5th International Conference on

Environmental Sustainability and Climate Change $^{\&}$ Recycling and Waste Management

November 07-08, 2022 | Millennium Hotel Paris Charles De Gaulle, Paris, France

DIRECT GEOLOGICAL DAMPING OF SODIUM CARBONATE GEL FOR ${\rm CO}_2$ SEQUESTRATION IN SHALLOW AQUIFER

Kyuro Sasaki

Institute for Future Engineering, Kyushu University, Japan

Abstract

In this study, a possibility of carbon dioxide (CO_2) sequestration has been discussed by focusing on the aqueous gel of sodium carbonate $(Na_2CO_3; SC)$ forming by absorbing CO_2 gas in water solution of sodium-metasilicate-hydrates $(Na_2SiO_3 \cdot 9H_2O; S-MS)$. Modifications to the process to eliminate the stripper section and focus on just the CO_2 gas adsorbing in S-MS solution can lead to reductions in the CO_2 capture cost compared with a CO_2 capture process using ordinal chemical absorber. Furthermore, the direct geological dumping of SC aqueous gel into a shallow aquifer has the advantages in storage capacity and safe geological sequestration compared with the ordinary CCS into deep aquifers by injecting super-critical CO_2 , because the shallow aquifer has higher permeability and porosity, and SC aqueous gel is fairly stable and immovable to pressure and temperature changes even in a shallow aquifer with likely leakage paths. More savings on the energy costs for compression and cooling of the captured CO_2 gas can be realized if the aqueous gel is directly geological dumped into a shallow aquifer by injecting gel slurry. The direct geological dumping system of SC aqueous gel into shallow aquifers, proposed here, is expected to be suitable for small on-site CO_2 sequestration within land facilities such as power, steel mills and cement plants.