza sativa L.) varieties and found several known agricul-
turally important genes. We also conducted a GWAS using
phenotypic data that we measured, referred to as a
measured-GWAS (M-GWAS), and compared this with the
results of the GWAS using legacy data, referred to as a
legacy-GWAS (L-GWAS). Several genomic regions were de-
tected in both the M-GWAS and L-GWAS, where previously
unknown QTL are probably located. This demonstrated that
the combination of an L-GWAS and M-GWAS is effective in
detecting reliable QTL. In addition, we evaluated the pleio-
tropic effects of QTL by comparing GWASs for multiple traits
using legacy data. Here, we show the availability of legacy
data for accelerating basic research and practical genomic
breeding.

Results
Population structure and phenotypic data for
L-GWAS
To perform GWASs efficiently, a genetically highly structured
population is not desirable. A principal component analysis
(PCA) was conducted to measure the population structure
of 198 temperate japonica varieties used in the L-GWAS
(Supplemental Table S1) and 172 temperate japonica varieties

used in the M-GWAS (Supplemental Table S2). For both po-
pulations, the scores plot of the first two principal compo-
nents showed a continuous distribution with no distinct

A

B

Figure 1 Genetic population structure of Japanese rice varieties used
for L-GWAS and correlation matrix for 18 agronomic traits. A, PCA
for the 198 varieties based on whole-genome data. PC1 and PC2 indi-
cate the score of principal components 1 and 2, respectively. Values
in parentheses indicate percentage of variance in the data explained
by each principal component. B, Pearson correlation coefficients be-
tween phenotypic data from NARO Genebank. Blue and red indicate
negative and positive correlations, respectively. The 18 traits are
Culm Length (CL), Panicle Length (PL), Panicle Number (PN),
Apiculus Color (ApC), Grain Width (GW), Brown rice Width (BW),
Endosperm Type (ET), Heading Date at Niigata (HDN), Lemma and
Palea Color (LPC), Awn Presence (AP), Plant Type (PT), Culm
Thickness (CT), Spikelet Density (SD), Glume Color (GC), Awn Color
(AwC), Brown Rice Color (BRC), Seed Shattering (SS), and amount of
White Core (WC).
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subpopulation clusters, indicating that these two populations
are not highly structured (Figure 1A and Supplemental
Figure 1). A total of 33 traits were retrieved from NARO
Genebank database (Table 1 and Supplemental Figure 2).
Among these 33 traits, we focused on 18 traits (Figure 1B).
As shown in Figure 1B, we found the following relationships
between traits: Apiculus Color (ApC) was highly correlated
with Glume Color (GC) and Awn Color (AwC) (r= 0.6 and
0.8, respectively), and moderately correlated with Lemma
and Palea Color (LPC) (r= 0.4), but not with Brown Rice
Color (BRC; r= 0.2). Plant Type (PT) was highly positively cor-
related with Panicle Number (PN; r= 0.7), while negatively
correlated with Culm Length (CL), Panicle Length (PL),
Culm Thickness (CT), and Spikelet Density (SD) (r=−0.5,

−0.5, −0.6, and −0.5, respectively). This suggests that the
PT, which is evaluated by the breeders’ intuition, is the result
of the integration of these traits. In this case, by performing a
GWAS on PT and the individual traits and comparing the loci
controlling these traits, we were able to examine the relation-
ship between PT and these specific traits in detail (see below).
The distributions of the 33 traits in the legacy data were ex-

amined in histograms (Supplemental Figure 3). Among these,
13 traits that tended to be extremely unidirectional (high-
lighted in blue in Supplemental Figure 3) were analyzed as bin-
ary traits, and the other 20 traits (highlighted in green) were
analyzed as quantitative traits. Fifteen of the traits are specif-
ically discussed in this paper, while the results for the other
traits are shown in Supplemental Figure 4. We confirmed all

Table 1 List of 33 traits and their evaluation methods used in this study. The original description can be found on the NARO Genebank website

No. Traits Rank or measurement unit

1 Culm Length (CL) cm
2 Panicle Length (PL) cm
3 Panicle Number (PN) Number per plant
4 Apiculus Color (ApC) 1: Straw, 2: Tawny, 3: Brown, 4: Red brown, 5: Light red, 6: Red, 7: Light purple, 8: Purple, 9: Blackish

purple
5 Grain Length (GL) mm
6 Grain Width (GW) mm
7 Brown rice Length (BL) mm
8 Brown rice Width (BW) mm
9 Endosperm Type (ET) 2: Non-glutinous, 8: Glutinous
10 Heading Date at Niigata (HDN) Days from July 1
11 Integrated Heading Date corrected from 12

different places (IHD)
Days from July 1

12 Lemma and Palea Color (LPC) 1: Straw, 2: Yellow, 3: Gold, 4: Reddish yellow to orange, 5: Brown, 6: Reddish brown, 7: Purple, 8: Black,
9: Other

13 Awn Presence (AP) 0: Absent, 1: Extremely scarce, 2: Very scarce, 3: Scarce, 4: Slightly scarce, 5: Intermediate, 6: Slightly
abundant, 7: Abundant, 8: Extremely abundant, 9: Complete

14 Awn Length (AL) 1: Very short, 3: Short, 5: Intermediate, 7: Long, 9: Very long
15 1,000 Grain Weight (TGW) g
16 Plant Type (PT) 2: Super panicle weight type, 3: Panicle weight type, 4: Rather panicle weight type, 5: Intermediate

type, 6: Rather panicle number type, 7: Panicle number type, 8: Super panicle number type
17 Culm Thickness (CT) 2: Very thin, 3: Thin, 4: Slightly thin, 5: Intermediate, 6: Slightly thick, 7: Thick, 8: Very thick
18 Flag Leaf Angle (FLA) 2: Erect, 3: Semi-erect, 4: Slightly semi-erect, 5: Intermediate, 6: Slightly descending, 7:

Semi-descending, 8: Descending
19 Leaf Blade Color (LBC) 1: Yellow, 2: Yellowish blotched, 3: Light green, 4: Green, 5: Dark green, 6: Purple blotched, 7: Purple

margin, 8: Purple, 9: Other
20 Spikelet Density (SD) Number
21 Pubescence of Lemma and Palea (PLP) 0: None, 1: Rare, 2: Scarce, 3: Little, 4: Slightly little, 5: Intermediate, 6: Slightly abundant, 7: Abundant,

8: Very abundant, 9: Extremely abundant
22 Glume Color (GC) 1: Straw, 2: Gold, 3: Red, 4: Purple
23 Awn Color (AwC) 1: Straw, 2: Yellowish brown, 3: Brown, 4: Reddish brown, 5: Light red, 6: Red, 7: Light purple, 8: Purple,

9: Blackish purple
24 Brown Rice Color (BRC) 1: White, 2: Light brown, 3: Variegated brown, 4: Dark brown, 5: Light red, 6: Red, 7: Variegated purple,

8: Purple, 9: Dark Purple/black
25 Resistance to Leaf Blast (RLB) 1: Very high, 3: High, 4: Slightly high, 5: Intermediate, 6: Slightly low, 7: Low, 9: Very low
26 Lodging Tolerance (LT) 1: Very high, 3: High, 4: Slightly high, 5: Intermediate, 6: Slightly low, 7: Low, 9: Very low
27 Pre-Harvest Sprouting (PHS) 1: Very high, 3: High, 4: Slightly high, 5: Intermediate, 6: Slightly low, 7: Low, 9: Very low
28 Resistance to Sheath Blight (RSB) 1: Very high, 3: High, 4: Slightly high, 5: Intermediate, 6: Slightly low, 7: Low, 9: Very low
29 Seed Shattering (SS) 2: Very hard, 3: Hard, 4: Slightly hard, 5: Intermediate, 6: Slightly easy, 7: Easy, 8: Very easy
30 Grain Appearance (GA) 1: Extremely bad, 2: Very bad, 3: Bad, 4: Slightly bad, 5: Intermediate, 6: Slightly good, 7: Good, 8: Very

good, 9: Excellent
31 Grain Luster (Glu) 2: Very low, 3: Low, 4: Slightly low, 5: Intermediate, 6: Slightly high, 7: High, 8: Very high
32 Amount of White Belly (WB) 2: Very low, 3: Low, 4: Slightly low, 5: Intermediate, 6: Slightly high, 7: High, 8: Very high
33 Amount of White Core (WC) 2: Extremely few, 3: Very few, 4: Few, 5: Intermediate, 6: Some, 7: Many, 8: Very many
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quantile–quantile (Q–Q) plots and found no statistical pro-
blems in the GWASs (Supplemental Figures 5 and 6).

Validity of L-GWAS
First, we focused on three traits, Awn Presence (AP),
Endosperm Type (ET), and Seed Shattering (SS), which we
considered to be suitable for evaluating whether the
L-GWAS is effective because genes that have a major effect

on each trait have been identified. In the GWAS for AP, a
strong peak was detected on chromosome (Chr.) 8
(Figure 2A); within the linkage disequilibrium block of this
peak, Epidermal Patterning Factor-Like protein 8 (EPFL8)/
Regulator of Awn Elongation 2 (RAE2)/Grain number, grain
length and Awn Development 1 (GAD1) is located (Yano
et al., 2016; Bessho-Uehara et al., 2016; Jin et al., 2016). A
strong peak was also detected at the same position on Chr.
8 in the GWAS for Awn Length (AL) (Supplemental
Figure 4). In the GWAS for ET, a strong peak was detected
on Chr. 6 (Figure 2B), where waxy is located (Inukai et al.,
2000). In the GWAS of SS, a strong peak was detected on
Chr. 1 (Figure 2C), where QTL of seed shattering in chromo-
some 1 (qSH1) is located (Konishi et al., 2006). These results
demonstrate that the L-GWAS works effectively to easily
identify QTL controlling agronomic traits.

Combination of L-GWAS and M-GWAS for finding
QTL
The above three traits are the easiest cases for GWASs be-
cause these traits are strongly affected by a single major
QTL. Therefore, we next focused on GWASs for traits con-
trolled by multiple QTL and compared the L-GWAS with
the GWAS using the phenotypic data we measured
(M-GWAS). For this purpose, we first focused on comparing
results from the L-GWAS for Heading Date at Niigata (HDN)
and those from theM-GWAS for the Heading Date measured
at Nagoya. There were several peaks in the Manhattan plot of
the L-GWAS; some of these overlapped with known heading
genes, such as HEN1 suppressor 1 (HESO1), Heading date 1
(Hd1), and Heading date 2 (Hd2) (Figure 3A; Yano et al.,
2016), and these peaks were also detected in the M-GWAS
(Figure 3B). For Hd1 (Figure 3C), we previously reported
that a strong indirect association occurs in the near region
due to many different haplotypes of Hd1, resulting in a shift
in peak position when we used Japanese japonica varieties
(Yano et al., 2016; Tibbs Cortes et al., 2021).
To confirm the consistency of the L- andM-GWASs, we ap-

plied two methods. First, we performed an L-GWAS includ-
ing the polymorphism with the highest signal in the
M-GWAS as a fixed effect to determine whether the peak
of interest disappeared (Method 1). Application of Method
1 to the Hd1, HESO1, and Hd2 peaks resulted in disappear-
ance of these peaks (Figure 3, C–E). For Method 2, we exam-
ined the correlation of −log10(P) of single-nucleotide
polymorphisms (SNPs) between the L-GWAS and
M-GWAS within the peak regions (Figure 3, G–I). In the
case of the peak region on Chr. 1_36.0–37.0 Mb, where
HESO1 is located (Figure 3D), there were 60 polymorphisms
shared between the L- and M-GWASs. The correlation of –
log10(P) of these polymorphisms was very high (coefficient
of determination; R2= 0.85) between the L- and M-GWASs
(Figure 3H). In a similar fashion, we tested the equivalence
of the L- and M-GWAS peaks in the Hd1 and Hd2 regions
and found a high correlation between these peaks

A

B

C

Figure 2 L-GWAS of three agronomic traits for which genes that have a
major effect on each trait have been identified. Manhattan plot of
L-GWAS of Awn Presence (AP) (A), Endosperm Type (ET) (B), and
Seed Shattering (SS) (C). Red arrowheads indicate the position of the
gene previously reported to control each trait, that is EPFL8/RAE2/
GAD1 for awn formation, waxy for endosperm starch synthesis, and
qSH1 for SS. Genome-wide significant threshold is indicated by horizon-
tal lines (red: 0.1/Meff, blue: 0.2/Meff).
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(Figure 3, C, E, G, and I). We also applied these methods for
peak 1, which was located at around 24 Mb on Chr. 6 in both
the L- andM-GWASs (Figure 3, A and B). Although no known
flowering genes have been reported in this region (RiceNavi;
Wei et al., 2021), the peak disappeared using Method 1
(Figure 3F) and a high correlation was confirmed using
Method 2 (R2= 0.84; Figure 3J). These results demonstrate
that these two peaks are identical and, thus, the presence
of a previously unknown heading QTL in this region is indi-
cated. Hereafter, we used these two methods as an “identity
test” for comparison of peaks from L- and M-GWASs.
For the above L-GWAS on Heading Date, we used the

NARO phenotypic data from only a single location (i.e.
Niigata). Data of Heading Date measured at different

locations are available in legacy data of NARO Genebank
and using these data would improve the statistical accuracy
of the GWAS by increasing repeatability and decreasing miss-
ing values. However, there is also concern that mixing data
from different locations could reduce the accuracy of the
GWAS, because the influence of a QTL could differ between
different locations. With these considerations in mind, we
conducted an L-GWAS of the Integrated Heading Date
(IHD) using all data recorded at all different locations
(Supplemental Figure 7A). All four peaks discussed above
(Hd1, HESO1, Hd2, and peak1) were also detected in this
L-GWAS (Supplemental Figure 7, B–I). In addition to the
four peaks, we found an additional peak (peak 2 hereinafter)
on Chr. 6_3.4–3.7 Mb (Supplemental Figure 7A). The identity

A

C D E F

G H I J

B

Figure 3 Comparison between L- andM-GWASs for heading date. A–B, Manhattan plot of Heading Date at Niigata (HDN) using legacy data (A) and
data that we measured at Nagoya (B). Red arrowheads indicate peaks observed in both L- and M-GWASs. Three known heading genes, Hd1, HESO1,
and Hd2, colocalize in these peak regions. Genome-wide significant threshold is indicated by horizontal lines (red: 0.1/Meff, blue: 0.2/Meff). C–F, Local
Manhattan plot of L-GWAS surrounding the peak regions indicted by red arrowheads in the panels (A, B). Plots show the results of L-GWAS per-
formed without (blue) or with (red) the polymorphism with the highest signal in M-GWAS as fixed effect. Red arrowheads indicate the position of
heading genes, that is Hd1 (C), HESO1 (D), and Hd2 (E), while there is no known heading gene in panel (F). Dashed lines indicate the candidate region
for the peak. G–J, Correlation of the −log10(P) value of SNPs between L- and M-GWASs within the peak regions of Hd1, HESO1, Hd2, and peak 1.
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test showed peak disappearance using Method 1
(Supplemental Figure 7J) and a high correlation using
Method 2 (R2= 0.56; Supplemental Figure 7K), indicating
that the QTL detected in the L- and M-GWASs are identical.
To the best of our knowledge, there is no gene involved in
heading date in this region, indicating that the peak includes
a previously unknown QTL for heading date. These observa-
tions suggest that performing a GWASwithmultiple datasets
generated from legacy data is a realistic and effective way to
ensure reproducibility and efficiently identify QTL.By using
the identity test, we also attempted to detect QTL for
Grain Width (GW) using an L-GWAS (L_GW; Figure 4A)
and Brown rice Width (BW) using both an L- and an
M-GWAS (L_BW and M_BW; Figure 4, B and C). We found
a major peak on Chr. 5_27.0–28.8 Mb (Figure 4, A–C), with
a high correlation according to Method 2 (R2= 0.56, 0.64,
and 0.40; Supplemental Figure 8, A–C). Using Method 1,
we tested all combinations of the three GWASs (L_GW,
L_BW, and M_BW) using the highest signal polymorphism
in each GWAS. When L_GW and M_BW were compared,
peak disappearance was observed in both cases (Figure 4,
D and F), indicating that these two peaks are identical.
Because we could not find genes whose relationship with
the traits has been validated, we concluded that there is a
previously unknown QTL in this region. When we performed
a GWAS of L_GW and M_BW, including the highest signal in
L_BW as a fixed effect, the peaks disappeared (Figure 4, G and I).
On the other hand, when we performed a GWAS of L_BW,
including the highest signal in L_GW and M_BW, the peak
on Chr. 5_27.0–28.8 Mb was decreased but did not disappear
completely (Figure 4, E and H). These results suggest that the
L_BW peak is shared with that of L_GW andM_BW, whereas
there may also be another QTL in the same region for L_BW.
These results indicate that even if peaks from independent
GWAS results appear to be identical, the hypothesis must
be examined carefully using the identity test.
In the same way, we compared GWASs on the amount of

White Core (WC) using the legacy data and the data that we
measured (Figure 5, A and B). Because the GWAS platform
used for binary traits in this study was not available for
Method 1 (i.e. there was not an option to add arbitrary fixed
effects), we performed GWASs for WC with the platform for
quantitative traits (Figure 5, A and B). We found amajor peak
on Chr. 7_21.8–22.7 Mb, and the identity test showed peak
disappearance using Method 1 (Figure 5C) and a high correl-
ation using Method 2 (R2= 0.64; Figure 5D). Also, in the
GWAS for binary traits, the peak was detected in the same
region in both the L-GWAS and M-GWAS (Supplemental
Figure 9, A and B) and showed a high correlation (R2= 0.56;
Supplemental Figure 9, C and D). Because we could not
find any genes in this region that have been verified to be
related to the trait, we concluded that there is a previously
unknown QTL for WC in this region.
These case studies show that the combination of L- and

M-GWASs is an easy and available method to find QTL for
agronomically important traits. In particular, WC is known

to be greatly affected by environment, such as temperature
during the ripening period (Sreenivasulu et al., 2015), and is
considered to be a difficult trait for QTL analysis. However,
we can ensure the reliability of the detected QTL from the
data we collected by examining the reproducibility of the re-
sults from the L-GWAS, which uses completely independent
phenotypic data (see “Discussion”).

Evaluation of pleiotropic impacts of QTL by L-GWAS
As another example of the efficient application of legacy
data, we evaluated the pleiotropic impact of QTL using leg-
acy data. As discussed above (Figure 1B), ApC correlated
with the other color-related traits, LPC, GC, and AwC, but
not with BRC. Here, a GWAS of ApC based on the color vari-
ation scored in the NARO phenotypic data (scores 1–9;
Table 1) was performed as follows. First, a binary-GWAS of
color (non-colored [scores 1] and colored [scores 2–9]) de-
tected a strong peak on Chr.6_5.1–5.4 Mb, which contains
R2R3-MYB gene (OsC1) (Figure 6, B and C). Second, a
binary-GWAS of color tone (light-color [scores 2–4] and
dark-color [scores 5–9]) detected a peak on Chr.1_24.8–
25.8 Mb containing the dihydroflavonol 4 reductase gene
(OsDFR) (Figure 6, D and E). There are seven haplotypes of
OsC1 in the GWAS panel, where Hap A-E corresponds to
the null allele (Sun et al., 2018; Zheng et al., 2019; Meng
et al., 2021) (Figure 6F). In OsDFR, there are four haplotypes
and Hap A and D are null (Sun et al., 2018; Zheng et al., 2019)
(Figure 6G). Based on this information, we examined the epi-
static and pleiotropic effects of OsC1 and OsDFR on ApC
(Figure 6H) and the other four color-related traits
(Figure 6, I–L). With a few exceptions, OsC1 null lines
(osc1) had a non-colored ApC regardless of the haplotype
of OsDFR, while the functional OsC1 lines had a colored
ApC (Figure 6H). For the exceptional lines that showed dis-
crepancy between OsC1 haplotype and ApC phenotype, we
rechecked their ApC ourselves. Two of them that carried
the OsC1 haplotype and were recorded as non-colored we
found to be colored, while three of them that carried osc1
and were recorded as colored we found to be non-colored
(Supplemental Figure 10). OsC1/OsDFR lines showed a dark-
color (scores 5–9) for ApC, while OsC1/osdfr showed a light-
color (scores 2–4) (Figure 6H). These results are consistent
with the GWAS results (Figure 6, A–E), suggesting that
OsC1 determines whether the apiculus is colored or non-
colored whereas OsDFR regulates the degree of ApC (i.e. col-
or tone). Previous studies have shown that OsC1 acts as a
switching gene for regulation of anthocyanin synthesis and
activation of the expression of OsDFR and other related
genes, andOsDFR is involved in the branching of anthocyanin
synthesis pathways (Sun et al., 2018). The results for LPC, GC,
and AwC demonstrate that functional OsC1 is essential for
colorations of those organs (Figure 6, I–K). On the other
hand, among the organ color phenotypes, BRC was not asso-
ciated with haplotypes of OsC1 and/or OsDFR (Figure 6L), in-
dicating that BRC is not controlled by these genes.
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PT is a trait evaluated by breeders’ intuition and has been
considered to encompass several morphological traits.
According to the correlation matrix (Figure 1B), we con-
ducted a GWAS for five traits related to PT, namely PN,
CL, PL, CT, and SD (Figure 7, A–F). Based on the GWAS of
PT, we focused on the top three peaks (Figure 7A), and exam-
ined whether the five traits had the equivalent peaks by
Method 1 of the identity test using the polymorphism with
the highest signal of PT as a fixed effect. Peak 1 on Chr.
4_30.5–32.0 Mb contained NALLOW LEAF 1 (NAL1)
(Figure 7G), which controls panicle size, flag leaf width, and
PN, as previously reported (Fujita et al., 2013; Yano et al.,
2016). From our analysis, PN showed the strong peak in
the peak 1 region and the peak disappeared by Method 1
(Figure 7H). The −log10(P) values of CT and SD were

relatively low, but the peak disappeared by Method 1
(Figure 7, K and L). On the other hand, CL and PL did not
show the peak disappearance (Figure 7, I and J). Thus, peak
1, including NAL1, is involved in determining PT, through
PN predominantly and CT and SD moderately. For peak 2
on Chr. 5_27.4–28.8 Mb (Figure 7M), PN showed a strong
peak and the peak disappeared by Method 1 (Figure 7N).
CT also showed peak disappearance (Figure 7Q), but CL,
PL, and SD did not show the peak disappearance (Figure 7,
O, P, and R). Chigira et al. (2020) reported the presence of
a pleiotropic QTL in the same region, which affects multiple
traits including PN and lodging resistance. We performed an
M-GWAS using the PN data from Chigira et al. (2020)
(Supplemental Figure 11A) and compared it to our
L-GWAS of PN (Figure 7B). Peak 2 disappeared in the

A

C

D

F

G

B E H

I

Figure 4 Comparison between L- andM-GWAS for seed width. A–C, Manhattan plot of GrainWidth (GW) and Brown riceWidth (BW) using legacy
data (L_GW; A, L_BW; B) and of BW using data that we measured (M_BW; C). Red arrowheads indicate a peak observed in both L- and M-GWASs.
Genome-wide significant threshold is indicated by horizontal lines (red: 0.1/Meff, blue: 0.2/Meff). D–I, Local Manhattan plot of L_GW (D, G), L_BW
(E, H), andM_BW (F, I) surrounding the peak regions indicted by red arrowheads in the panels (A–C). Blue circles are the results of GWAS performed
without fixed effect. Red circles are the results of GWAS performed with the polymorphismwith the highest signal inM_BW (D, E), L_GW (F, H), and
L_BW (G, I) as fixed effect.
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L-GWAS when Method 1 was applied using the polymorph-
ism of the highest signal in the M-GWAS (Supplemental
Figure 11B), suggesting that peak 2 is identical to the QTL re-
ported in Chigira et al. (2020). For peak 3 on Chr. 11_6.0–
6.4 Mb (Figure 7S), PN, CL, and PL showed a strong peak
and the peak disappeared by Method 1 (Figure 7, T–V).
The −log10(P) values of CT were relatively low, but the
peak disappeared by Method 1 (Figure 7W). On the other
hand, SD did not show the peak disappearance (Figure 7X).
Consequently, unlike peaks 1 and 2, peak 3 is involved in
PT via PN and length-related traits, namely, CL and PL. To cal-
culate the effect size of peaks 1–3 on each trait, we per-
formed a GWAS using the standardized phenotypic data
(Figure 7, Y and Z). The results indicated that all peaks affect
PT, and peak 3 is the QTL that has the greatest impact on PT.
Peaks 1 and 2 affect PN predominantly and CT and SD mod-
erately, whereas peak 3 is a pleiotropic QTL affecting PN, CL,
PL and CT (Figure 7Z). These results are consistent with the
results of the identity test described above.

Discussion
Using rice phenotypic data from the NARO Genebank as an
example, this study shows that legacy data are very useful for
GWASs. The advantages of using legacy data revealed by this
study are as follows. First, the process of acquiring trait data,
which requires a lot of time and effort, can be greatly reduced
by allowing legacy data to be used in place of newly acquired

data, as like a kind of blinded experiment. Also, by comparing
the legacy data and our own acquired data, simple mistakes
(e.g. color observation error in legacy data; Supplemental
Figure 10) can be eliminated. In addition, because in many
cases the populations that researchers have analyzed and po-
pulations in legacy data are different in terms of contents
(varieties), the possibility of statistical errors will be greatly
reduced compared to that in GWASs using a single popula-
tion. In this context, GWASs using two independent popula-
tions with independently acquired trait data would be useful
for reliable QTL detection. In this study, we succeeded in de-
tecting previously unknown QTL for three agronomic traits
by this method: Heading Date (Figure 3), Seed Width
(Figure 4), and WC (Figure 5). In particular, a reproducible
QTL was detected even for WC (Figure 5), which is greatly af-
fected by environmental factors, suggesting that the use of
legacy data is very effective for reliable QTL detection.
Furthermore, legacy data, like the NARO Genebank used in
this study, often contain a comprehensive range of pheno-
typic data. Thus, it is possible to evaluate the pleiotropic ef-
fect of the QTL identified for the specific traits with respect
to other traits, as shown in the case of color traits in various
organs (Figure 6). Legacy data also often contain evaluation
of the overall traits judged as the totality of multiple individ-
ual specific traits (e.g. PT discussed in this paper, and also
panicle structure and plant vigor), all of which are often eval-
uated by the breeders’ intuition and are important criteria
for breeding selection. By identifying individual QTL that

A C

B D

Figure 5 Comparison between L- andM-GWASs for amount of white core. A, B, Manhattan plot of amount ofWhite Core (WC) by using legacy data
(A) and using data that we measured (B). Red arrowheads indicate a peak observed in both L- and M-GWASs. Genome-wide significant threshold is
indicated by horizontal lines (red: 0.1/Meff, blue: 0.2/Meff). C, Local Manhattan plot of L-GWAS surrounding the peak regions indicted by red arrow-
heads in the panels (A, B). Plots show the results of L-GWAS performed without (blue) or with (red) the polymorphism with the highest signal in
M-GWAS as a fixed effect. D, Correlation of the −log10(P) value of SNPs between L- and M-GWASs within the peak region.
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Figure 6 Evaluation of epistatic and pleiotropic effects on five color-related traits. A, Histogram of Apiculus Color (ApC), which was rated by NARO
as 1–9 based on color differences. Red and blue line separates colored/non-colored and light/dark color, respectively. B, D, Manhattan plot based on
colored/non-colored (B), or light/dark color (D). Arrowheads indicate the top peak colocalized with OsC1 and OsDFR. Genome-wide significant
threshold is indicated by horizontal lines (red: 0.1/Meff, blue: 0.2/Meff). C, E, Local Manhattan plot surrounding the top peaks in panels (B) and
(D). F, G, Exon-intron structure of OsC1 and OsDFR and DNA polymorphisms of these genes found in the legacy panel of 198 lines. Of these poly-
morphisms, mutations shown in red are thought to disrupt gene function (Sun et al., 2018; Zheng et al., 2019; Meng et al., 2021). The number of rice
varieties in the 198 panel is shown in parentheses. H–L, Boxplots for five color-related traits: ApC (H), Lemma and Palea Color (LPC) (I), Glume Color
(GC) (J), Awn Color (AwC) (K), and Brown Rice Color (BRC) (L). In the box plot, the box height shows the 25th and 75th quantiles, the whiskers are
min–max values, the horizontal line is the median, black dots are the outliers. Upper- and lower-case letters indicate functional and null of these
genes. Values in parentheses indicate sample numbers. Different letters above each box indicate significant differences among the genotypes as
determined by Tukey–Kramer HSD post hoc tests (P< 0.05). NS means differences among the genotypes are not statistically significant by
ANOVA (P> 0.05).
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Figure 7 Breakdown of plant type into five measurable traits. A–F, Manhattan plot of Plant Type (PT) (A), Panicle Number (PN) (B), Culm Length
(CL) (C), Panicle Length (PL) (D), Culm Thickness (CT) (E), and Spikelet Density (SD) (F). Arrowheads indicate candidate peaks common to PT and
other traits. Genome-wide significant threshold is indicated by horizontal lines (red: 0.1/Meff, blue: 0.2/Meff). G–X, Local Manhattan plot of PT and
five traits surrounding peak 1 (G–L), peak 2 (M–R), and peak 3 (S–X). Plots show the results of GWAS performed without (blue) or with (red) the
polymorphismwith the highest signal in PT as fixed effect. Red arrowheads indicate the position ofNAL1. Y, Table and (Z) Rader chart of effect size of
peaks 1–3 on PT and five traits.
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are involved in complex traits and examining their effects, we
can evaluate the contribution of individual QTL to the com-
plex traits. Therefore, combining our own acquired pheno-
typic data with legacy data will enable us to accelerate the
progress of genetic research.
In the NARO Genebank, phenotypic data are provided not

only for rice, but also for a variety of plant species, including
wheat (Triticum aestivum), potato (Solanum tuberosum),
grasses, fruit trees, and vegetables. In addition to the NARO
Genebank data, there are reports investigating yield traits
such as fertility, germination characteristics (Secretariat of
Agriculture, Forestry and Fisheries Research Council., 1970),
and eating quality characteristics of Japanese rice landraces
(Sasahara et al., 2017). While these reports are on Japanese
varieties, the IRRI SNP-SEEK phenotypic database
(Mansueto et al., 2017) has collected phenotypic data from
many countries for about two-thirds of the approximately
3,000 rice lines for which genomic data are available, and
other trait data have been accumulated in various locations
throughout the world. In the near future, databases linking
genomic information with phenotypic data are expected to
be released worldwide, and the research approach proposed
here will be more effective. To accelerate genomic breeding,
we propose the utilization of legacy data accumulated by
our predecessors.

Materials and methods
Plant material and genotyping
We used two Japanese japonica rice (Oryza sativa) panels
comprising 198 (for L-GWAS) and 172 (for M-GWAS) var-
ieties, which were collected from various places in Japan
(Supplemental Tables 1 and 2). DNA preparation and geno-
typing were conducted as previously described (Yano et al.,
2016, 2019). After removing nucleotide variations with miss-
ing rates≥0.1 and minor allele frequency <0.05, 179,700
SNPs and 26,147 insertions or deletions (INDELs) were iden-
tified in the 198 set, and 215,698 SNPs and 29,487 INDELs
were found in the 172 set.
SnpEff software version 4.3 T (Cingolani et al., 2012) was

used to predict the effect of genomic variants on gene func-
tion. The general feature format version 3 (gff3) from the Rice
Genome Annotation Project (Ouyang et al., 2007; http://rice.
plantbiology.msu.edu/) was used to provide information on
gene position and coding sequences.

Population genetic analyses and GWASs
The population structure of the 198 and 172 varieties was es-
timated using PCA performed using the R package
“SNPRelate” version 4.2 (Zheng et al., 2012). For GWASs,
we used a linear mixed model (LMM). For quantitative traits,
GWASs were performed using the function GWAS in the R
package “rrBLUP” version 4.3 with default parameter settings
(Endelman, 2011). For binary traits, GWASs were performed
using the function association.test in the R package “gaston”

version 1.5.7 with default parameter settings (Perdry and
Dandine-Roulland, 2018). In both GWASs, no fixed effects
such as principal components were included. The genome-
wide significant thresholds were determined using
SimpleM which addresses the dependency among markers
by calculating the number of effective markers (Meff) (Gao
et al., 2008). In this study, 0.1/Meff and 0.2/Meff were used
as the genome-wide significant thresholds. For comparisons
of the results from L- and M-GWASs, an L-GWAS was per-
formed including the polymorphism with the highest signal
in the M-GWAS as a fixed effect to see if the peak disap-
peared (Method 1). If a peak detected in the L-GWAS is
the same as a peak in the M-GWAS, the peak in the
L-GWAS disappears when marker genotype data of
the peak in the M-GWAS are included as a fixed effect in
the GWAS model because explainability of the peak in the
L-GWAS is removed by the fixed effect (Segura et al.,
2012). In addition, correlations of −log10(P) of SNPs within
the peak region were calculated (Method 2). When compar-
ing L- and M-GWASs, only SNPs that were present in both L-
and M-GWASs were extracted and analyzed for correlation.
The effect size of each SNP was calculated using an in-house
script that is a modification of the function GWAS in the R
package “rrBLUP” version 4.3. To enable direct comparison
of SNP effects between the traits, standardized phenotypic
values were used for the calculation (mean= 0, SE= 1, calcu-
lated using Microsoft Excel). Then, the absolute values of the
SNP effects were provided for the comparison.

Phenotypic data
Phenotypic data were downloaded from the NARO
Genebank (accessed August 5, 2022; https://www.gene.affrc.
go.jp/distribution-plant_en.php). Original phenotypic data
were scored according to the in-house manual (available in
the NARO Genebank website), with five replications for
measurement traits and observing the entire survey area
for the observational traits. In the NARO Genebank, there
are phenotypic data measured at 12 locations (Hokkaido,
Aomori, Akita, Miyagi, Niigata, Fukui, Ibaraki, Hyogo,
Hiroshima, Fukuoka, Okinawa, and Taiwan) from 1965 to
2020. The numerical data were used without modification.
The Heading Date was converted to numerical data as days
after July 1. Ordinal data, such as color traits, were converted
to numerical data according to the scale in the NARO
Genebank (Table 1). Basically, when phenotypic data existed
for multiple years or at multiple locations, the phenotypic va-
lues were adjusted considering the location-by-year effect
using a LMM. The LMM was implemented in the lmer func-
tion of the R package “lme4” version 1.1-31 (Bates et al.,
2015). For Heading Date, two datasets were prepared
(Heading Date at Niigata [HDN] and Integrated Heading
Date recorded at all different locations [IHD]). In this study,
33 traits with sufficient data accumulated for GWASs were
used. We produced a histogram of each trait and, based on
observation of the distribution of data in the histograms,
we designated 13 and 20 traits as binary and quantitative
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traits, respectively (Supplemental Figure 3). The trait correl-
ation matrix was calculated using a Microsoft Excel analysis
tool.
WC and Heading Date used for M-GWAS were surveyed at

Togo Field, Field Science Center, Nagoya University, in 2014
and 2015, respectively. Heading Date is the number of days
from planting to heading dates. The survey of BW was con-
ducted at the experimental field of Fukui Prefectural
University in 2014. These phenotypic data used for
M-GWAS are shown in Supplemental Table 2. For the
M-GWAS on Panicle Number (Supplemental Figure 11),
the original data reported in Chigira et al. (2020) were pro-
vided by Prof. Taiichiro Ookawa (Tokyo University of
Agriculture and Technology).

Statistical analyses
Multiple comparison tests were performed using the
TukeyHSD function and anova function in R.

Accession numbers
Sequence data from this article can be found in the RGAP data
libraries under the following accession numbers: EPFL8/RAE2/
GAD1, LOC_Os08g37890; waxy, LOC_Os06g04200; qSH1, LOC_
Os01g62920; HESO1, LOC_Os01g62780; Hd1, LOC_Os06g16370;
Hd2, LOC_Os07g49460; OsC1, LOC_Os06g10350; OsDFR,
LOC_Os01g44260; NAL1, LOC_Os04g52479.

Supplemental data
The following materials are available in the online version of
this article.
Supplemental Figure S1. Genetic population structure of

Japanese rice varieties used for M-GWAS.
Supplemental Figure S2. Pearson correlation coefficients

between all 33 traits of legacy data from NARO Genebank.
Supplemental Figure S3. Histogram of all 33 traits of leg-

acy data and 3 traits that we measured.
Supplemental Figure S4. Manhattan plots for L-GWAS of

18 traits.
Supplemental Figure S5. Q–Q-plots of L-GWAS of origin-

al data of all 33 traits.
Supplemental Figure S6. Q–Q plots of M-GWAS of 3

traits.
Supplemental Figure S7. GWAS for Integrated Heading

Date (IHD).
Supplemental Figure S8. Method 2: Identity test for Seed

width.
Supplemental Figure S9. Comparison between L- and

M-GWASs for amount of White Core.
Supplemental Figure S10. Observation of ApC of 5 var-

ieties with discrepancies between legacy data and genetic
prediction of OsC1.
Supplemental Figure S11. Comparison between L-GWAS

(Figure 7B) and M-GWAS of PN reported by Chigira et al.
(2020).

Supplemental Table S1. List of the 198 varieties used for
L-GWAS in this study.
Supplemental Table S2. List of the 172 varieties and

phenotypic data used for M-GWAS in this study.

Acknowledgments
The authors thank NARO Genebank for providing rice seeds
and phenotypic data and Prof. Taiichiro Ookawa for provid-
ing the raw phenotypic data published in Chigira et al. (2020).

Funding
This work was supported by Grants-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science
(grant no. JP22H02294 to M.M. and JP21K14758 to M.S.) and
by the Priority Research Project (foR-F) of Fukushima
University (262Q001 to T.M.).

Conflict of interest statement. The authors declare no conflict of
interest.

References
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear
mixed-effects models using lme4. J Stat Softw 67(1): 1–48

Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K,
Gamuyao R, Asano K, Angeles-Shim RB, Shimizu Y, Ayano M,
et al. (2016) Loss of function at RAE2, a previously unidentified
EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl
Acad Sci U S A 113(32): 8969–8974

Chigira K, Kojima N, Yamasaki M, Yano K, Adachi S, Nomura T,
Jiang M, Katsura K, Ookawa T (2020) Landraces of temperate ja-
ponica rice have superior alleles for improving culm strength asso-
ciated with lodging resistance. Sci Rep 10(1): 19855

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ,
Lu X, Ruden DM (2012) A program for annotating and predicting
the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin)
6(2): 80–92

Endelman JB (2011) Ridge regression and other kernels for genomic se-
lection with R package rrBLUP. Plant Genome 4(3): 250–255

Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K,
Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S,
et al. (2013) NAL1 Allele from a rice landrace greatly increases yield
in modern indica cultivars. Proc Natl Acad Sci U S A 110(51):
20431–20436

Gao X, Starmer J, Martin ER (2008) A multiple testing correction
method for genetic association studies using correlated single nu-
cleotide polymorphisms. Genet Epidemiol 32(4): 361–369

Genebank project, NARO (2022) https://www.gene.affrc.go.jp/
distribution-plant_en.php (accessed August 5, 2022)

Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of
genomics-based crop improvement methods. Trends Genet 27(3):
98–106

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM,
Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019)
Breeding crops to feed 10 billion. Nat Biotech 37(7): 744–754

Huang X, Han B (2014) Natural variations and genome-wide associ-
ation studies in crop plants. Annu Rev Plant Biol 65(1): 531–551

Huang X, Lu T, Han B (2013) Resequencing rice genomes: an emerging
new era of rice genomics. Trends Genet 29(4): 225–232

12 | PLANT PHYSIOLOGY 2023: 00; 1–13 Suganami et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiad018/6991393 by Fukushim

a U
niversity Library user on 07 February 2023

http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad018#supplementary-data
https://www.gene.affrc.go.jp/distribution-plant_en.php
https://www.gene.affrc.go.jp/distribution-plant_en.php


Inukai T, Sako A, Hirano H-Y, Sano Y (2000) Analysis of intragenic re-
combination at wx in rice: correlation between the molecular and
genetic maps within the locus. Genome 43(4): 589–596

Jin J, Hua L, Zhu Z, Tan L, Zhao X, ZhangW, Liu F, Fu Y, Cai H, Sun X,
et al. (2016) GAD1 Encodes a secreted peptide that regulates grain
number, grain length, and awn development in rice domestication.
Plant Cell 28(10): 2453–2463

Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M
(2006) An SNP caused loss of seed shattering during rice domestica-
tion. Science 312(5778): 1392–1396

Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ,
Gore MA (2015) From association to prediction: statistical methods
for the dissection and selection of complex traits in plants. Curr Opin
Plant Biol 24: 110–118

Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM,
Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A,
et al. (2017) Rice SNP-seek database update: new SNPs, indels, and
queries. Nucleic Acids Res 45(D1): 1075–1081

Meng L, Qi C, Wang C, Wang S, Zhou C, Ren Y, Cheng Z, Zhang X,
Guo X, Zhao Z, et al. (2021) Determinant factors and regulatory sys-
tems for anthocyanin biosynthesis in rice apiculi and stigmas. Rice
14(1): 37

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler
ES (2009) Association mapping: critical considerations shift from
genotyping to experimental design. Plant Cell 21(8): 2194–2202

Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation
sequencing accelerates crop gene discovery. Trends Plant Sci 24(3):
263–274

Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K,
Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, et al. (2007) The
TIGR rice genome annotation resource: improvements and new fea-
tures. Nucleic Acids Res 35(Database): 883–887

Perdry H, Dandine-Roulland C (2018) gaston: Genetic Data Handling
(QC, GRM, LD, PCA) & Linear Mixed Models. R package version 1.5.7.
https://CRAN.R-project.org/package=gaston (accessed 1 April, 2022)

Sasahara H, Shigemune A, Goto A, Miura K (2017) Variation in eating
quality of Japanese native rice varieties (in Japanese). Hokuriku Crop
Sci 52: 21–25

Secretariat of Agriculture, Forestry and Fisheries Research Council
(1970) Wagakuni no Zairaiinehinshu no Tokusei (in Japanese).
Secretariat of Agriculture, Forestry and Fisheries Research Council,
Tokyo

Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q,
Nordborg M (2012) An efficient multi-locus mixed-model approach
for genome-wide association studies in structured populations. Nat
Genet 44(7): 825–830

Sreenivasulu N, Butardo VM Jr, Misra G, Cuevas RP, Anacleto R, Kavi
Kishor PB (2015) Designing climate-resilient rice with ideal grain qual-
ity suited for high-temperature stress. J Exp Bot 66(7): 1737–1748

Sun X, Zhang Z, Chen C, Wu W, Ren N, Jiang C, Yu J, Zhao Y, Zheng
X, Yang Q, et al. (2018) The C-S-A gene system regulates hull pig-
mentation and reveals evolution of anthocyanin biosynthesis path-
way in rice. J Exp Bot 69(7): 1485–1498

Tibbs Cortes L, Zhang Z, Yu J (2021) Status and prospects of genome-
wide association studies in plants. Plant Genome 14: e20077

Wei X, Qiu J, Yong K, Fan J, Zhang Q, Hua H, Liu J, Wang Q, Olsen K,
Han B, et al. (2021) A quantitative genomics map of rice provides
genetic insights and guides breeding. Nat Genet 53(2): 243–253

Yano K, Morinaka Y, Wang F, Huang P, Takehara S, Hirai T, Ito A,
Koketsu E, Kawamura M, Kotake K, et al. (2019) GWAS with
principal component analysis identifies a gene comprehensively
controlling rice architecture. Proc Natl Acad Sci U S A 116(42):
21262–21267

Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki
M, Yoshida S, Kitano H, Hirano K, et al. (2016) Genome-wide as-
sociation study using whole-genome sequencing rapidly identifies
new genes influencing agronomic traits in rice. Nat Genet 48(8):
927–934

Zheng J, Wu H, Zhu H, Huang C, Liu C, Chang Y, Kong Z, Zhou Z,
Wang G, Lin Y, et al. (2019) Determining factors, regulation system,
and domestication of anthocyanin biosynthesis in rice leaves. New
Phytol 223(2): 705–721

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012)
A high-performance computing toolset for relatedness and princi-
pal component analysis of SNP data. Bioinformatics 28(24):
3326–3328

Effective use of legacy data in a GWAS PLANT PHYSIOLOGY 2023: 00; 1–13 | 13

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiad018/6991393 by Fukushim

a U
niversity Library user on 07 February 2023

https://CRAN.R-project.org/package&equals;gaston

	Effective use of legacy data in a genome-wide association studies improves the credibility of quantitative trait loci detection in rice
	Introduction
	Results
	Population structure and phenotypic data for L-GWAS
	Validity of L-GWAS
	Combination of L-GWAS and M-GWAS for finding QTL
	Evaluation of pleiotropic impacts of QTL by L-GWAS

	Discussion
	Materials and methods
	Plant material and genotyping
	Population genetic analyses and GWASs
	Phenotypic data
	Statistical analyses
	Accession numbers

	Supplemental data
	Acknowledgments
	Funding
	References


